UNIVERSITY OF CALIFORNIA BERKELEY Structural Engineering, Department of Civil Engineering Mechanics and Materials Fall 2010

Professor: S. Govindjee

Mappings of tangents to curves

In lecture we showed that the deformation gradient, $F_{i A}$, maps 'local' vectors from the reference configuration to the current (or spatial) configuration. The result is approximate in the sense that $F_{i A} d X_{A}=d x_{i}+$ h.o.t. ${ }^{1}$. In all of our constructions we always focus on the properties at a point and thus implicitly always consider the limit as $d X_{A} \rightarrow 0$. Sometimes, however, is is useful to have an expression for the mapping of certain vectors independent of their magnitudes. Such vectors are the tangent vectors to material curves.

Consider a reference configuration curve \mathcal{C} defined by the points L : $[a, b] \rightarrow \mathcal{R}$, where $[a, b]$ is an arbitrary interval of the real line, \mathbb{R}. At each point $s \in[a, b]$ of the curve, the tangent vector to the curve is given by $d \boldsymbol{L}(s) / d s$. After deformation, every point of \mathcal{C} is mapped to \mathcal{C}_{t} by the deformation map, thus defining a new curve $\boldsymbol{l}:[a, b] \rightarrow \mathcal{R}_{t}$, where $\boldsymbol{l}(s)=$ $\boldsymbol{\chi}(\boldsymbol{L}(s))$. The tangent vector at each point of this new curve is given by:

$$
\begin{align*}
\frac{d \boldsymbol{l}}{d s} & =\frac{\partial \boldsymbol{\chi}}{\partial \boldsymbol{X}} \cdot \frac{d \boldsymbol{L}}{d s} \tag{1}\\
& =\boldsymbol{F} \cdot \frac{d \boldsymbol{L}}{d s} . \tag{2}
\end{align*}
$$

$$
\frac{d l_{i}}{d s}=\frac{\partial \chi_{i}}{\partial X_{A}} \frac{d L_{A}}{d s}
$$

From this last result, we can observe that without approximation of any form! the tangent vector to a curve of material points in the reference configuration is mapped by the deformation gradient to a tangent vector of a curve in the spatial configuration composed of the same material points. For

[^0]this reason, in some books you will find the deformatino gradient referred to as the tangent map.

[^0]: ${ }^{1}$ h.o.t. means higher order terms and in this context terms that are quadratic or higher in the norm of $d X_{A}$.

