UNIVERSITY OF CALIFORNIA BERKELEY Structural Engineering,
Department of Civil Engineering Mechanics and Materials
Fall 2003

Higher Order Determinants

The determinant of a second order tensor can be expressed in several ways. Suppose \boldsymbol{T} is a second order tensor in n-dimensions, then for a given coordinate system

$$
\begin{equation*}
\operatorname{det}[\boldsymbol{T}]=T_{1 i_{1}} T_{2 i_{2}} \cdots T_{n i_{n}} e_{i_{1} i_{2} \cdots i_{n}} \tag{1}
\end{equation*}
$$

where $i_{1}, i_{2}, \cdots, i_{n}$ are indices that range over the set $\{1,2,3, \cdots, n\}$. The value of the permutation symbol ${ }^{1}$ is +1 if $\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ form an even permutation and -1 if they form and odd permutation; otherwise, it is zero. Other expressions for the determinant are

$$
\begin{equation*}
\operatorname{det}[\boldsymbol{T}] e_{j_{1} j_{2} \cdots j_{n}}=T_{j_{1} i_{1}} T_{j_{2} i_{2}} \cdots T_{j_{n} i_{n}} e_{i_{1} i_{2} \cdots i_{n}} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{det}[\boldsymbol{T}]=\frac{1}{n!} T_{j_{1} i_{1}} T_{j_{2} i_{2}} \cdots T_{j_{n} i_{n}} e_{i_{1} i_{2} \cdots i_{n}} e_{j_{1} j_{2} \cdots j_{n}} \tag{3}
\end{equation*}
$$

where $j_{1}, j_{2}, \cdots j_{n}$ are indices that range over the set $\{1,2,3, \cdots, n\}$. In order to use the expressions above one needs a definition of an even and odd permutation. To determine whether or not a sequence $\left(i_{1}, i_{2}, \cdots, i_{n}\right)$ is an even permutation or an odd permutation, one begins with the sequence $(1,2,3, \cdots, n)$ and counts the number of interchanges of numbers in the sequence required to generate $\left(i_{1}, i_{2}, \cdots, i_{n}\right)$. If the number of interchanges is an even number then the permutation is even if the number is odd then the permutation is odd. As an example the permutation $\left(i_{1}, i_{2}, \cdots, i_{n}\right)=$ $(1,4,5,3,2)$ can be created by the following series of interchanges

$$
\begin{equation*}
(1,2,3,4,5) \rightarrow(1,5,3,4,2) \rightarrow(1,5,4,3,2) \rightarrow(1,4,5,3,2) . \tag{4}
\end{equation*}
$$

Thus there are 3 interchanges and the permutation is considered odd. This implies that $e_{14532}=-1$. All these formulae readily reduce to the expressions given in class for the case of $n=3$.

[^0]
Advanced references:

1. D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational Principles, Dover, 1989.
2. W.L. Burke, Applied Differential Geometry, Cambridge Press, 1985.

[^0]: ${ }^{1}$ Other names for the permutation symbol are alternating symbol and Levi-Civita symbol. Some texts consider the permutation symbol to be the components of a tensor and others do not; the issue is the precise definition of a tensor used in different texts. For our purposes the idea of the permutation symbol will be sufficient and we will not need to consider its tensorial properties or lack thereof .

