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Abstract

In this brief note we present a method of estimating the first res-
onant mode of a radial-disk resonator. The methodology employed
utilizes a classical Ritz approximation to the relevant eigenvalue prob-
lem. With a single term approximation a very accurate approximation
can be computed.

1 Introduction

Let us consider the estimation of the first radial vibration mode of a circular
disk. The geometry is shown in Fig. 1. It consists of a homogeneous isotropic
linear elastic circular disk of radius R and unspecified thickness; we will
consider the two extremal cases of zero thickness strain and zero thickness
stress, viz. εzz = 0 and σzz = 0, respectively.

2 Governing Equations

The relevant kinematic relations for the geometry considered are

εrr = u,r (1)

εθθ = u/r . (2)

In the thickness direction we will either assume εzz = 0 or determine it from
the zero thickness stress condition. Note, u(r, t) is the radial motion of the
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Figure 1: Disk geometry

material. Within the chosen approximations it is only a function of radial
postition r and time t.

In this setting there is only one non-trivial equilibrium equation:

σrr,r +
σrr − σθθ

r
= ρü , (3)

where ρ is the material density.
In the zero thickness strain case, the constitutive response is given as

σrr = (2µ + λ)εrr + λεθθ (4)

σθθ = (2µ + λ)εθθ + λεrr , (5)

where µ is the shear modulus and λ the Lamé modulus. For the zero thickness
stress case, the constitutive response is given as

σrr =

(
2µ + λ− λ2

2µ + λ

)
εrr +

(
λ− λ2

2µ + λ

)
εθθ (6)

σθθ =

(
2µ + λ− λ2

2µ + λ

)
εθθ +

(
λ− λ2

2µ + λ

)
εrr . (7)

In what follows, we will write all expressions for the zero thickness strain
case. To convert to the zero thickness stress case, one only needs to replace
all instances of λ by 2µλ/(2µ + λ).

Combining the above relations, one can derive a Navier-form of the gov-
erning relation:

u,rr + (u/r),r =
ρ

2µ + λ
ü . (8)

This relation needs to be solved in the steady state subject to the boundary
condtions: u(0, t) = 0 and σrr(R, t) = 0. To this end, one can assume a
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decomposition of u(r, t) = f(r) exp[iωt]. Introducing this into (8) yield the
eigen-problem:

f,rr + (f/r),r = − ρ

2µ + λ
ω2f , (9)

where f(0) = 0 and (2µ + λ)f,r(R) + λf(R)/R = 0.

3 Weak Formulation

The weak form of (9) reads:

δf(R)
λ

2µ + λ
f(R) +

∫ R

0

δf,rrf,r dr +

∫ R

0

δf
1

r
f dr =

ω2

c2

∫ R

0

δfrf dr , (10)

where we have assumed that the test function δf is zero at r = 0 and
introduced the notation c =

√
(2µ + λ)/ρ. Note that the stress boundary

condition has already been incorporated into this expression.

4 Ritz Approximation

To estimate the first eigenvalue of our disk we can compute a Ritz estimate
using the Galerkin approximation of f(r) = δf(r) = −r2 + 2Rr. Plugging
into both sides of (10) and solving for ω gives a circular frequency of:

ω =
c

R

√
30

11

(
1.25 +

λ

2µ + λ

)
. (11)

As an example application consider the radial disk resonator in [1]. In this
case, the elastic properties are given by E = 139 GPa and ν = 0.28. The disk
radius is R = 41.5 µm and the material density is given as ρ = 4127 kg/m3.
These parameters give for zero thickness strain an ω = 53.09 MHz – compare
to a resolved finite element computation which gives 52.9 MHz. In the case
of zero thickness stress, these parameters give an ω = 47.36 MHz, which
compares well to the reported experimental value of 47.26 MHz. It should
be noted that (11) corrects Equation (70) in [1] to read:

ω = 2.04
c

R
, (12)

where c = 6045 m/s is the zero thickness stress wave speed.
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Figure 2: Radial mode shape from a FEA computation using FEAP [2] for
the zero thickness strain case. The radial motion is plotted vertically.

It should be noted that the Ritz mode shape, while reasonable, does not
respect the stress free end condition. A finite element computation of this
same problem shows that our guess for the mode shape misses a small vari-
ation at the edge of the disk; see Fig. 2. Even as such, our simple quadratic
approximation yields rather good results.
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A FEAP Inputs file for the generation of

Fig. 2

feap ** 1D radial disk resonator model zero thickness strain **

0 0 0 1 1 2

param

R = 41.5d-6 ! disk radius

E = 139d9 ! Young’s Modulus
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nu = 0.28 ! Poisson’s Ratio

d = 4127 ! Density

n = 400 ! number of elements

block

cart n

1 0

2 R

eboun

1 0 1 ! Fix the inner radius

mate

solid

axissymmetric

elastic isotropic E nu

density material d

end

batch

mass ! Form mass

tang ! Form stiffness

subs,,4 ! Compute eigenvalues

plot,dofs,0,1 ! Map dof 1 to dof 2 for plotting

plot,defo,,,1d-5 ! Rescale for plotting

plot,eigv,1 ! Plot first eigenmode

end

inte

stop
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