UNIVERSITY OF CALIFORNIA BERKELEY Structural Engineering,
Department of Civil Engineering Mechanics and Materials
Fall 2003

## Linearization of the Determinant

Consider the linearization of $\operatorname{det}(\boldsymbol{F})$ in the direction $\boldsymbol{H}$ at a "point" $\overline{\boldsymbol{F}}$. This is the function

$$
\begin{equation*}
\operatorname{det}(\overline{\boldsymbol{F}}+\boldsymbol{H}) \approx \operatorname{det}(\overline{\boldsymbol{F}})+\left.\frac{d}{d \theta}\right|_{\theta=0} \operatorname{det}(\overline{\boldsymbol{F}}+\theta \boldsymbol{H}) \tag{1}
\end{equation*}
$$

where the right-hand-side is the desired linearization. The entire issue is the computation of the last term on the right-hand-side of Eq. (1). To this end we make use of the following result from linear algebra

$$
\begin{equation*}
\operatorname{det}(\boldsymbol{A}-\lambda \mathbf{1})=-\lambda^{3}+\operatorname{tr}(\boldsymbol{A}) \lambda^{2}-\frac{1}{2}\left[\operatorname{tr}(\boldsymbol{A})^{2}-\operatorname{tr}\left(\boldsymbol{A}^{2}\right)\right] \lambda+\operatorname{det}(\boldsymbol{A}) . \tag{2}
\end{equation*}
$$

Rewrite the last term on the right-hand-side of Eq. (1) as

$$
\begin{align*}
\left.\frac{d}{d \theta}\right|_{\theta=0} \operatorname{det}(\overline{\boldsymbol{F}}+\theta \boldsymbol{H}) & =\left.\frac{d}{d \theta}\right|_{\theta=0} \operatorname{det}\left(\left(\mathbf{1}+\theta \boldsymbol{H} \overline{\boldsymbol{F}}^{-1}\right) \overline{\boldsymbol{F}}\right)  \tag{3}\\
& =\left.\frac{d}{d \theta}\right|_{\theta=0}\left(\operatorname{det}(\overline{\boldsymbol{F}}) \operatorname{det}\left(\mathbf{1}+\theta \boldsymbol{H} \overline{\boldsymbol{F}}^{-1}\right)\right)  \tag{4}\\
& =\left.\frac{d}{d \theta}\right|_{\theta=0}\left(\operatorname{det}(\overline{\boldsymbol{F}}) \operatorname{det}\left(\theta \boldsymbol{H} \overline{\boldsymbol{F}}^{-1}-(-1) \mathbf{1}\right)\right) \tag{5}
\end{align*}
$$

Now apply Eq. (2) to the last determinant expression in Eq. (5) noting that $\boldsymbol{A}=\theta \boldsymbol{H} \overline{\boldsymbol{F}}^{-1}$ and $\lambda=-1$. Thus,

$$
\begin{align*}
\left.\frac{d}{d \theta}\right|_{\theta=0} \operatorname{det}(\overline{\boldsymbol{F}}+\theta \boldsymbol{H}) & =\left.\frac{d}{d \theta}\right|_{\theta=0}\left(\operatorname{det}(\overline{\boldsymbol{F}})\left(1+\operatorname{tr}\left(\theta \boldsymbol{H} \overline{\boldsymbol{F}}^{-1}\right)+o(\theta)\right)\right)  \tag{6}\\
& =\operatorname{det}(\overline{\boldsymbol{F}}) \operatorname{tr}\left(\boldsymbol{H} \overline{\boldsymbol{F}}^{-1}\right) \tag{7}
\end{align*}
$$

With this result in hand we can now linearize the Jacobian for the case of small deformations. Begin by considering a given state of deformation $\overline{\boldsymbol{x}}$ and a direction $\boldsymbol{u}$. (Later we will set $\overline{\boldsymbol{x}}=\boldsymbol{X}$; i.e. no deformation). Let

$$
\begin{equation*}
\boldsymbol{x}^{\theta}=\overline{\boldsymbol{x}}+\theta \boldsymbol{u} . \tag{8}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\boldsymbol{F}^{\theta}=\frac{\partial \boldsymbol{x}^{\theta}}{\partial \boldsymbol{X}}=\frac{\partial \overline{\boldsymbol{x}}}{\partial \boldsymbol{X}}+\frac{\partial(\theta \boldsymbol{u})}{\partial \boldsymbol{X}}=\overline{\boldsymbol{F}}+\theta \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} . \tag{9}
\end{equation*}
$$

Continuing, let

$$
\begin{equation*}
J^{\theta}=\operatorname{det}\left(\boldsymbol{F}^{\theta}\right) . \tag{10}
\end{equation*}
$$

If we consider $J$ as a function of the given positions $\overline{\boldsymbol{x}}$, then the linearization of $J$ about the state $\overline{\boldsymbol{x}}$ in the direction $\boldsymbol{u}$ is given by the right hand side of

$$
\begin{align*}
J(\overline{\boldsymbol{x}}+\boldsymbol{u}) & \approx J(\overline{\boldsymbol{x}})+\left.\frac{d}{d \theta}\right|_{\theta=0} J^{\theta}=\bar{J}+\left.\frac{d}{d \theta}\right|_{\theta=0} J^{\theta}  \tag{11}\\
& =\bar{J}+\left.\frac{d}{d \theta}\right|_{\theta=0} \operatorname{det}\left(\overline{\boldsymbol{F}}+\theta \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}\right) \tag{12}
\end{align*}
$$

Identifying $\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}$ with $\boldsymbol{H}$ from Eq. (7) yields

$$
\begin{equation*}
J(\overline{\boldsymbol{x}}+\boldsymbol{u}) \approx \bar{J}+\bar{J} \operatorname{tr}\left(\frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}} \overline{\boldsymbol{F}}^{-1}\right)=\bar{J}+\bar{J} \operatorname{tr}\left(\frac{\partial \boldsymbol{u}}{\partial \overline{\boldsymbol{x}}}\right) . \tag{13}
\end{equation*}
$$

If we now let the given state $\overline{\boldsymbol{x}}$ be equal to $\boldsymbol{X}$; i.e. we consider a linearization about the undeformed or reference state then $\overline{\boldsymbol{x}}=\boldsymbol{X}, \bar{J}=\operatorname{det}(\mathbf{1})=1$, and

$$
\begin{equation*}
J \approx 1+\mathbf{1}: \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}=1+\operatorname{div}[\boldsymbol{u}] \tag{14}
\end{equation*}
$$

Thus the linearized (for small deformations) change in volume is given by

$$
\begin{equation*}
V=\left(1+\mathbf{1}: \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}\right) V_{0} . \tag{15}
\end{equation*}
$$

In a relative sense,

$$
\begin{equation*}
\frac{V-V_{0}}{V_{0}}=\mathbf{1}: \frac{\partial \boldsymbol{u}}{\partial \boldsymbol{X}}=u_{i, i}=\varepsilon_{i i}=\operatorname{tr}(\boldsymbol{\varepsilon}) \tag{16}
\end{equation*}
$$

where the displacement gradients have been assumed small so that the distinction between derivatives with respect to $\boldsymbol{x}$ and $\boldsymbol{X}$ are of higher order than the case being considered.

