
Questions on Classical Solutions

1. Consider an infinite linear elastic plate with a hole as shown. Uniform shear stress
σxy = T is applied at infinity. Determine the value of the stress σθθ on the edge of the
hole. What is the stress concentration factor for this case?
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[Hint: Superposition and appropriate terms from Mitchell.]

2. Consider a rod model with axial loads, shear loads in the x2 and x3 directions, bending
about the x2 and x3 axes and torsion about the x1 axis.

x

x

x

1

2

3

Assume a displacement field of the following form

u1(xi) = ū1(x1)− x2θ3(x1) + x3θ2(x1) (1)

u2(xi) = ū2(x1)− x3θ1(x1) (2)

u3(xi) = ū3(x1) + x2θ1(x1) (3)



where ūi(x1) is the displacement of the rod centroid at a location x1 and θi(x1) is the
rotation of the cross-section at a location x1 about the ith axis.

Assume the following stresses are zero: σ22 = σ33 = σ23 = 0. [Note, these assumptions
are in contradiction to parts of the kinematic assumption.]

Assume the rod is prismatic and traction free on the lateral surfaces. Do not assume
the body forces are zero.

(1) Determine the “Strain-Displacement” relations in terms of the kinematic fields ūi
and θi. Note, ε22 and ε33 will be in contradiction with the stress assumption.

(2) Define the force resultant on a cross-section as

N =

∫
A

σe1 dA

Show that
N ,1 + q = 0

by manipulating the definition of the force resultant and suitably defining q in terms of
the body forces. In this part and part (3), the following application of the divergence
theorem is useful ∫

A

σi2,2 + σi3,3 dA =

∫
∂A

σi2n2 + σi3n3 dγ

where (0, n2, n3)T is the normal to the perimeter of the cross-section.

(3) Define the moment resultant on a cross-section as

M =

∫
A

(x2e2 + x3e3)× σe1 dA

Show that
M ,1 + e3 ×N +m = 0

by manipulating the 3-D equilibrium equations and suitably defining m in terms of the
body forces.

(4) Show that the integrated constitutive relations are given by

N1 = EAū1,1 (4)

N2 = GAγ2 (5)

N3 = GAγ3 (6)

M1 = GJ1θ1,1 (7)

M2 = EI2θ2,1 (8)

M3 = EI3θ3,1 (9)

where γ2 = ū2,1 − θ3, γ3 = ū3,1 + θ2 (i.e. shear strains), E is Young’s modulus, G is the
shear modulus, A is the cross-sectional area, J1 is the polar moment of inertia about the
x1 axis, and I2 and I3 and the moments of inertia around the x2 and x3 axes, respectively.
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3. Consider a linear elastic isotropic beam subjected to axial and shear loads in the x1 and
x2 directions, and bending about the x3 axis.
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Develop a shear deformable beam theory for this system by assuming a displacement
field of the following form

u1(xi) = ū1(x1)− x2θ(x1) (10)

u2(xi) = ū2(x1) (11)

u3(xi) = 0 , (12)

where ūi(x1) is the displacement of the beam centroid at a location x1 and θ(x1) is the
rotation about the 3 axis of the cross-section at a location x1.

Assume the following stresses are zero: σ22 = σ33 = σ23 = σ13 = 0. [Note, these
assumptions are in contradiction to parts of the kinematic assumption.]

Assume the beam is prismatic and traction free on the lateral surfaces. Do not assume
the body forces are zero.

(1) Determine the “Strain-Displacement” relations in terms of the kinematic fields ūi
and θ. Note, some of your strains will be in contradiction with the stress assumption.

(2) Define the axial force resultant on a cross-section as

P =

∫
A

σ11 dA (13)

and the shear force resultant on the cross-section as

V =

∫
A

σ12 dA . (14)

By integrating the equilibrium equations for the stresses over the cross-section, show
that

P,1 + p = 0 (15)

V,1 + q = 0 . (16)
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Provide suitable definitions for the p and q and argue why they are appropriate.

(3) Define the moment resultant on the cross-section as

M = −
∫
A

x2σ11 dA . (17)

Consider the first moment of the equilibrium equations for the stresses and show

M,1 + V +m = 0 (18)

Provide a suitable definition for m and argue why it is appropriate. [The first moment
of any quantity f , in this context, is simply

∫
A
x2f .]

(4) Show that the integrated constitutive relations are given by

P = EAε (19)

V = GAγ (20)

M = EIκ (21)

where ε = ū1,1 (axial strain), γ = ū2,1 − θ, (shear strain), κ = θ,1 (curvature), E is the
Young’s modulus, G is the shear modulus, A is the cross-sectional area, and I is the
moment of inertia around the x3 axis.

