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Infinite plate with a hole under far field tension
In these notes we will consider the problem of a very large plate with a
central hole that is loaded in the far-field by a tensile stress field. To solve
the problem we will consider doing it by superposition. First we will assume
there is no hole in the plate and write down the solution. Then we will correct
the solution by considering a second problem of a plate with a hole with no
far-field stresses but a special traction distribution on the edge of the hole
that will exactly cancel the solution from the plate without the hole. The
sum of the two solutions will give a total solution that gives zero traction on
the edge of the hole and far field tension.
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Figure 1: Infinite plate with a hole under far field tension decomposed into
two problems.

The solution for the problem without the hole is given as

σf = Tex ⊗ ex (1)
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In polar coordinates this translates to

σf
rr = er · σer = T cos2(θ) =

T

2
[1 + cos(2θ)] (2)

σf
θθ = eθ · σeθ = T sin2(θ) =

T

2
[1− cos(2θ)] (3)

σf
rθ = er · σeθ = −T cos(θ) sin(θ) = −T

2
sin(2θ) . (4)

The only problem with using this stress field as the solution to the real
problem is that it does not satisfy the traction free boundary condition at
r = a. To correct this let us first compute the traction at r = a. The normal
is −er so:

t|r=a = σf |r=a(−er) = −T cos2(θ)er + T cos(θ) sin(θ)eθ

= −T

2
[1 + cos(2θ)]er +

T

2
sin(2θ)eθ

(5)

We now require that at r = a

σ̂|r=a(−er) =
T

2
[1 + cos(2θ)]er −

T

2
sin(2θ)eθ . (6)

In this way the sum of σf and σ̂ at r = a will satisfy the zero traction
boundary condition of the original problem. σ̂ also needs to satisfy a far-field
boundary condition that it goes to zero as r →∞ since σf already satisfies
the far-field boundary condition of the original problem. More specifically,
we want that the force generated by σ̂ on an arc in the far-field go to zero
as the radius of the arc becomes large. This implies that

lim
r→∞

∫
arc

σ̂r dθ = 0 (7)

This implies that σ̂ must go to zero at least as fast as 1
rk , where k > 1.

To solve for σ̂ we can use the Michell’s general solution. Our traction bound-
ary condition indicates that we will need terms that do not depend on θ and
terms that depend upon 2θ. Thus we should for a start consider the following
terms:

Φ = ao ln(r) + bor
2 + cor

2 ln(r) + dor
2θ + a′oθ (8)

+
(
a2r

2 + b2r
4 + a′2/r

2 + b′2
)
cos(2θ) (9)

+
(
c2r

2 + d2r
4 + c′2/r

2 + d′2
)
sin(2θ) (10)
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In (8) the term bo does not give decaying stresses so it must be zero; co and
do lead to non-single valued solutions for our geometry and thus they must
be zero. In (9) and (10) the terms a2, b2, c2, and d2 do not give decaying
stresses so they must be zero. Points about decaying stresses follow directly
from

σ̂rr =
1

r
Φ,r +

1

r2
Φ,θθ (11)

σ̂θθ = Φ,rr (12)

σ̂rθ =
1

r2
Φ,θ −

1

r
Φ,rθ (13)

Let us start with (8) and (9) and then if we can not satisfy the boundary
conditions with these terms then we can try adding in the terms from (10).
This gives

σ̂rr =
ao

r2
− 6a′2

r4
cos(2θ)− 4b′2

r2
cos(2θ) (14)

σ̂θθ = −ao

r2
+

6a′2
r4

cos(2θ) (15)

σ̂rθ =
a′o
r2
− 6a′2

r4
sin(2θ)− 2b′2

r2
sin(2θ) (16)

Let us now apply the boundary conditions to try and determine the coeffi-
cients. This gives:

−
[
ao

a2
−

(
6a′2
a4

+
4b′2
a2

)
cos(2θ)

]
=

T

2
[1 + cos(2θ)] (17)

−
[
a′o
a2
−

(
6a′2
a4

+
2b′2
a2

)
sin(2θ)

]
= −T

2
sin(2θ) (18)

Due to the orthogonality of trigonometric functions we can match coefficients
of the constant terms and of each trigonometric function. This gives four
linear equations in the four unknowns. Solving yields

a′o = 0 (19)

ao = −T

2
a2 (20)

a′2 = −T

4
a4 (21)

b′2 =
T

2
a2 (22)
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Since we have been able to satisfy all the boundary conditions there is no
need to look at the terms in (10).

The final solution is given by:

σrr =
T

2

{
1−

(a

r

)2

+

[
1− 4

(a

r

)2

+ 3
(a

r

)4
]

cos(2θ)

}
(23)

σθθ =
T

2

{
1 +

(a

r

)2

−
[
1 + 3

(a

r

)4
]

cos(2θ)

}
(24)

σrθ = −T

2

[
1 + 2

(a

r

)2

− 3
(a

r

)4
]

sin(2θ) (25)

One very important result of this computation is the value of the stress
concentration around the hole. The tangential stresses around the hole are
given by

σθθ|r=a = T [1− 2 cos(2θ)] (26)

This is maximal at θ = ±π
2

which gives σmax
θθ = 3T .
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