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Cauchy’s Theorem

Theorem 1 (Cauchy’s Theorem) Let T (x, t) and B(x, t) be a system of
forces for a body Ω. Then a necessary and sufficient condition that the global
momentum balance laws be satisfied is that there exist a spatial tensor field
σ(x, t) called the Cauchy stress such that

(a) For each n (unit) T (n) = σTn (1)

(b) σ = σT (2)

(c) div[σT ] +B = ρü (3)

[Non-Rigorous Proof for necessity sufficiency will be assigned for home-
work]. Note that necessity means if we assume global momentum balance
then (a), (b), and (c) follows. Sufficiency means if we assume (a), (b), and
(c) then global momentum balance follows.

The first step in the proof is to prove that σ exists and is a tensor. We be-
gin by considering Cauchy’s Tetrahedron and performing momentum balance
upon it. Consider a tetrahedron that has been cut out of a deformed body
as shown in Fig. 1. If the tetrahedron is small enough1, then an application
of global momentum balance yields:

T (−e1) e1 · ndA+ T (−e2) e2 · ndA+ T (−e3) e3 · ndA

+ T (n)dA+B
1

3
hdA = ρv̇

1

3
hdA .

(4)

Now note that T (−ei) = −T (ei). This can be seen by either appealing to
Newton’s Third Law or better by applying momentum balance individually
to the faces of the tetrahedron. Thus have

− T (e1)e1 · ndA− T (e2)e2 · ndA− T (e3)e3 · ndA

+ T (n)dA+B
1

3
hdA = ρv̇

1

3
hdA .

(5)

1Note that one can also appeal to the mean value theorem to make this step more
precise.
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Figure 1: Cauchy’s Tetrahedron.
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Dividing through by the area dA and taking the limit as h→ 0 gives:

T (e1)n1 + T (e2)n2 + T (e3)n3 = T (n) = T (n1e1 + n2e2 + n3e3) . (6)

Thus we see that the traction is infact a linear operator from R
3 to R3. This

means that we can describe the traction using a tensor. We will call this
tensor the Cauchy stress tensor and use the symbol σ to denote it. Adhering
to convention we will equate the action of the transpose of σ to the traction
itself; thus,

T (n) = σTn . (7)

Using this relation we can also make clear interpretations of the meaning of
the components of the stress tensor. For example, if we let n = ei, then we
find that

ej · T (ei) = σij . (8)

Thus we see that σij represents traction components (force per unit area) in
the ej direction on a section cut with normal vector ei.

Necessity of (c): From linear momentum balance for an arbitrary part P ⊂ Ω
with boundary ∂P ∫

∂P
T dA+

∫
P
B dV =

∫
P
ρü dV . (9)

By (a) the first term can be written as∫
∂P
T dA =

∫
∂P
σTn dA =

∫
P

div[σT ] dV . (10)

If we plug this back in (9), then∫
P

[div[σT ] +B − ρü] dV = 0 . (11)

Since this holds for any part P the integrand must equal zero; i.e. div[σT ] +
B = ρü.

Necessity of (b): From angular momentum balance for an arbitrary part
P ⊂ Ω with boundary ∂P∫

∂P
eijkxjTk dA+

∫
P
eijkxjBk dV =

∫
P
ρeijkxjük dV . (12)
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Begin by applying (a) to the first term so that∫
∂P
eijkxjTk dA =

∫
∂P
eijkxjσlknl dA =

∫
P

(eijkxjσlk),l dV (13)

=

∫
P
eijkxj,lσlk + eijkxjσlk,l dV (14)

=

∫
P
eilkσlk + eijkxjσlk,l dV . (15)

Plugging this result back into (12) gives∫
P
eilkσlk + eijkxj [σlk,l +Bk − ρük]︸ ︷︷ ︸

=0 by (c)

dV = 0 . (16)

Since this holds for any part P we have that eilkσlk = 0 and this in turn
implies that

σij = σji . (17)
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