
Questions on Viscoelasticity

1. For a strain history of ε(t) = ε0 sin(ωt) the steady state response of the Standard Linear
Solid may be written as σ(t) = ε0[E

′(ω) sin(ωt)+E ′′(ω) cos(ωt)]. E ′ is called the storage
modulus and E ′′ is called the loss modulus. The loss tangent is defined to be tan(δ) =
E ′′/E ′. The moduli E ′ and E ′′ are functions of the frequency ω and hence so is the loss
tangent. Assume E0 = 11, E∞ = 1, and η = 1. Plot E ′, E ′′, and tan(δ) versus log(ω)
over the range ω ∈ (10−2, 103).

2. For a strain history of ε(t) = εo sin(ωt) the response of the Generalized Standard Linear
Solid may be written as σ(t) = σo[E

′(ω) sin(ωt) + E ′′(ω) cos(ωt)]. E ′ is known as the
storage modulus and E ′′ is known as the loss modulus.

(a) Assuming a GSLS with constants E∞ = E1 = E2 = 1, η1 = 1 and η2 = 100 determine
and plot E ′(ω) versus log(ω) over the range log(ω) ∈ [−3, 3]. Comment on the shape of
the graph and interpret the distinctive features.

(b) Let ε(t) = t sin(t)H(10 − t) + H(t − 10) − H(t − 20). Over the range 0 ≤ t ≤ 25,
plot ε(t), σ(t) and cross-plot σ vs. ε; use the same properties as in part a. You may use
an approximate method for determining the stresses.

3. Consider a SLS with E∞ = 1 MPa, E1 = 1 MPa, and τ = 1 sec. The material is
subjected to the following strain history:

ε(t) =


0 t ≤ 0
exp(t/A) 0 < t ≤ 1
−(t/A)2 + t/A 1 < t ≤ 2
0 2 < t ,

where A = 2 sec. Use the Herrmann-Peterson recursion relation to compute and plot
the stress response in the time interval T = [0, 5] sec. Make a plot of stress versus time
as well as a cross-plot of stress versus strain.

4. GSLS Consider a 1-D GSLS that is subject to a strain history of ε(t) = εo sin(ωt). The
steady state stress response can be written as σ(t) = εo[E

′(ω) sin(ωt) + E ′′(ω) cos(ωt)],
where E ′(ω) is the storage modulus and E ′′(ω) is the loss modulus. Find the expressions
for the storage and loss moduli for a GSLS with two Maxwell elements. Assume E∞ =
E1 = E2 = 1, η1 = 1, and η2 = 100; thus the relaxation modulus/function/kernel is
E(t) = 1+1 exp[−t]+1 exp[−t/100]. Plot E ′(ω), E ′′(ω), and tan(δ) versus log10(ω) over
the range [−3, 3]. Interpret the distinctive features of the curves.

5. Consider the Standard Linear Solid in 1-D. Assume that the strain history is known to
be ε(t) = H(t) sin(ωt) and find the stress as a function of time. Do this in two different
ways: (a) directly solve the governing ODE and (b) apply a Laplace transform method
to the ODE; use a table to do the inverse Laplace transform.



6. Differential Equation Visco Elastic Model Consider the following viscoelastic ma-
terial model:

p0ε+ p1
dε

dt
+ p2

d2ε

dt2
+ p3

d3ε

dt3
= q0σ + q2

d2σ

dt2
+ q4

d4σ

dt4
,

where qj and pk are given constants. Determine expressions for the storage and loss
moduli.

7. You are given the following viscoelastic constitutive relation:

A
d3ε

dt3
+B

dε

dt
+ Cε = Dσ + E

d2σ

dt2
.

Find expressions for the storage and loss moduli assuming that A,B,C,D and E are
given constants.