4. The stress function

φ = A

(
xy

4
− xy2

4h
− xy3

4h2
+
Ly2

4h
+
Ly3

4h2

)
is proposed as giving the solution for a cantilever beam ( −h < y < h, 0 < x < L)
loaded by a uniform shear along the top surface, the lower surface and the end x = L
being free from load. In what respects is this solution imperfect?

5. Consider the classical cantilever beam problem with a load, P , at its tip. Precisely
formulate the boundary conditions for this problem within the context of 3D elasticity.
Assume that the beam has a solid square cross-section of dimensions 2a×2a and a length
L.

6. Consider a two dimensional plane-strain body occupying the region B = {(X1, X2) | 0 ≤
X1 ≤ a and 0 ≤ X2 ≤ b}. You are told that the stress field is described by the Airy
stress function Φ = cr3 sin(θ), where c is a known constant. What tractions are being
applied to the body?

7. Consider the compatibility equation ∇×∇× ε = 0. Under the assumption that u1 and
u2 are functions only of x1 and x2 and u3 = 0 show that there is only one non-trivial
compatibility relation ε11,22 + ε22,11 − 2ε12,12 = 0.
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8. Consider the case of polar coordinates and the strains in polar coordinates. Assume that
the displacement field is purely radial and independent of θ and z; i.e. ur = ûr(r) and
uθ = uz = 0. Show that a necessary condition for compatibility is εθθ,r = 1

r
(εrr − εθθ).

9. Consider the anti-plane strain assumption of

u1 = 0 (22)

u2 = 0 (23)

u3 = û3(x1, x2) (24)

Show that ∇2u3 = 0.

10. Consider a square linear elastic bar with cross-section 3 x 3 inches and length 24 inches.
The shear modulus of the material is 12× 106 psi.

1. Assuming St. Venant torsion (i.e. free warping and appropriately applied end-
tractions), at what location(s) on the cross-section does yield first start.

2. Compute the torsional stiffness of the bar per unit length.

11. Consider an isotropic elastic square bar in torsion with unit length sides.

(a) Compute J̄ using the double trignometric solution and single trignometric solution;
comment on the speed of convergence for the two series.

(b) Assume a torque of 12 × 103 and a shear modulus of 12 × 106. Compute the twist
rate, α, for the bar and the maximum shear stress and its location.

(c) Make a plot of the warped section.

12. Consider an elliptical shaft in torsion with minor and major radii a and b. Assume
Prandtl’s stress function has the form ψ = C(y2/a2 + z2/b2 − 1).

1. Find an expression for C.

2. What is the torsional stiffness of the shaft per unit length.

3. Express the maximum shear stress in terms of the applied torque and the geometry.

13. For the curved beam shown below: (a) Determine the stress field by starting with the
stress function

Φ = (Ar ln(r) +Br3 + C/r) sin(θ)

(b) Set-up the linear equations that are used to find A, B, and C in terms of a, b, and
P . (c) At θ = π/2 plot the normal (bending) stress on the section and compare it to the
Bernoulli-Euler solution. Make plots for (a, b) = (0.5, 2) and (a, b) = (8.5, 10). Assume
P = 1 for the plots. (d) Comment on the physical implication of σrr in the curved beam.
Relate it to the situation in a straight beam.
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14. Consider the tapered beam shown below. (a) Determine the expression for A in the
stress function φ = Arθ cos θ in terms of H and the angle α. (b) Plot the bending
and shear stresses at x = L/2 for L = 1 and L = 10. On the same figures, plot the
Bernoulli-Euler parabolic solution for shear in a cantilever and the bending stresses in a
cantilever; (see Popov or any other strength of materials text). Assume H = 1 for the
plots.
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15. A circular plane strain disk made of a linear elastic isotropic material is subjected to a
radial pressure, p(θ) = σ̂ cos(2θ), on its perimeter.

(a) Find the maximum hoop stress σθθ.

(b) Determine the hoop strain εθθ.

16. Consider a 2-D (plane strain) isotropic linear elastic solid disk of radius 2. It is subjected
to applied tractions at r = 2

t = 2er + 24 sin(2θ)eθ . (66)

Determine the state of stress and strain in the disk.

17. When we looked at the use of the Airy stress function to solve 2-D linear elastic isotropic
plane strain problems we only examined the zero body force case. Suppose that we have
a problem with body forces that emmenate from a known potential V (x, y) such that
b = −∇V . Show that if we assume a stress function, φ such that

σxx = V +
∂2φ

∂y2

σyy = V +
∂2φ

∂x2

σxy = − ∂2φ

∂x∂y
,

then equilibrium is automatically satisfied. Further show that the governing equation
for the stress function will be of the form

∇4φ = C∇2V .

