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Anti-Plane Tearing and Mode III fault rupture
The tearing of a sheet of paper and the rupture of dip-slip faults can both

be characterized as anti-plane strain problems. Consider the paper tearing
case first. Assume a coordinate system (x1, x2) in the plane of the paper
and x3 out of plane. Then the process of tearing involves (approximately) a
motion wherein u3(x1, x2) is the only non-zero component of the displacement
field. In the case of fault rupture, if we align an (x1, x2) coordinate system
such that x2 is orthogonal to the fault plane, x1 is in the fault plane and
oriented towards the fault boundary, and x3 is in the fault plane and oriented
in the direction of uplift, then we also have a condition of anti-plane strain
where u3(x1, x2) is the only non=zero component of displacement; see Fig. 1.
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Figure 1: Mode III fault rupture diagram; zoom in (right), zoom out showing
direction that the rupture is moving (left).

1 Anti-plane strain assumptions

Let us determine the stress field near the edge just where the material is tear-
ing/rupturing. Looking in at the x1, x2 plane we will orient our coordinates
as shown in Fig. 2.
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Figure 2: Mode III coordinate frame.

Assuming
u1 = u2 = 0 u3(x1, x2) , (1)

leads to only two non-zero strains

ε13 =
1

2
u3,1 and ε23 =

1

2
u3,2 . (2)

Further assuming isotropic linear elastic behavior gives only two non-zero
stresses:

σ13 = µu3,1 and σ23 = µu3,2 . (3)

Plugging into the equilibrium equations, one finds that the Navier equation
for equilibrium reduces to:

∇2u3(x1, x2) = 0 , (4)

where we have assumed zero body forces, b = 0. The overall problem will be
to solve (4) subject to appropriate boundary conditions. Since our interest
is in the stresses near the crack tip. We will assume that at some fixed
radius r = R that the tractions or displacements are given as boundary
conditions. These will be supplemented by the observation that the crack
faces are essentially traction free.

2 Conditions for stress-free crack faces

Let us first convert the traction free boundary conditions on θ = ±π to
expressions in terms of the displacements. This will be convenient since we
will solve directly for the displacements from (4) and in polar form.
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2.1 Stresses in terms of displacements

The two non-zero stresses can be written as

σ13 = µu3,1 (5)

= µ

[
∂u3
∂r

∂r

∂x1
+
∂u3
∂θ

∂θ

∂x1

]
(6)

= µ

[
∂u3
∂r

cos(θ)− ∂u3
∂θ

sin(θ)

r

]
(7)

and

σ23 = µu3,2 (8)

= µ

[
∂u3
∂r

∂r

∂x2
+
∂u3
∂θ

∂θ

∂x2

]
(9)

= µ

[
∂u3
∂r

sin(θ) +
∂u3
∂θ

cos(θ)

r

]
. (10)

The stress can be written as

σ = σ13(e1 ⊗ e3 + e3 ⊗ e1) + σ23(e2 ⊗ e3 + e3 ⊗ e2) . (11)

Thus the polar stresses, using (7) and (10), can be expressed as

σr3 = er · σe3 = σ13(er · e1) + σ23(er · e2) (12)

= σ13 cos(θ) + σ23 sin(θ) = µu3,r (13)

and

σθ3 = eθ · σe3 (14)

= −σ13 sin(θ) + σ23 cos(θ) = µu3,θ/r . (15)

2.2 Zero traction boundary condition

The zero traction boundary condition on the crack faces says that

σ(r, π)eθ(π) = 0 (16)

on the top face and that

σ(r,−π)eθ(−π) = 0 (17)
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on the bottom crack face. Noting that one can express the stress as

σ = σr3(er ⊗ e3 + e3 ⊗ er) + σθ3(eθ ⊗ e3 + e3 ⊗ eθ) (18)

allows us to express the sterss acting on surface normal eθ as σeθ = σ3θe3.
This in turn implies that σ3θ(r,±π) = 0 and subsequently that

u3,θ(r,±π) = 0 (19)

as the crack face boundary condition in terms of the displacements.