8. Develop a 1-D version of the recursion relation method for a 1-D SLS. Assuming E∞ = 1,
Eo = 2, η = 1, and ω = 1, plot the stress as a function of time for the strain history
given in Problem 5 for t ∈ [0, 12]. Determine the maximum ∆t that you can use to get
reasonably accurate solutions by comparing to the exact solution from Problem 5.

9. Consider a Kelvin Solid in series with an elastic spring. What is the strain response of
the material to a step loading of stress; i.e., find ε(t) for a given σ(t) = σoH(t). For
the spring assume a spring constant of E1 and for the Kelvin Solid assume the spring
constant is E2 and the dashpot viscosity is η2.

10. Kelvin Solid A Kelvin solid is subjected to an exponentially varying strain ε(t) =
εo[1− e−tγ]H(t), where εo and γ are given constants.

1. Find and plot the stress response σ(t).

2. Compute the work of the load up to an arbitrary time T .

11. Kelvin Solid Creep Kernel Find the creep kernel for the Kelvin solid.

12. The rheological model shown below has been proposed as a model for asphalt concrete.
What is the governing stress-strain equation for this model? What do the storage and
loss modulus curves look like for such a material?

Page 2



E η

η

1

2

ε

σ

σ

13. Consider a Standard Linear Solid with material parameters E∞, Eo, and η. What is the
creep function for this material? i.e. what is the strain response to an input step in the
stress.

14. Consider a 1-D bar composed of a Kelvin Solid. The bar, Ω = (0, L), is built-in at
x = 0 and is free at x = L. The bar is subjected to a body force field b(x, t) =
[H(t) −H(t − 1) + H(t − 2) −H(t − 3)]x. Use weak equilibrium, an appropriate time

discretization method, and a solution space Ŝn = {u(x, tn) | Anx + Bn < x − L/4 >
+Cn < x − L/2 > +Dn < x − 3L/4 >} to develop an approximate method of solution
for the displacement field of the bar. In particular, you should explicitly give expressions
for the matrix equations governing (An, Bn, Cn, Dn) at any given time t = tn. Be sure
to fully define both the right and left hand sides. Ignore inertial terms. [Warning, the
similar example from lecture has a number of algebra and calculus errors so be careful.]

Extra: Implement your scheme over the time interval (0, 15) assuming L = 1, E = 100,
and η = 100. Provide sufficient graphs to explain the behavior of the bar. Attach your
code.

15. Consider a 1-D system with zero displacement boundary conditions at x = 0 and an
imposed stress at x = L of the form

σ̄ = σo[H(t− t1)−H(t− t2)] . (36)

Find the elongation, u(L, t), if the system is made of a Maxwell fluid.

16. Consider a 1-D bar occupying the region [0, L]. The bar is fixed at x = 0 and x = L
(i.e. u(0, t) = u(L, t) = 0). It is subjected to a body force b(x, t) = C1xH(t). The bar is
composed of a Maxwell fluid.

Assume: L = 1, E = 1, η = 1, C1 = 1.

Find and plot u(x, t) at times t ∈ {0,∆t, 2∆t, · · · , 6∆t}, where ∆t = 0.1η/E. Solve
the spatial part of the problem using an approximate weak form method with Ŝ =

Page 3



{u(x, t) | u(x, tn) = Anx(x − L)}. Solve the temporal part using a backward Euler
method. Plot your results against the exact space-time answer.

17. Find and plot u(x, t) at times t ∈ {0,∆t, 2∆t, · · · , 6∆t}, where ∆t = 0.1η/E. Solve
the spatial part of the problem using an approximate weak form method with Ŝ =
{u(x, t) | u(x, tn) = Anx(x − L)} and V̂ = {δu(x) | δu(x) = δAx(x − L)} Solve the
temporal part using a backward Euler method. Plot your results against the exact
space-time answer.

18. GLS Estimation Shown below is the graph of the storage and loss modulus for a
viscoelastic material. You would like to model the material using a generalized standard
linear solid model.

