
Questions on Elasticity

1. Show that in isotropic linear elasticity the principal axes of stress and strain coincide.

2. In 1971 Tschoegl proposed a free energy function for a carbon-reinforced natural rubber
vulcanizate of essentially the following form:

Ψ = A(I1(C)− 3) +B(I2(C)− 3) +D(I1(C)− 3)(I2(C)− 3) +
λ

2
(ln(J))2 − 2A ln(J)

Determine the expression for the 2nd Piola-Kirchhoff stress tensor.

3. Consider a linear elastic incompressible body (ν = 1/2). What condition must the
boundary displacements satisfy?

4. Consider the strain energy of an isotropic linear elastic body

Ebody =

∫
Ω

µεijεij +
λ

2
εiiεjj dV .

Argue why the constant µ must necessarily be positive and that 3λ+2µ must necessarily
be positive. [Hint consider special states of strain and the meaning of Ebody.] This
problem “shows” that the strain energy density should be positive definite.

5. In linear isotropic thermoelasticity we have

εij =
1 + ν

E
σij −

ν

E
σkkδij + α∆Tδij .

Invert this relation to give σij as a function of strain and temperature change.

6. The isotropic linear elastic moduli can be expressed as

C = c1Idev,sym + c21⊗ 1 ,

where Idev,sym = Isym − 1
3
1⊗ 1 is the “symmetric deviatoric projection operator”.

1. Justify the name symmetric deviatoric projection operator for Idev,sym by consider-
ing its action on an arbitrary 2nd order tensor.

2. Determine c1 and c2 in terms of the bulk modulus and the shear modulus.

7. Motivate the statement: “If the Poisson’s ratio is one-half, then the material is incom-
pressible”.

8. Starting from Cijkj = 2µIsym
ijkl + λδijδkl find an expression for the Young’s modulus in

terms of µ and λ.

10. Traction in terms of displacements For a linear elastic isotropic body, find an
expression for the tractions on a surface with normal components ni in terms of the
displacement field and its derivatives as well as the material properties, instead of in
terms of the stress tensor.



11. Poisson’s ratio in terms of µ and λ Starting from Cijkl = 2µIsym
ijkl + λδijδkl find an

expression for Poisson’s ratio in terms of µ and λ.

12. Consider a body with a homogeneous state of strain: ε = (a · b)(a⊗ b+ b⊗ a)× 10−5,
where a = 1e1 + 1e2 + 1e3 and b = 2e1 + 1e2 + 1e3. Assume that the body is isotropic
linear elastic so that σ = C : ε where the Lamé parameters are µ = λ = 100 GPa.

1. What is the minimum normal stress (in absolute value) and in which direction does
it occur?

2. What is the maximum shear stress (in absolute value) in the body?

3. Find the deviatoric stress field.

4. Find the pressure field.

13. Show there are only 3 constant for a linear elastic cubic material.

14. Consider a linear elastic cubic material whose material axes are chosen to line up with
three orthonormal vectors a, b, c. Find an indicial expression for the material stiffness
Cijkl. [Hint: Start with the isotropic moduli and correct them as needed.]

15. Starting from the linear elastic orthotropic material, show that 90 degree rotational sym-
metry about the 1, 2, and 3 orthotropic-axes implies there are only 3 independent elastic
constants; ie. show a linear elastic cubic material has only three material constants.

16. Young’s Modulus Silicon The Young’s modulus of a material is defined by performing
a uni-axial tension test, σ = σoe1 ⊗ e1, and then measuring the resulting axial strain
εo = e1 · εe1 in the direction of the load. The Young’s modulus is defined, then, as
E = σo/εo. For isotropic materials E is a constant value independent of how such a test
specimen is cut out of a chunk of material. This however is not the case for anisotropic
materials. Plot the variation in Young’s Modulus for Silicon as a function of sample
orientation with respect to the crystal lattice basis. Note:

C = 2γIsym + β1⊗ 1 + (α− β − 2γ)[a⊗ a⊗ a⊗ a+ b⊗ b⊗ b⊗ b+ c⊗ c⊗ c⊗ c] ,

where α = 166.0 GPa, β = 64.0 GPa, and γ = 80.0 GPa. Also, a, b, c are unit vectors
aligned with the crystal axes.

17. Consider a sphere of single crystal Silicon with radius 3 cm. You wish to compress the
sphere into a sphere of radius of 2.97 cm. What tractions field do you need to apply
to the surface of the sphere? Note the elastic constants for Silicon are α = 166 GPa,
β = 64 GPa, and γ = 80 GPa.

18. Consider a single crystal of Silicon in a homogeneous state of strain with cubic elastic
constants α = 166 GPa, λ = 64 GPa, and µ = 80 GPa. The lattice vector are known
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to be a = e2, b = (−e1 + e3)/
√

2, and c = (e1 + e3)/
√

2. If the stress state has been
measured in the {ei}3

i=1 basis to be

σ ∼

 0 10 50
10 3 9
50 9 −3


123

MPa ,

Find ε.

19. The (Lamé)-Navier equations of equilibrium for an isotropic material are given as (λ +
µ)uk,ki + µui,jj + fi = 0. What do these equations look like for a cubic material, where
C = λ1⊗ 1 + 2µIsym + (α− λ− 2µ)[a⊗a⊗a⊗a+ b⊗ b⊗ b⊗ b+ c⊗ c⊗ c⊗ c] with
a, b, and c given unit vectors along the edges of the crystal axes.

