## Linearization of Angle Change Relation

The general expression for the change of angle between two vectors $\boldsymbol{V}^{(1)}$ and $\boldsymbol{V}^{(2)}$ is given by:

$$
\begin{equation*}
\cos (\Theta)-\cos (\theta)=\boldsymbol{N}^{(1)} \cdot\left[\frac{\left\|\boldsymbol{V}^{(1)}\right\|\left\|\boldsymbol{V}^{(2)}\right\|}{\left\|\boldsymbol{F} \boldsymbol{V}^{(1)}\right\|\left\|\boldsymbol{F} \boldsymbol{V}^{(2)}\right\|} \boldsymbol{C}-\mathbf{1}\right] \boldsymbol{N}^{(2)} \tag{1}
\end{equation*}
$$

where $\left\|\boldsymbol{V}^{(i)}\right\| \ll 1$ and $\boldsymbol{N}^{(i)}=\boldsymbol{V}^{(i)} /\left\|\boldsymbol{V}^{(i)}\right\|$. The linearization of both sides gives:

$$
\begin{equation*}
-\sin (\Theta) \Delta \theta=-\left(\boldsymbol{N}^{(1)} \cdot \boldsymbol{N}^{(2)}\right)\left(\boldsymbol{N}^{(1)} \cdot \boldsymbol{\varepsilon} \boldsymbol{N}^{(1)}+\boldsymbol{N}^{(2)} \cdot \boldsymbol{\varepsilon} \boldsymbol{N}^{(2)}\right)+2 \boldsymbol{N}^{(1)} \cdot \boldsymbol{\varepsilon} \boldsymbol{N}^{(2)}, \tag{2}
\end{equation*}
$$

where $\theta=\Theta+\Delta \theta$ and $|\Delta \theta| \ll 1$. The expression above comes from linearizing Eq. (1). Note that the linearization of $\boldsymbol{C}$ about zero deformation gives:

$$
\begin{equation*}
\boldsymbol{C} \approx 1+\nabla \boldsymbol{u}+(\nabla \boldsymbol{u})^{T}=1+2 \varepsilon \tag{3}
\end{equation*}
$$

Further note that the linearization about zero deformation of the term multiplying $\boldsymbol{C}$ is given by

$$
\begin{equation*}
\frac{\left\|\boldsymbol{V}^{(1)}\right\|\left\|\boldsymbol{V}^{(2)}\right\|}{\left\|\boldsymbol{F} \boldsymbol{V}^{(1)}\right\|\left\|\boldsymbol{F} \boldsymbol{V}^{(2)}\right\|} \approx 1-\boldsymbol{N}^{(1)} \cdot \boldsymbol{\varepsilon} \boldsymbol{N}^{(1)}-\boldsymbol{N}^{(2)} \cdot \boldsymbol{\varepsilon} \boldsymbol{N}^{(2)} \tag{4}
\end{equation*}
$$

This last expression can be found by noting that to linear approximation: (a) $\left\|\boldsymbol{F} \boldsymbol{V}^{(i)}\right\| \approx\left\|\boldsymbol{V}^{(i)}\right\|\left(1+\boldsymbol{N}^{(i)} \cdot \boldsymbol{\varepsilon} \boldsymbol{N}^{(i)}\right)$ and (b) $\frac{1}{1+x} \approx 1-x$.

The test of the limit case of $\boldsymbol{N}^{(2)} \rightarrow \boldsymbol{N}^{(1)}$ in Eq. (2) produces the result of

$$
\begin{equation*}
0 \cdot \Delta \theta=0 \tag{5}
\end{equation*}
$$

which is an indeterminate result - though still completely consistent. If we use the LHS of Eq. (1) with the RHS of Eq. (2), instead, we find that

$$
\begin{equation*}
\cos (\Theta)-\cos (\Theta+\Delta \theta)=0 \tag{6}
\end{equation*}
$$

which implies $\Delta \theta=0$.