1. How many Maxwell elements will you need?

2. What are the associated relaxation times?

3. What is the long time modulus?

4. What are the moduli associated with the Maxwell elements?

5. What are the viscosities associated with the Maxwell elements?
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19. GLS Estimation Shown below is the graph of the storage and loss modulus for a
viscoelastic material. You would like to model the material using a generalized standard
linear solid model.

1. How many Maxwell elements will you need?
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2. What are the associated relaxation times?

3. What is the long time modulus?

4. What are the moduli associated with the Maxwell elements?

5. What are the viscosities associated with the Maxwell elements?
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20. Consider a one-dimensional viscoelastic material whose storage and loss modulus are as
given in the figure below. If the material is to be modeled using a Generalized Standard
Linear Solid, how many relaxation elements will you need? and what will the constants
be in the GSLS? Hint: It is sufficient to only consider the E ′ curve to answer this
question.
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21. In the accompanying file you will find stress data for a stress relaxation experiment. The
stress response is generated by an imposed strain history

ε(t) =

{
10−1t t < 10−1 s
10−2 t ≥ 10−1 s .

This strain history involves a rise time of 100 ms to reach the hold strain of 10 mstrain.
The first column of the data file gives a time value (in seconds) and the second column
a corresponding stress value (in MPa). Note that the time spacing of the data points is
not uniform.

Find an expression for the relaxation modulus E(t). Make sure you use a suitable number
of terms to adequately model the data. Note that the data file includes the rise time
response.

22. Relaxation Function: Proney Series Fitting In the accompanying file you will find
stress data for a stress relaxation experiment. The stress response is generated by an
imposed strain history

ε(t) =

{
10−1t t < 10−1 s
10−2 t ≥ 10−1 s .

This strain history involves a rise time of 100 ms to reach the hold strain of 10 mstrain.
The first column of the data file gives a time value (in seconds) and the second column
a corresponding stress value (in MPa). Note that the time spacing of the data points is
not uniform.

Find an expression for the relaxation modulus E(t). Make sure you use a suitable number
of terms to adequately model the data. Note that the data file includes the rise time
response.

23. Relaxation Function: Prony Series Fitting In the accompanying file you will find
stress data for a stress relaxation experiment (beware that the data include measurement
noise). The stress response is generated by an imposed strain history

ε(t) =

{
10−1t t < 10−1 s
10−2 t ≥ 10−1 s .

This strain history involves a rise time of 100 ms to reach the hold strain of 10 mstrain.
The first column of the data file gives a time value (in seconds) and the second column
a corresponding stress value (in kPa). Note that the time spacing of the data points is
not uniform.

Find an expression for the relaxation modulus E(t). Make sure you use a suitable number
of terms to adequately model the data. Note that the data file includes the rise time
response; I suggest removing it but that is not necessary, if you do not want to do so.
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24. In the accompanying file you will find stress data for a stress relaxation experiment in
shear. The shear stress response is generated by an imposed engineering strain history

γ(t) =

{
10−1t t < 10−2 s
10−3 t ≥ 10−2 s .

This strain history involves a rise time of 10 ms to reach the hold strain of 1000 µstrain.
The first column of the data file gives a time value and the second a corresponding shear
stress value. The time spacing of the data points is not uniform.

1. Find an expression for the (shear) relaxation modulus µ(t). Make sure you use a
suitable number of terms to adequately model the data.

2. Assume the overall material response is given by

σ = p1 + s

s =

∫ t̂

−∞
2µ(t̂− t)ė dt

p = Kθ ,

where the bulk modulus K = 500 MPa. Find the steady state stress response to a
strain input of the form

ε ∼ sin(ωt)

 1 3 0
3 5 0
0 0 2

 µstrain .

Plot the in-phase and out-of-phase parts of ‖σ‖ versus log(ω) for ω ∈ [10−2, 103].
(When plotting make sure you use a sufficient number of points per logarithmic
decade. In Matlab the command logspace is helpful in this regard.)