(You should determine what C is.)
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18. Clearly state the required elements of a complete boundary value problem for an arbi-
trary material; assume small displacement theory.

19. Thin-Walled Sphere Consider the thick walled sphere from lecture. Show that before
yield, the solution computed for the stress state corresponds to the thin wall sphere
solution from elementary mechanics, if one assumes that (ro − ri) << ri.

20. In 1952 Max Williams wrote one of the most important papers concerning stress singu-
larities (it has been cited over 900 times): “Stress singularities resulting from various
boundary conditions in angular corners of plates in extension”, Journal of Applied Me-
chanics, 19, 526-528 (1952). A version has been uploaded to bspace.

1. Read the paper and expand upon the details of how Williams arrived at Eq. [15].
In other words work out the details for the four homogeneous equations to which
he refers. Note you do not need to reduce the determinant to Eq. [15] just set up
the necessary equations.

2. Discuss the meaning of Fig. 1 using accurately drawn figures to indicate when one
has to and when one does not have to be worried about stress singularities for the
three cases in the figure.

21. Consider the anti-plane strain (elastic) stress singularity problem. In the case where
the crack faces, located at θ = ±π, are traction-free, one finds that the strength of the
stress singularity is −1

2
; i.e. that the stresses are O(r−

1
2 ). Consider now the case where

the crack faces are located at θ = ±α where α varies between π and 0. How does the
strength of the stress singularity change as a function of α, if we leave the top crack face
traction-free BUT restrain the bottom face from moving, u3(r,−α) = 0? For what value
of α does the singularity disappear?

2π−2α 1

r

Fixed Crack Face

2

2α

22. Consider a linear elastic body Ω with boundary ∂Ω = ∂Ωu∪∂Ωt, where the displacements
are prescribed to be zero on ∂Ωu and the tractions on ∂Ωt. The Hu-Washizu variational
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principle assumes independent fields for the displacement, strain, and stress:

min Π(u, ε, τ ) =

∫
Ω

1

2
εijCijklεkl + σij[

1

2
(ui,j + uj,i)− εij]−

∫
∂Ωt

uit̄i −
∫

Ω

uiBi

Determine the Euler-Lagrange equations (strong form equations) for this variational
principle. Provide a brief description of how one would use this variational principle to
solve a problem.

23. Show that the three field Hu-Washizu variational principle represents equilibrium, the
elastic constitutive law, and the strain displacement law.

ΠHW (u, σ, ε) =

∫ L

0

1

2
εEε+ σ(

du

dx
− ε)− bu dx− σ̄u(L) . (74)

Assume this is posed for a system that has a fixed displacement at x = 0 and a fixed
stress σ̄ at x = L.

24. Consider a 1-D system of length L that is restrained from motion at x = 0 and has a
stress σ(L) = σ̂ applied to the other end. Assume a uniform (constant) body force b
and a non-linear constitutive law σ = αεβ. Determine the displacement field for the bar,
u(x), assuming small deformations.

25. Consider an arbitrary material whose constitutive relations is given as ε(τ) – i.e. strain
as a known function of stress. By considering the weak form of the strain-displacement
relation, ε = u,1, show that our canonical 1-D mechanical boundary value problem can
be expressed as:

Find τ ∈ Sτ = {τ(x) | τ,1 = −B and τ(L) = τ̄} such that∫ L

0

δτε(τ) dx− δτ(0)ū = 0 ∀δτ ∈ Vτ = {δτ(x) | δτ,1 = 0 and δτ(L) = 0}.

26. Consider a 1D linear elastic systemR = [0, L] with boundary conditions u(0) = u(L) = 0
and body force b(x) = box, where bo ∈ R.

1. Find u(x) by solving the strong form problem (Navier’s form).

2. Solve using the weak form with respect to the approximate spaces Ŝ = {u(x) | u(x) =
Ax(L− x), A ∈ R}, V̂ = {u(x) | u(x) = Bx(L− x), B ∈ R}

3. Solve using the principle of minimum potential energy using the approximate solu-
tion space

Ŝ =

{
u(x)

∣∣∣ u(x) =

{
Ax x < L/2
A(L− x) x ≥ L/2

}
4. Compare your three solutions by (non-dimensionally) plotting the solutions.
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27. Consider an elastic 1-D problem where the domain of interest is (0, 1). At x = 0 assume
u(0) = −0.1 and at x = 1 assume σ(1) = 1. Let E = 10 and b(x) = exp(x). Find the
exact solution for the displacement field using the strong form equations. Then generate
an approximate solution using the principle of minimum potential energy and

Ŝ =

{
u(x) | u(x) =

1

2
Ax2 +Bx− 0.1

}
⊂ S = {u(x) | u(0) = −0.1} . (93)

Compare the two solutions by making a plot of the displacements fields.

