UNIVERSITY OF CALIFORNIA BERKELEY	Structural Engineering,
Department of Civil Engineering	Mechanics and Materials
Fall 2003	Professor: S. Govindjee

Higher Order Determinants

The determinant of a second order tensor can be expressed in several ways. Suppose T is a second order tensor in *n*-dimensions, then for a given coordinate system

$$\det[\mathbf{T}] = T_{1i_1} T_{2i_2} \cdots T_{ni_n} e_{i_1 i_2 \cdots i_n} , \qquad (1)$$

where i_1, i_2, \dots, i_n are indices that range over the set $\{1, 2, 3, \dots, n\}$. The value of the permutation symbol¹ is +1 if (i_1, i_2, \dots, i_n) form an even permutation and -1 if they form and odd permutation; otherwise, it is zero. Other expressions for the determinant are

$$\det[\mathbf{T}]e_{j_1j_2\cdots j_n} = T_{j_1i_1}T_{j_2i_2}\cdots T_{j_ni_n}e_{i_1i_2\cdots i_n}$$
(2)

and

$$\det[\mathbf{T}] = \frac{1}{n!} T_{j_1 i_1} T_{j_2 i_2} \cdots T_{j_n i_n} e_{i_1 i_2 \cdots i_n} e_{j_1 j_2 \cdots j_n} , \qquad (3)$$

where j_1, j_2, \dots, j_n are indices that range over the set $\{1, 2, 3, \dots, n\}$. In order to use the expressions above one needs a definition of an even and odd permutation. To determine whether or not a sequence (i_1, i_2, \dots, i_n) is an even permutation or an odd permutation, one begins with the sequence $(1, 2, 3, \dots, n)$ and counts the number of interchanges of numbers in the sequence required to generate (i_1, i_2, \dots, i_n) . If the number of interchanges is an even number then the permutation is even if the number is odd then the permutation is odd. As an example the permutation $(i_1, i_2, \dots, i_n) =$ (1, 4, 5, 3, 2) can be created by the following series of interchanges

$$(1,2,3,4,5) \to (1,5,3,4,2) \to (1,5,4,3,2) \to (1,4,5,3,2).$$
 (4)

Thus there are 3 interchanges and the permutation is considered odd. This implies that $e_{14532} = -1$. All these formulae readily reduce to the expressions given in class for the case of n = 3.

¹Other names for the permutation symbol are alternating symbol and Levi-Civita symbol. Some texts consider the permutation symbol to be the components of a tensor and others do not; the issue is the precise definition of a tensor used in different texts. For our purposes the idea of the permutation symbol will be sufficient and we will not need to consider its tensorial properties or lack thereof.

Advanced references:

- 1. D. Lovelock and H. Rund, Tensors, Differential Forms, and Variational Principles, Dover, 1989.
- 2. W.L. Burke, Applied Differential Geometry, Cambridge Press, 1985.