3. Consider now a round bar of length 200 mm and diameter 40 mm which is made
of this material. The bar is subjected to an oscillating torsional load that induces
a strain field in the bar of the form

ε(x, y, z, t) ∼ sin(ωt)

 0 0 −yβ
0 0 xβ
−yβ xβ 0

 ,

where ω = 0.2 [rad/sec], β = π/2400 [rad/mm], and z is the coordinate measure
along the axis of the bar. How much energy is dissipated in the bar per cycle of
oscillation. Assuming the heat capacity of the material is 2211 kJ/m3K, how much
does the bar heat up per cycle? Assume the dissipated energy has time to uniformly
redistribute in the bar and that there are no energy losses across the surfaces of the
bar (i.e. assume adiabatic boundary conditions).
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25. In elementary elastic beam theory we know that the governing equations are given by:

θ = w′ κ = θ′

M = EIκ
dM

dx
= −V dV

dx
= −q .

Consider now a general viscoelastic material σ(t) =
∫ t
−∞E(t− s)dε

ds
ds.

1. Only one of the beam equations changes. Which one?

2. Using the fact that in the elementary theory, ε = −yκ, find this changed expression.
Note, y is the depth coordinate on the cross-section of the beam.

26. Viscoeastic Stress-Strain with WLF model In the accompanying file you will find
stress data for a stress relaxation experiment. The stress response is generated by an
imposed strain history

ε(t) =

{
10−1t t < 10−1 s
10−2 t ≥ 10−1 s .

This strain history involves a rise time of 100 ms to reach the hold strain of 10 mstrain.
The first column of the data file gives a time value (in seconds) and the second column
a corresponding stress value (in MPa). Note that the time spacing of the data points is
not uniform.

(a) Find an expression for the relaxation modulus E(t). Make sure you use a suitable
number of terms to adequately model the data. Note that the data file includes the rise
time response.

(b) Consider a thermorheologically simple viscoelastic material with reference transition
temperature To = 200 K. Further assume a WLF model for the shift factor

log(a) =
−C1(T − To)
C2 + T − To

,

with C1 = 20 and C2 = 100 K. Consider now that the material is subjected (from
quiescent conditions) to a strain history of ε(t) = 0.1 sin(t/τo) and a thermal history
of T (t) = To + βt + γ cos(t/2τo), where β = 0.01 K/s and γ = 5 K. Assume that the
material is to be modeled as a standard linear solid with E∞ = 10 MPa, Eo = 100 MPa,
and τo = 1.5 s and find the stress response over the time interval I = [0, 100] s. Make
the following plots (a) time versus strain, (b) time versus temperature, (c) time versus
stress, (d) time versus fictitious time, and (e) stress versus strain. To help you debug
your solution below is the answer to the question for the case where β = γ = 0
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27. Show that 2-D plane strain viscoelastic problems can also be treated using a time de-
pendent stress function. In particular assume the material law given below and find the
governing relation for the stress function.

s =

∫ t

0

2µ(t− τ)
de

dτ
dτ (58)

p =

∫ t

0

K(t− τ)
dθ

dτ
dτ , (59)

where s and e are the stress and strain deviators, p is the pressure, and θ = tr[ε] is the
dilation. You may wish to consider the use of Laplace transforms.

28. Shown is a long hollow cylinder of length L, inner radius a, and outer radius b. The
cylinder is made of an isotropic material that is a Standard Linear Solid in its deviatoric
behavior and elastic in its bulk behavior. The outer radius of this cylinder is fixed. The
inner radius is bonded to a rigid rod of radius a. An arbitrary time varying force F (t)
is applied to the rod.

(1) Determine expressions for the stress and strain states in the cylinder as a function
of time in terms of the applied force.
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(2) Determine the expression for the displacement of the rigid rod as a function of time.
[Neglect end-effects in your solution.]

