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Steady State Analysis and Exponential Notation

1 Linear Ordinary Differential Equations

In the solution of equations describing periodically forced dynamical systems one is often
only interested in the steady state solution – i.e. the solution after all transients have died
out. When the system is governed by a linear differential equation, we can take advantage
of Euler’s formula eiα = cos(α) + i sin(α) to find just the forced part of the solution; here
and throughout i =

√
−1. Using Euler’s formula is typically much easier than employing

direct methods for the solution of ordinary differential equations.
As an example let us consider the following simple dynamical system

ẍ+ ẋ+ x = f(t) , (1)

where we wish to solve for x(t) subject to the initial conditions x(0) = xo and ẋ(0) = vo.
The load f(t) = F sin(ωt), where ω and F are given constants.

The classical method of solution requires one to first find the homogenous solution (i.e.
the solution where f(t) = 0). This is usually done using an assumed form x = Aest, solving
the characteristic polynomial for s, and then recombining the terms. The result of this
process is

xH(t) = e−t/2

[
A cos

(√
3

2
t

)
+B sin

(√
3

2
t

)]
, (2)

where A and B are constants that still have to be determined. It then remains to find a
particular solution xP (t). This is usually accomplished by educated guess work and trial-
and-error. For our problem the result is

xP (t) = F

[
1− ω2

1− ω2 + ω4
sin(ωt)− ω

1− ω2 + ω4
cos(ωt)

]
. (3)

The total solution x(t) = xH(t) + xP (t). The two constants A and B are then found by
requiring x(0) = xo and ẋ(0) = vo.

If we are only interested in the forced part of the solution (the particular solution),
then we can employ complex variable notation and make the process algebraically easier.
Assume now that f(t) = Feiωt. In this case, for all linear systems, the particular solution
xP (t) = XP e

iωt; the only unknown in this functional form is XP which happens to be a
complex number in general. The physical interpretation is that the real part of XP provides
the magnitude of the forced response in phase with the load and the imaginary part is the
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magnitude of the out of phase (by 90 degrees) part of the solution. For our problem, if we
insert these two forms for xP and f , then we find

(−ω2XP + iωXP +XP )eiωt = Feiωt . (4)

Thus

XP =
F

−ω2 + iω + 1
= F

1− ω2

1− ω2 + ω4︸ ︷︷ ︸
in phase part

+i F
−ω

1− ω2 + ω4︸ ︷︷ ︸
out of phase part

. (5)

The interpretation of this result is that if the real input was f(t) = F sin(ωt), then the
force output will be exactly what is shown in Eq. 3. Note that if the input were instead
f(t) = sin(ωt + δ), then the same interpretation holds but one has to properly understand
the notions of in phase and out of phase. For this case we would have

xP (t) = F

[
1− ω2

1− ω2 + ω4
sin(ωt+ δ)− ω

1− ω2 + ω4
cos(ωt+ δ)

]
. (6)

Further note that if the input were instead f(t) = cos(ωt), then the output will be the real
part of our complex result:

xP (t) = Re[XP e
iωt] = F

[
1− ω2

1− ω2 + ω4
cos(ωt) +

ω

1− ω2 + ω4
sin(ωt)

]
(7)

From Eq. 5, one can also make the following two useful interpretations:

1. The magnitude/modulus of XP , i.e. |XP | =
√

Re(XP )2 + Im(XP )2, provides the am-
plitude of the forced response.

2. The angle of XP , i.e. ∠XP = tan−1(Im(XP )/Re(XP )), provides the phase angle shift
of the system’s forced response relative to the applied forcing function.

Thus an alternate, and very useful way of writing the forced solutions, is

xP (t) = |XP |ei(ωt+∠XP ) . (8)

A classical way of visualizing these solutions is to construct the so-called Bode plots of the
transfer function; i.e. the graphs of |XP/F | and ∠XP versus log10(ω). For our example
equation, these are shown in Fig. 1. As the top of Fig. 1 shows, at low forcing frequencies
the response amplitude to input amplitude ratio is unity, at a frequency of ω = 1/

√
2 rad/s

it peaks, and then at higher forced frequencies the system ceases to respond. For each
frequency the response is phase shifted with respect to the input as shown in the bottom
of Fig. 1. At low frequencies there is almost no phase shift; as the loading frequency is
increased the response lags behind the load; at ω = 1 rad/s the response is a 90 degrees out
of phase with the load (i.e. at zero load the response is at its maximal value), then finally
at high frequencies it is out of phase by a full 180 degrees (i.e. maximal positive response at
maximal negative load ).
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Figure 1: Bode plots for the example problem

2 General Mathematical Idea

The utility of using complex notation carries over to any linear relation. Suppose a real-
valued function f(t) is related to a real-valued function x(t) via a relation of the form

f(t) = L[x(t)] , (9)

where L is any linear operator; in particular it could be a differential operator or an integral
operator. If it is a differential operator one would generally think of f(t) as the input and x(t)
as the output; in the integral operator case this nomenclature would generally be reversed.
Either way it important to observe that in actual physical systems these inputs and outputs
will be real (in the sense of complex numbers). Notwithstanding, it is generally useful to
think of them as complex quantities. In that case

fR(t) + ifI(t) = L[xR(t) + ixI(t)] (10)

= L[xR(t)] + L[ixI(t)] (11)

= L[xR(t)] + i L[xI(t)] (12)

where linearity of L has been exploited. Taking the real and imaginary parts of Eq. 12, gives
us the result that

fR(t) = L[xR(t)] and fI(t) = L[xI(t)] . (13)

It is for this very basic reason we can replace an oscillating input with eiωt = cos(ωt)+i sin(ωt)
and then solve for the output, all in complex form. Then finally take either the real part or
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the imaginary part for the final answer, depending on if the actual input was either a sine
or a cosine.
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