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A Quick Overview of Curvilinear Coordinates

1 Introduction

Curvilinear coordinate systems are general ways of locating points in Eu-
clidean space using coordinate functions that are invertible functions of the
usual xi Cartesian coordinates. Their utility arises in problems with obvious
geometric symmetries such as cylindrical or spherical symmetry. Thus our
main interest in these notes is to detail the important relations for strain and
stress in these two coordinate systems. Shown in Fig. 1 are the definitions of
the coordinate functions. Note that while the definition of the cylindrical co-
ordinate system is rather standard, the definition of the spherical coordinate
system varies from book to book. Both systems to be studied are orthogonal.
The precise definitions used here are:

Cylindrical
x1 = r cos(θ)
x2 = r sin(θ)
x3 = z

(1)

r =
√
x21 + x22

θ = tan−1(x2/x1)
z = x3

(2)

Spherical
x1 = r sin(ϕ) cos(θ)
x2 = r sin(ϕ) sin(θ)
x3 = r cos(ϕ)

(3)

r =
√
x21 + x22 + x23

ϕ = cos−1( x3√
x21+x

2
2+x

2
3

)

θ = tan−1(x2/x1)

(4)

2 Basis Vectors

For convenience in some of the equations to be given later we will denote our
curvilinear coordinates as zk where (z1, z2, z3) = (r, θ, z) in the cylindrical
case and (z1, z2, z3) = (r, ϕ, θ) in the spherical case. For the basis vectors we
will introduce for two types of basis vectors. The natural basis vectors and
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Figure 1: Definition of the cylindrical and spherical coordinate systems.

the physical basis vectors. Both bases are orthogonal but the physical basis
has the additional property of orthonormality. The basic definitions are

gk =
∂xi

∂zk
ei (5)

ek =
gk
‖gk‖

. (6)

To differentiate between the physical basis vectors and the usual Cartesian
ones we typically write er, eθ, · · · etc. For the cylindrical coordinate system
one has:

g1 →

 cos(θ)
sin(θ)

0

 g2 →

 −r sin(θ)
r cos(θ)

0

 g3 →

 0
0
1

 (7)

and

er = g1 eθ =
1

r
g2 ez = g3 . (8)

Note that the components have been expressed in the standard orthonormal
Cartesian basis. For the spherical system one has that

g1 →

 sin(ϕ) cos(θ)
sin(ϕ) sin(θ)

cos(ϕ)

 g2 →

 r cos(ϕ) cos(θ)
r cos(ϕ) sin(θ)
−r sin(ϕ)


g3 →

 −r sin(ϕ) sin(θ)
r sin(ϕ) cos(θ)

0

 (9)
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and

er = g1 eϕ =
1

r
g2 eθ =

1

r sin(ϕ)
g3 . (10)

2.1 Physical and Natural Components

As with all bases we can express the components of vectors and tensors with
respect to our new curvilinear bases. In this regard, it is very important
with the curvilinear coordinates to know whether or not the components
are with respect to the natural basis vectors or with respect to the physical
basis vectors. To help maintain the distinction we use superscript numerals
with the components in the natural basis and subscript letter (Latin and
Greek) for components in the physical basis. Consider for example a vector
v = vθeθ = v2g2, then we have the relation

vθ = rv2 . (11)

If for instance we have a vector v = vϕeϕ + vθeθ = v2g2 + v3g3, then we have
that

vϕ = rv2 (12)

vθ = r sin(ϕ)v3 . (13)

Similar relations can be derived for tensor components.

3 Dual Basis Vectors

When dealing with non-Cartesian coordinate systems one often introduces
the so called dual (or contravariant) basis vectors; they are denoted by the
symbol gk – note the raised index. The defining property of these basis
vectors is that they are orthogonal to the first basis introduced; i.e.

gi · gj = δij , (14)

where δij is simply the Kronecker delta symbol. The i index is raised so that
it matches the other side of the equation. The meaning is still the same (1
if i = j and 0 otherwise). Another way of writing this is gk = (∂zk/∂xi)ei.
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Note that for the usual Cartesian coordinates there is no difference between
the dual basis and the regular basis. For the cylindrical system we have:

g1 →

 cos(θ)
sin(θ)

0

 g2 →

 − sin(θ)/r
cos(θ)/r

0

 g3 →

 0
0
1

 . (15)

Note again that the components have been expressed in the standard or-
thonormal Cartesian basis. For the spherical system one has that

g1 →

 sin(ϕ) cos(θ)
sin(ϕ) sin(θ)

cos(ϕ)

 g2 →

 cos(ϕ) cos(θ)/r
cos(ϕ) sin(θ)/r
− sin(ϕ)/r


g3 →

 − sin(θ)/r sin(ϕ)
cos(θ)/r sin(ϕ)

0

 .

