UNIVERSITY OF CALIFORNIA	BERKELEY Structural Engineering,
Department of Civil Engineering	Mechanics and Materials
Fall 2010	Professor: S. Govindjee

Mappings of tangents to curves

In lecture we showed that the deformation gradient, F_{iA} , maps 'local' vectors from the reference configuration to the current (or spatial) configuration. The result is approximate in the sense that $F_{iA}dX_A = dx_i + \text{h.o.t.}^1$. In all of our constructions we always focus on the properties at a point and thus implicitly always consider the limit as $dX_A \to 0$. Sometimes, however, is is useful to have an expression for the mapping of certain vectors independent of their magnitudes. Such vectors are the tangent vectors to material curves.

Consider a reference configuration curve C defined by the points L: $[a,b] \to \mathcal{R}$, where [a,b] is an arbitrary interval of the real line, \mathbb{R} . At each point $s \in [a,b]$ of the curve, the tangent vector to the curve is given by $d\mathbf{L}(s)/ds$. After deformation, every point of C is mapped to C_t by the deformation map, thus defining a new curve $\mathbf{l} : [a,b] \to \mathcal{R}_t$, where $\mathbf{l}(s) = \chi(\mathbf{L}(s))$. The tangent vector at each point of this new curve is given by:

From this last result, we can observe that *without approximation of any* form! the tangent vector to a curve of material points in the reference configuration is mapped by the deformation gradient to a tangent vector of a curve in the spatial configuration composed of the same material points. For

¹h.o.t. means higher order terms and in this context terms that are quadratic or higher in the norm of dX_A .

this reason, in some books you will find the deformatino gradient referred to as the tangent map.