28. Consider a one-dimensional linear elastic bar subject to displacement boundary con-
ditions u(0) = uo and u(L) = uL and a body force b(x). We showed in class that
the principle of stationary potential energy is equivalent to the equilibrium statement
σ,x + b = 0. A second principle, known as the principle of stationary complementary
potential energy, states that

Πc(σ) =

∫ L

0

1

2
σ2/E dx− [σ(L)u(L)− σ(0)u(0)]

is stationary over the set of stress fields S = {σ | σ,x + b = 0}, where σ = Eε. By taking
the directional derivative of Πc in the direction of a suitably chosen test function σ̄, show
that this principle implies ε = u,x. Hint, first define the space V in which σ̄ must lie;
note that you need to ensure that sum of an arbitrary element of S and an arbitrary
element of V is contained in S.

29. Consider a composite body constructed of 3 linear elastic isotropic materials, A, B, and
C.

A

B

C

R

AR

R B

C

Page 10



The body is subject to a uniform radial displacement u = uCer at r = RC . Assuming
that the displacement field is piecewise continuous of the form

u =



uArer r < RA[
uA + uB−uA

RB−RA
(r −RA)

]
er RA < r < RB[

uB + uC−uB
RC−RB

(r −RB)
]
er RB < r < RC ,

find uA and uB.

30. Consider a solid isotropic linear-elastic prismatic bar with an arbitrary cross-section
whose boundary is described by a known function g(x1, x2) = 0. A suitable expression
for Prandtl’s warping function is

ψ = g(x1, x2)
∞∑
m=0

∞∑
n=0

Amnfmn(x1, x2) ,

where fmn(x1, x2) = xm1 x
n
2 . As an approximation, assume all the coefficients Amn are

zero except for A00, A10, and A01, and derive a set of 3 linear equations for determining
the unknown coefficients.

31. Consider a linear elastic isotropic prismatic bar of arbitrary cross-section clamped at
x = 0 and subjected to a torque T at x = L.

(a) Express the potential energy for the problem in terms of the warping function, load,
and twist rate.

(b) Explain how you could use this expression to find an approximate expression for the
warping function.

32. Variational Torsion Consider the Prandtl stress function Ψ : Ω → R. This function
satisfies the following PDE

Ψ,ii = −2αµ ∀x ∈ Ω

and Ψ = 0 for all x ∈ ∂Ω, Ω being the cross-section of the bar and i ∈ {1, 2}.

1. Set up a weak form statement of this boundary value problem.

2. Show that minimizing the functional

I(Ψ) =

∫
Ω

1

2
Ψ,iΨ,i − 2αµΨ dV

is equivalent to your weak form statement of the problem.
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33. Consider the following functional:

I(Ψ) =

∫
A

1

2
Ψ,iΨ,i − 2αµΨ dA , (105)

where A represents the cross-section of a prismatic rod, x1 and x2 are the in-plane
coordinate directions, and i ∈ {1, 2}. By defining suitable function spaces (infinite
dimensional sets), show that this functional is appropriate for determining Prandtl’s
stress function for torsion problems; i.e., by making suitable assumptions show that
the stationary condition for the given functional is the same as the governing partial
differential equation for Ψ.

34. Fully develop a weak form problem statement for determining the Prandtl (torsional)
stress function over a cross-section C which is governed by ∇2Ψ = −2µα for points
(y, z) ∈ C subject to the boudary condition Ψ = 0 for points (y, z) ∈ ∂C. Note ∇2 is
the 2-D Laplacian ∂2

∂y2
+ ∂2

∂z2
. Set up an approximate method for solving your weak form

problem statement.