(16)

4 Gradient of a Scalar Function

Consider a scalar function f . Its gradient is given as ∇f . This can be
converted through the use of the chain rule into curvilinear coordinates as:

∇f =
∂f

∂x
=
∂f

∂xi
ei =

∂f

∂zk
∂zk

∂xi
ei =

∂f

∂zk
gk . (17)

Typically, however, results are expressed using the physical basis vectors and
not the natural basis vectors. For our two coordinates systems we have upon
expansion:

∇f =
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

∂f

∂z
ez (18)

∇f =
∂f

∂r
er +

1

r

∂f

∂ϕ
eϕ +

1

r sin(ϕ)

∂f

∂θ
eθ (19)

5 Gradient of a Vector

To compute the gradient of a vector expressed in curvilinear coordinates
we need to be able to compute the gradient of the basis vectors as they are
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functions of position (unlike in the Cartesian case). Importantly we will need
to know the derivatives

∂gi
∂zj

=
∂

∂zj
∂xk

∂zi
ek =

∂2xk

∂zj∂zi
ek . (20)

The components of these vectors are usually expressed in the dual basis as

Γkij = gk · ∂gi
∂zj

, (21)

where Γkij is called the Christoffel symbol. For the cylindrical coordinate
system all of the Christoffel symbols are zero except

Γ1
22 = −r , Γ2

12 = Γ2
21 =

1

r
. (22)

For the spherical coordinate system we have all of the Christoffel symbols
are zero except

Γ1
22 = −r , Γ1

33 = −r sin2(ϕ)

Γ2
12 = Γ2

21 = 1
r
, Γ2

33 = − sin(ϕ) cos(ϕ)

Γ3
13 = Γ3

31 = 1
r
, Γ3

32 = Γ3
23 = cot(ϕ)

(23)

We can now consider taking the gradient of a vector. This gives

∇v =
∂

∂x

(
vigi

)
=
∂vi

∂x
gi + vi

∂gi
∂x

(24)

=
∂vi

∂zk
gi ⊗ gk + vi

∂gi
∂zk
⊗ gk (25)

=

(
∂vi

∂zk
+ +vjΓijk

)
gi ⊗ gk . (26)

For the cylindrical coordinate system we can expand this result to deter-
mine the needed components of the gradient. When expressed in terms of
the physical basis we find that ∇u is given by ur,r

1
r
(ur,θ − uθ) ur,z

uθ,r
1
r
(uθ,θ + ur) uθ,z

uz,r
1
r
uz,θ uz,z

 . (27)
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The components of the symmetric part of this tensor give the strain, ε, (in
the physical basis as) ur,r

1
2

(
1
r
ur,θ + r(uθ/r),r

)
1
2
(ur,z + uz,r)

1
r
(uθ,θ + ur)

1
2
(uθ,z + 1

r
uz,θ)

sym. uz,z

 . (28)

For the spherical coordinate system we can also expand this result to
determine the needed components of the gradient. When expressed in terms
of the physical basis we find that ∇u is given by ur,r

1
r
(ur,ϕ − uϕ) 1

r sin(ϕ)
(ur,θ − uθ sin(ϕ))

uϕ,r
1
r
(uϕ,ϕ + ur) −1

r
uθ cot(ϕ) + 1

r sin(ϕ)
uϕ,θ

uθ,r
1
r
uθ,ϕ

1
r sin(ϕ)

uθ,θ + ur/r + uϕ cot(ϕ)/r

 (29)

The components of the symmetric part of this tensor give the strain, ε, (in
the physical basis as)

ur,r
1
2

(
1
r
ur,ϕ + r(uϕ/r),r

)
1
2

(
1

r sin(ϕ)
ur,θ + r(uθ/r),r

)
1
r
(uϕ,ϕ + ur)

1
2

(
−1
r
uθ cot(ϕ) + 1

r
uθ,ϕ + 1

r sin(ϕ)
uϕ,θ

)
sym. 1

r sin(ϕ)
uθ,θ + ur/r + uϕ cot(ϕ)/r


(30)

6 Gradient and Divergence of a Tensor

The basic procedure for finding the gradient and divergence of a tensor follows
exactly as we did above. For simplicity consider the stress tensor σ. Its
gradient is given by

∇σ =
∂

∂x

(
σijgi ⊗ gj

)
=
∂σij

∂x
gi ⊗ gj + σij

∂gi
∂x
⊗ gj + σijgi ⊗

∂gj
∂x

(31)

=
∂σij

∂zk
gi ⊗ gj ⊗ gk + σij

∂gi
∂zk
⊗ gj ⊗ gk + σijgi ⊗

∂gj
∂zk
⊗ gk (32)

=

(
∂σij

∂zk
+ +σljΓilk + σilΓjlk

)
gi ⊗ gj ⊗ gk . (33)

The divergence is obtained by contracting upon the j and k indicies to give

∇ · σ =

(
∂σij

∂zj
+ +σljΓilj + σilΓjlj

)
gi . (34)
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For our two coordinate systems we can expand this last expression and
convert to physical components. The result in the physical basis for the
cylindrical coordinate systems is:

er · (∇ · σ) = σrr,r +
1

r
σrθ,θ + σrz,z +

σrr − σθθ
r

eθ · (∇ · σ) = σθr,r +
1

r
σθθ,θ + σθz,z +

2σθr
r

ez · (∇ · σ) = σzr,r +
1

r
σzθ,θ + σzz,z +

σzr
r

(35)

The result in the physical basis for the spherical coordinate systems is:

er · (∇ · σ) = σrr,r +
1

r
σrϕ,ϕ +

1

r sin(ϕ)
σrθ,θ +

2σrr − σϕϕ − σθθ + σrϕ cot(ϕ)

r

eϕ · (∇ · σ) = σϕr,r +
1

r
σϕϕ,ϕ +

1

r sin(ϕ)
σϕθ,θ +

3σϕr + (σϕϕ − σθθ) cot(ϕ)

r

eθ · (∇ · σ) = σθr,r +
1

r
σθϕ,ϕ +

1

r sin(ϕ)
σθθ,θ +

3σrθ + 2σϕθ cot(ϕ)

r
(36)
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