3 Computing the displacement field

To determine the displacement field we need to solve (4). We will do so in
polar coordinates. To begin let us assume a separable solution of the form
u3 = rλf(θ), where the scalar λ and the function f(·) are both unknown.
Plugging into (4) gives(

∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
rλf(θ) = 0 (20)

λ(λ− 1)rλ−2f + λrλ−2f + rλ−2f ′′ = 0 (21)

λ2f + f ′′ = 0 . (22)

The solution to (22) (for λ 6= 0) is

f = A cos(λθ) +B sin(λθ) . (23)

Thus the solution to the displacement field is of the form

u3 = rλ (A cos(λθ) +B sin(λθ)) . (24)

Should λ = 0, then the solution is u3 = A+Bθ; i.e. f(θ) is a linear function
and r0 = 1. We omit the constant term as it represents a rigid body motion
(and hence generates no stresses), and we omit the linear term as it leads
to non-zero shear strains of the form εθ3 = Br−1. Such strains can not be
present as they correspond to a strain energy density near the crack tip that
is O(r−2), which when integrated over a small volume near the crack tip gives
an infinite energy. The unknown parameter λ 6= 0 can be determined from
the boundary conditions on the crack faces:

rλ (−λA sin(λπ) + λB cos(λπ)) = 0 (25)

rλ (−λA sin(−λπ) + λB cos(−λπ)) = 0 . (26)
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For a non-trivial solution (for A and B) we need that

det

[
− sin(λπ) cos(λπ)

sin(λπ) cos(λπ)

]
= 0 (27)

Thus −2 cos(λπ) sin(λπ) = − sin(λ2π) = 0. Hence,

λn =
n

2
, (28)

where n = · · · ,−2,−1, 1, 2, · · · – i.e. any integer (but zero). The complete
displacement solution is thus given as

u3(r, θ) =
∑
n6=0

rn/2
[
An cos

(
nθ

2

)
+Bn sin

(
nθ

2

)]
. (29)

Remarks:

1. Negative values of n lead to non-physical infinite displacements at the
crack tip. Thus negative values should be omitted, and the displace-
ment field is actually of the form:

u3(r, θ) =
∞∑
n=1

rn/2
[
An cos

(
nθ

2

)
+Bn sin

(
nθ

2

)]
. (30)

The stresses are given as

σr3 = µ
∞∑
n=1

n

2
rn/2−1

[
An cos

(
nθ

2

)
+Bn sin

(
nθ

2

)]
, (31)

and

σθ3 = µ
∞∑
n=1

n

2
rn/2−1

[
−An sin

(
nθ

2

)
+Bn cos

(
nθ

2

)]
. (32)

2. The stresses are of the form σ(·3) ∼ r
n
2
−1. Hence near the crack tip, the

term with n = 1 will dominate all the other terms since it is singular.
The crack tip singularity is seen to beO(r−1/2). The stress are predicted
to be infinite in the elastic solution at the crack tip.
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3. To complete the solution one needs to determine the An and Bn (for
n ≥ 1) using the boundary conditions at r = R.

4. If we consider the pure mode-III loading of a far field stress σ =
σ∞23(e2⊗e3+e3⊗e2), the displacement fields needs to be anti-symmetric
and all An = 0. In this case, the crack tip stresses are of the form
σij = KIIIfij(θ)/

√
2πr+bounded terms, where KIII depends solely on

the geometry and the load. KIII is called the mode-III stress intensity
factor. For a given geometry and load, it can be computed and then
compared to the critical stress intensity factor KIII,c, which is a ma-
terial property to determine if the crack will grow. For tensile loads,
one also has KI , the mode-I stress intensity factor, and for shear in the
plane on has KII , the mode-II stress intensity factor. For these lat-
ter two stress intensity factors one also has tabulated values of critical
values.

5. It may seem non-physical that the stresses are infinite at the crack
tip and thus one may get the impression that the solution is of little
practical value. Notwithstanding, the elastic solution is quite useful. If
one considers a small circle around the crack tip of radius r = ε, then
one can compute the energy available to flow to the crack tip should
the crack try to move through the material in the 1-direction as

J = e1 ·
∫ π

−π

(
W (ε)1−∇uT · σT

)
· nε dθ . (33)

This value turns out to be finite despite the stress singularity. If this
energy is greater than the resistance provided by the material (the
critical energy release rate), then the crack will advance. Equation
(33) is the celebrated J-integral discovered by Jim Rice in the 1960s.
It forms the basis of modern fracture mechanics.
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