HW \#2: CE231 / MSE211

As we have seen we can express vectors in terms of their components with respect to a particular basis. Thus we can write

$$
\begin{equation*}
\boldsymbol{v}=v_{i} \boldsymbol{e}_{i} . \tag{1}
\end{equation*}
$$

When the particular basis is understood (ie. everyone reading the equation will assume the same basis) one can safely express the components of the vector in a "column vector"; ie. as

$$
v_{i} \rightarrow\left(\begin{array}{l}
v_{1} \tag{2}\\
v_{2} \\
v_{3}
\end{array}\right)
$$

This convention also applies to second order tensors. In this case we have for a basis $e=$ $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$

$$
\begin{equation*}
\boldsymbol{T}=T_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j} \tag{3}
\end{equation*}
$$

If the basis is understood we can express the components in a 3×3 matrix. The following ordering is conventional:

$$
T_{i j} \rightarrow\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \tag{4}\\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]
$$

For the problems assume an orthonormal basis $e=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ and

$$
\begin{gather*}
\boldsymbol{a}=2 \boldsymbol{e}_{1}+5 \boldsymbol{e}_{2}-7 \boldsymbol{e}_{3}, \tag{5}\\
\boldsymbol{b}=0 \boldsymbol{e}_{1}-8 \boldsymbol{e}_{2}+1 \boldsymbol{e}_{3}, \tag{6}\\
c_{i} \rightarrow\left(\begin{array}{l}
4 \\
5 \\
7
\end{array}\right), \tag{7}
\end{gather*}
$$

and

$$
T_{i j} \rightarrow\left[\begin{array}{lll}
1 & 8 & 2 \tag{8}\\
8 & 3 & 2 \\
2 & 2 & 3
\end{array}\right]
$$

Find the following. Express your answers in dyadic and matrix/column vector form (assume the e basis). When the answer is a scalar, just give the number.

1. $(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c}$
2. $b_{3} \boldsymbol{a} \cdot \boldsymbol{c}$
3. $(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{a} \otimes \boldsymbol{b}$
4. $\delta_{i i}$
5. $T_{3 j} \delta_{3 j}$
6. $T_{i j} \delta_{i j}$
7. $T_{i j} T_{i j}$
8. $\boldsymbol{T} \boldsymbol{c}$
9. I_{T}
10. $I I_{T}$
11. $I I I_{T}$
12. $\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{2}$
13. $\boldsymbol{e}_{3} \otimes \boldsymbol{e}_{2}$
