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1 Definition of Eigenvalues and Eigenvectors

Given a tensor A the scalar λ and the vector p which satisfy

Ap = λp , (1)

are known as the eigenvalue and eigenvector of A. Note that these “eigen-
pairs” are not unique. As means of finding the eigenpairs note that (1) can
be written as

(A− λ1)p = 0 . (2)

The only way for (2) to have a non-trivial solution is for the tensor in the
parenthesis to have zero determinant. Thus, the governing equation for the
eigenvalues is given by

det[A− λ1] = 0 . (3)

This can be expanded to give a (characteristic) polynomial in λ of nth order
where n is the order of A. For the case of second order tensors this expansion
gives

−λ3 + IAλ
2 − IIAλ+ IIIA = 0 , (4)

where IA = tr[A] = λ1 + λ2 + λ3, IIA = 1
2
{(tr[A])2 − tr[A2]} = λ1λ2 +

λ2λ3 + λ3λ1, and IIIA = det[A] = λ1λ2λ3 are the 3 invariants of A. Solving
this polynomial for the λ’s gives the eigenvalues of A. Once the eigenvalues
are known, Eq. (2) can be used to determine the corresponding eigenvectors.
Note that the vectors are not unique. By convention we will always normalize
them to have unit length.

2 Eigenvalues are real for ε ∈ S3

Eigenvalues are real for a symmetric real valued tensors. Proof: Assume that
λ and n are an Eigenpair; i.e.

εn = λn . (5)
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Since ε = εT this implies that εTn = λn or that

ε̄Tn = λn (6)

where the bar indicates complex conjugation. Dot (6) by n̄ so that

n̄ · ε̄Tn = λn̄ · n . (7)

Conjugate (5) and dot by n so that

n · ε̄n̄ = λ̄n · n̄ . (8)

Apply the definition of transpose to (8) to give

ε̄Tn · n̄ = λ̄n · n̄ . (9)

Compare (9) to (7) to reveal that

λn̄ · n = λ̄n · n̄ . (10)

Thus we have that λ̄ = λ which implies that λ is a real number.

3 Eigenvector are orthogonal for ε ∈ S3

Proof of orthogonality of eigenvectors: Let (λ1,x
1) and (λ2,x

2) be two eigen-
pairs for ε = εT (real) where λ1 6= λ2. Then εx1 = λ1x

1 and εx2 = λ2x
2.

Dot these two expression by x2 and x1 respectively. Thus

x2 · εx1 = λ1x
2 · x1 (11)

and
x1 · εx2 = λ2x

1 · x2 . (12)

Apply the definition of transpose and invoke the relation ε = εT on (11) to
give

εTx2 · x1 = εx2 · x1 = λ1x
2 · x1 . (13)

Combining (13) with (12) yields

(λ1 − λ2)x2 · x1 = 0 . (14)

This implies that x1 · x2 = 0 since the eigenvalues were assumed distinct.
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4 Spectral Representations

For real symmetric 2nd order tensor,A, one has the following useful represen-
tation theorems. If one has distinct eigenvalues {λ1, λ2, λ3} with associated
eigenvectors {n1,n2,n3} then we can write

A =
3∑
i=1

λini ⊗ ni . (15)

The proof of this form follow easily if one notes that the identity can be
expressed in terms of the eigenvectors as 1 = ni ⊗ ni.
If we have λ1, λ2 = λ3 with n1 the eigenvector associated with λ1 , then we
have

A = λ1n1 ⊗ n1 + λ2(1− n1 ⊗ n1) . (16)

Note that 1−n1 ⊗n1 represents a projection onto the subspace orthogonal
to n1 and thus represents a plane of eigenvectors. If we have λ1 = λ2 = λ3,
then

A = λ11 (17)

and all vectors are eigenvectors.

5 Caley-Hamilton Theorem

The Caley-Hamilton Theorem states that a tensor satisfies its own charac-
teristic polynomial. For simplicity we will only deal with the real-symmetric
case. To prove this we first start with an auxiliary result.
Assume that f(·) is a real polynomial and that λ̂ is a solution of the charac-
teristic polynomial for a tensor A, then f(λ̂) is an eigenvalue of f(A). The
proof is performed via the principle of mathematical induction (PMI). First
note that there exists a p such that Arp = λ̂rp for r = 1 (by assumption).
Now assume

Anp = λ̂np (18)

for some fixed n > 1. Thus

An+1p = A(Anp) = Aλ̂np = λ̂nAp = λ̂nλ̂p = λ̂n+1p . (19)

Thus by PMI we have that Arp = λ̂rp for all r. The remainder of the proof
follow directly by expansion. �
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To show the main result, assume that the polynomial f(·) is the characteristic
polynomial. Then f(λ̂) is an eigenvalue of

f(A) = −A3 + IAA
2 − IIAA+ IIIA . (20)

But f(λ̂) ≡ 0 by our choice of f(·). This implies that all the eigenvalues of
f(A) are zero. For real symmetric tensors, the only such tensor is the zero
tensor (by spectral representation) so we have the final result:

−A3 + IAA
2 − IIAA+ IIIA = 0 . (21)

Note that the result is more general than the symmetric-real case, (it works
for all tensors), but the proof is a bit more involved. See Gilbert Strang
Linear Algebra and Its Applications for a proof of the more general result
utilizing Schur’s Lemma.

6 Max-min properties of eigenvalues

If we consider the strain tensor ε, then the eigenvalues are the max, min,
and “saddle point” normal strains over all directions. Proof: Let εI be the
Eigenvalues of ε and nI the corresponding Eigenvectors. Find v such that

v · εv (22)

is a critical value (min, max, or saddle point), where v is unit. First write ε
in the basis defined by the eigenvectors

ε =
3∑
I=1

εIn
I ⊗ nI . (23)

Also assume that ε1 > ε2 > ε3. Then

v · εv = ε1(n1 · v)2 + ε2(n2 · v)2 + ε3(n3 · v)2 . (24)

Let (n1 ·v) = l, (n2 ·v) = m, and (n3 ·v) = n and note that l2 +m2 +n2 = 1
since v is assumed to be unit. Therefore we need to find the critical values
of ε1l

2 + ε2m
2 + ε3n

2 subject to the constraint that l2 + m2 + n2 = 1. This
is done via the method of Lagrange multipliers; form the Lagrangian

L = ε1l
2 + ε2m

2 + ε3n
2 + λ(l2 +m2 + n2 − 1) . (25)
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The critical equations of the Lagrangian are

∂L
∂l

= 0 (26)

∂L
∂m

= 0 (27)

∂L
∂n

= 0 (28)

∂L
∂λ

= 0 . (29)

Expanding the derivatives gives

(ε1 + λ)l = 0

(ε2 + λ)m = 0 (30)

(ε3 + λ)n = 0

l2 +m2 + n2 = 1 .

To satisfy Eqs. (30) there are several choices:

1. λ = −ε1, m = 0, n = 0, l = 1 which implies that v · εv = ε1.

2. λ = −ε2, m = 1, n = 0, l = 0 which implies that v · εv = ε2.

3. λ = −ε3, m = 0, n = 1, l = 0 which implies that v · εv = ε3.

Remark: Choice 1 leads to a maximum. Choice 3 leads to a
minimum. And Choice 2 leads to a saddle point.�

Thus the primary conclusion is that ε1 is the maximum normal strain and
ε3 is the minimum normal strain.
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