UNIVERSITY OF CALIFORNIA BERKELEY	Structural Engineering,
Department of Civil Engineering	Mechanics and Materials
Fall 2003	Professor: S. Govindjee

Representation Theorem for Linear Operators on Finite Dimensional Vector Spaces

Theorem 1 (Linear Operator Representation Theorem) Given a linear operator $l: V \to V$, where V is a finite dimensional vector space with basis $\{e_j\}_{j=1}^n$, there exists a unique 2nd order tensor L such that

$$\boldsymbol{l}(\boldsymbol{a}) = \boldsymbol{L}\boldsymbol{a} \qquad \forall \boldsymbol{a} \in V.$$

Proof: The proof of this result involves two issues: (1) the proof of existance and (2) the proof of uniqueness. Starting with issue (1), condsider an arbitrary $a \in V$. Then one can write

$$\boldsymbol{a} = a_i \boldsymbol{e}_i$$

Thus

$$\begin{aligned} \boldsymbol{l}(a_i \boldsymbol{e}_i) &= a_i \boldsymbol{l}(\boldsymbol{e}_i) \\ &= a_i l_j(\boldsymbol{e}_i) \boldsymbol{e}_j \\ &= [l_j(\boldsymbol{e}_k) \boldsymbol{e}_j \otimes \boldsymbol{e}_k] a_i \boldsymbol{e}_i \end{aligned}$$

Thus we can identify $\boldsymbol{L} = l_j(\boldsymbol{e}_k) \boldsymbol{e}_j \otimes \boldsymbol{e}_k$.

To prove uniqueness, assume that there are two such L's called L^1 and L^2 . This implies for any $a \in V$ that

$$\boldsymbol{l}(\boldsymbol{a}) = \boldsymbol{L}^1 \boldsymbol{a}$$
 and $\boldsymbol{l}(\boldsymbol{a}) = \boldsymbol{L}^2 \boldsymbol{a}$

Subtracting gives

$$\mathbf{0} = (\mathbf{L}^1 - \mathbf{L}^2) \mathbf{a} \qquad \forall \mathbf{a} \in V,$$

which implies that $L^1 = L^2$; q.e.d.