UNIVERSITY OF CALIFORNIA BERKELEY	Structural Engineering,
Department of Civil Engineering	Mechanics and Materials
Fall 2010	Professor: S. Govindjee

Demonstration of the determinant relation

As discussed in lecture the volume ratio of a parallelepiped after and before deformation is given by:

$$
\begin{equation*}
\frac{V}{V_{o}}=\frac{(\boldsymbol{F} \cdot \boldsymbol{c}) \cdot((\boldsymbol{F} \cdot \boldsymbol{a}) \times(\boldsymbol{F} \cdot \boldsymbol{b}))}{\boldsymbol{c} \cdot(\boldsymbol{a} \times \boldsymbol{b})}, \tag{1}
\end{equation*}
$$

where the vectors $\boldsymbol{a}, \boldsymbol{b}$, and \boldsymbol{c} are 'local' vectors to the point of interest in the body. To show that this ratio is indeed the determinant of \boldsymbol{F}, consider the three vectors to be of the form $\boldsymbol{a}=\epsilon_{1} \boldsymbol{e}_{1}, \boldsymbol{b}=\epsilon_{2} \boldsymbol{e}_{2}$, and $\boldsymbol{c}=\epsilon_{3} \boldsymbol{e}_{3}$. In this case,

$$
\begin{align*}
\frac{(\boldsymbol{F} \cdot \boldsymbol{c}) \cdot((\boldsymbol{F} \cdot \boldsymbol{a}) \times(\boldsymbol{F} \cdot \boldsymbol{b}))}{\boldsymbol{c} \cdot(\boldsymbol{a} \times \boldsymbol{b})} & =\frac{\epsilon_{1} \epsilon_{2} \epsilon_{3}}{\epsilon_{1} \epsilon_{2} \epsilon_{3}} \frac{F_{k C} a_{C} e_{i j k} F_{i A} b_{A} F_{j B} c_{B}}{1} \tag{2}\\
& =e_{i j k} F_{i 1} F_{j 2} F_{j 3} . \tag{3}
\end{align*}
$$

The last expression is simply the indicial form for the determinant that we have already learned. It expresses the fundamental definition of a determinant, viz. that the determinant is the (signed) sum of all even and odd permutations of the products of elements of the rows of a matrix. At this point we have shown the result for 3 orthogonal vectors. To see that the result holds for 3 arbitrary vectors first note that:

$$
\begin{equation*}
c \cdot(a \times b)=b \cdot(c \times a)=a \cdot(b \times c) \tag{4}
\end{equation*}
$$

which implies that the scalar triple product of 3 vectors only depends upon the mutually orthogonal components of the 3 vectors and that is what we have already proved.