F(t)

a

b

29. Shown is a long hollow cylinder of length L, inner radius a, and outer radius b. The
cylinder is made of an isotropic material that is Maxwell in its deviatoric behavior and
elastic in its bulk behavior. The outer radius of this cylinder is fixed. The inner radius
is bonded to a rigid rod of radius a. A force F (t) = KH(t) is applied to the rod, where
K is a given constant and H(·) is the Heaviside function. Determine the stress and
strain states in the cylinder as a function of time. Also determine the expression for the
displacement of the rigid rod. Neglect the end-effect in your solution. [Hints: (1) What
does the solution look like if this was an elastic problem? (2) Try and determine σrz
first.]

F(t)

a

b

30. In viscoelastic materials the Poisson function is defined to be ν(t) = −ε22(t)/ε11(t) in
a uniaxial constant load experiment – i.e. a cylinder of material is exposed to a step
stress in the 1-direction and ν(t) is the ratio of the axial strain to the transverse strain.
Assume a material that has elastic bulk behavior and Maxwell deviatoric behavior:

p = Kεll (60)

ėij =
ṡij
2µ

+
sij
η

(61)

and find the Poisson function. Evaluate your answer for the two limits ν(0) and ν(∞).

31. Consider material whose volumetric behavior is elastic p = Kθ and whose deviatoric
behavior is governed by a Kelvin Solid model. Assume a uniaxial state of stress (in the
1-direction) that is suddenly imposed at time t = 0 and determine the Poisson function
ν(t) = −ε22/ε11. Make a plot to illustrate the basic behavior.

Page 10



32. Consider a material that responds elastically for volumetric deformations and as a SLS
for deviatoric motions. A body composed of this material is subjected to a motion
described by a displacement field of the following form:

u(x) = (ω × x)H(t) ,

where H(t) is the Heaviside step function and ω is a constant given vector, such that
‖ω‖ � 1. Determine the stress response of the body.

33. Consider a linear isotropic viscoelastic rod with a non-circular cross-section. Assume
linear viscoelasticity in convolution form for the deviatoric behavior and elastic bulk
response; i.e.

s(t) =

∫ t

−∞
2µ(t− β)

de

dβ
dβ ,

p = Ktr[ε] .

Extend St. Venant’s torsion theory to this case by assuming

ux = α(t)Φ(y, z)

uy = −α(t)zx

uz = α(t)yx .

In particular

1. Show that there are only two non-zero stresses and that they are given by

σxy =

[∫ t

−∞
2µ(t− β)

dα

dβ
dβ

]
1

2
(Φ,y − z)

σxz =

[∫ t

−∞
2µ(t− β)

dα

dβ
dβ

]
1

2
(Φ,z + y)

2. Show that Φ must satisfy Laplace’s equation.

3. Show that

T (t) = J̄

∫ t

−∞
µ(t− β)

dα

dβ
dβ ,

where you will need to give an appropriate definition to J̄ .

34. Consider St.Venant’s theory of torsion for prismatic bars with arbitrary cross-sections
but now for a material with a viscoelastic response σij =

∫ t
−∞ 2µ(t− s)dεij/ds ds for the

shears i 6= j.

1. Show that the warping function ψ(x1, x2) still satisfies Laplace’s equation
∇2ψ = 0.
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2. Show that the torque T (t) = Jeff

2

∫ t
−∞ 2µ(t − s)dα/ds ds, where the effective polar

moment of inertia has the same expression as in the elastic case.

35. St. Venant viscoelastic torsion: Consider a square bar with cross-section a× a and
length L. The bar is made of a material whose volumetric response is elastic, p = Kθ,
and whose deviatoric response is viscoelastic (standard linear solid). The bar is fixed at
one end and the other end is subjected to an imposed step rotation, θ(t) = θoH(t), which
in turn imposes a step twist-rate α(t) = αoH(t) on the entire bar, where αo = θo/L.
Find an expression for the required torque on the end of the bar. Provide you answer in
terms of αo, the dimensions of the bar, and the parameters of the standard linear solid.
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