35. Cruciform torsion Consider a prismatic beam with the cruicform shape cross-section
shown below. Assuming the beam is linear elastic isotropic, you are to determine the
torsional stiffness (per unit length of the beam). Do this by assuming an approximate
solution of the following form:

Ψ =

{
A(z2 − t21/4) (y, z) ∈ Vertical Section
B(y2 − t22/4) (y, z) ∈ Horizontal Section ,

where A and B are unknown constants that you should determine by minimizing the
potential function that governs this problem (see Problem 32). Note that Ψ does not
satisfy all the boundary conditions but it is sufficiently close to give a good result when
t1 and t2 are much less than w1 and w2.
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36. Z-section torsion Using the same method as in Problem 35 estimate the torsional
stiffness per unit beam length for a beam with the cross-sectional shape shown below.
Assume t much less than b1, b2, and b3.

t

b

b

b

1

2

3

z

y

37. Shown below is the cross-section of a torsion bar. The vertical sides are generated in the
form of hyperbola. The locus of points on the top and bottom is given by y2 − a2 = 0
and on the sides by z2/b2 − y2/c2 − 1 = 0, where b = a/2 and c = a. Explain in detail
how you would estimate the torsional stiffness per unit length of the bar. An appropriate
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answer to this question would include the construction of an explicit trial function basis
and a description of the linear equations one would have to solve in order to find the
unknown coefficients in the expansion. The elements of the matrix equations should be
reasonably well specified but you do not need to perform any integrations.

y

z

a

a/2a/sqrt(2)

38. Classical torsion Consider the isotropic linear elastic system shown below. The clas-
sical (strength of materials) governing equations for such a system are given as:

µJ
d2φ

dx2
3

= 0 ∀x3 ∈ (0, L) (120)

φ(0) = 0 (121)

µJ
dφ

dx3

(L) = T̂ , (122)

where T̂ is a given applied end-torque and φ is the cross-section rotation.
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Derive the classical governing equations (ODE and torque boundary conditions) by min-
imizing the 3-D potential energy,

Π(u(x)) =

∫
Ω

1

2
εijCijklεkl dV −

∫
Aend

tiui dA , (123)

with respect to the approximate set of trial displacement fields

Ŝ = {u(x) | u(x) = −φ(x3)x2e1 + φ(x3)x1e2 + 0e3 where φ(0) = 0} ⊂ S . (124)

Note that in this set the approximation “parameters” are not just scalars but rather the
function, φ(x3).

39. Consider a hollow isotropic linear thermo-elastic sphere. Assume the material has an
isotropic thermal expansion coefficient α. The inner radius is a and the outer radius is
b.

On the inner radius the temperature is prescribed to be Ta and on the outer radius
the temperature is prescribed to be Tb. The displacements are prescribed to be zero
on the inner and outer radii. The hollow sphere is undergoing a chemical reaction
which generates a known spatially dependent volumetric heating per unit volume of s(r).
The temperature field in the hollow sphere obeys an inhomgeneous Laplace equation;
i.e. ∇2T = s(r). In the present spherically symmetric case, ∇2T = ∂2T

∂r2
+ 2

r
∂T
∂r

=
1
r2

∂
∂r

(
r2 ∂T

∂r

)
= s(r)

1. Construct a weak problem statement that allows you to determine the temperature
field as a function of r; i.e. T (r). Explain how you can use this to determine an
approximate expression for T (r).

2. Construct a weak problem statement that allows you to determine the radial de-
formation field as a function of r; i.e. ur(r). Explain how you can use this to
determine an approximate expression for ur(r).

3. Describe how you would compute approximations to σrr(r), σϕϕ(r), and σθθ(r) once
you have determined your approximation to ur.
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[Note: (1) This is a spherically symmetric problem. (2) The differential integration
volume in spherical coordinates is r2 sin(ϕ) dr dϕ dθ]

40. Consider the statement of weak equilibrium for small strain problems. (Assume there
are no displacement boundary conditions.)

1. Explain what this relation implies when one chooses an arbitrary “rigid displace-
ment” for the test function ū.

2. Explain what this relation implies when one chooses an arbitrary “rigid rotation”
for the test function ū.

41. Our mechanical boundary value problem can be expressed in strong form, weak form,
and sometimes as a minimization form. It turns out that there are many different kinds
of weak forms and minimization forms. The weak form we have looked at also goes by the
name of principle of virtual displacements and is just a manipulation of the strong form
of the equilibrium equation. Assume an arbitrary material occupying a region R with
displacement boundary conditions ui = ūi on ∂Ru and traction boundary conditions
σjinj = t̄i on ∂Rt, where ∂R = ∂Ru ∪ ∂Rt and ∂Rt ∩ ∂Ru = ∅.

Starting from the strong form expression for the strain-displacement relations, show∫
R
εijδσij dV =

∫
∂Ru

ūiδti dA , (125)

for all δσ ∈ {δσ | δσ = δσT ,∇ · δσT = 0 in R , and δσT · n = 0 on ∂Rt}, where
δt = δσT · n. This is nothing but the principle of virtual forces.
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