20. Consider a linear elastic orthotropic material where the coordinate basis {ei}3
i=1 is aligned

with the material axes. The components of the material moduli can be expressed in this
basis using Voigt notation as

C→


100 50 60 0 0 0
50 110 70 0 0 0
60 70 200 0 0 0
0 0 0 25 0 0
0 0 0 0 35 0
0 0 0 0 0 45

 MPa .

Suppose that one now introduces a new basis a1 = (e1 + e2)/
√

2, a2 = (e2 − e1)/
√

2,
a3 = e3. What is C2233 in the {aA}3

A=1 basis?

21. Consider a sphere of radius 3 (cm) that is made of linear elastic triclinic Copper Sulfate.
A load is applied to the sphere so that it is in a state of pure dilation εij = 1

3
θ̂δij, where

θ̂ is a given constant. Determine the required tractions on the surface of the sphere to
create this state of strain. Express your answer in spherical coordinates.

C→


5.709 2.062 3.164 −0.426 −0.042 −0.221

3.577 2.34 −0.281 −0.012 −0.058
5.841 −0.084 −0.284 −0.075

1.65 −0.185 0.119
sym. 1.515 −0.353

1.205

 GPa

Comment on what your answer would qualitatively look like if the material were isotropic.
Note that the 3-D constitutive relations we developed in class are valid in any orthogonal
coordinate system; e.g. i ∈ {x, y, z} or i ∈ {ρ, θ, φ}.

22. Copper Sulfate Consider a cube shaped body of side length l that is made of the linear
elastic triclinic material Copper Sulfate. The cube is aligned with the coordiate axes
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and centered at the origin. A load is applied to the body so that it is in a state of pure
dilation εij = θ

3
δij, where θ is a known constant that represents the imposed volumetric

strain. Determine the required tractions on the surface of the cube with normal e1. The
moduli in the coordinate system aligned with the cube axes are:

C→


5.709 2.062 3.164 −0.426 −0.042 −0.221

3.577 2.340 −0.281 −0.012 −0.058
5.841 −0.084 −0.284 −0.075

1.650 −0.185 0.119
sym. 1.515 −0.353

1.205

 GPa (29)

Comment on what your answer would qualitatively look like if the material were isotropic.

23. The Young’s modulus of a material is determined by performing a uni-axial tension test,
σ = σon⊗n, and then measuring the resulting axial strain εo = n · εn in the direction
of the load. The Young’s modulus is defined, then, as E = σo/εo. For isotropic materials
E is a constant value independent of how such a test specimen is cut out of a chunk of
material. This however is not the case for anisotropic materials. Plot the variation in
Young’s Modulus for Copper Sulfate as a function of sample orientation with respect to
the crystal lattice basis. Note: the moduli for Copper Sulfate in the coordinate system
aligned with the crystallographic axes are:

C→


5.709 2.062 3.164 −0.426 −0.042 −0.221

3.577 2.340 −0.281 −0.012 −0.058
5.841 −0.084 −0.284 −0.075

1.650 −0.185 0.119
sym. 1.515 −0.353

1.205

 GPa

Your result should match the following figure:
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24. Composite materials made with fibers randomly oriented in a single plane typically have
transversely isotropic material properties. Such materials have a single plane of reflective
symmetry (say with normal e3) and the material is isotropic in that plane (the one with
normal e3). Isotropic in the plane, implies that all directions in the plane are elastically
equivalent. Starting from the result for orthotropic materials show that such a material
has 5 elastic constants.

25. Consider a crystalline tetragonal material with lattice spacings a = b 6= c and lattice
angles α = β = γ = π

2
. Determine the number of unique non-zero elastic constants and

any necessary dependencies.

26.

27. Write Aijkl = 5δijδkl + 7δi1δj1δk1δl1 + 6(δikδjl + δilδjk) in Voigt notation.

28.

29. D = 1+ν
E

Isym − ν
E

1⊗ 1. What is D−1?

30. Displacement field equilibrium Consider a body R = [0, L] × [0, L] × [0, L] whose
displacement field is given by

u ∼

 cx3
1 + ax2

bx2
3

dx1


Assume that the body has no body forces and that there are no accelerations (static
problem). Assuming that the body is linear elastic isotropic, is it in equilibrium? Assume
a, b, c, d 6= 0.
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31. Consider a linear elastic isotropic body Ω ⊂ R3 such that Ω = A× (0, w) where A ⊂ R2.
Thus the body has a uniform thickness w in, say, the x3 direction The loads on the body
consist of body forces of the form b(x) = b(x1, x2)e3 and surface tractions on ∂A of the
form t(x1, x2) = t(x1, x2)e3. Assuming that the displacement field in the body is of the
form u(x) = u(x1, x2)e3, use the principle of minimum potential energy to show that

µ∇2u+ b = 0 ,

where µ is the shear modulus and ∇2 is the two-dimensional Laplacian.

32. Write the strain energy density of a linear elastic isotropic body in terms of the invariants
of the stress tensor.

33. The stress distribution in a linear elastic body is given as

σxx = 3x2 + Axy − 8y2 (34)

σyy = 2x2 + xy + Cy2 (35)

σzz = ν(σxx + σyy) (36)

σxy = −Bx2 − 6xy − 2y2 (37)

σxz = σyz = 0 , (38)

where ν is Poisson’s ratio and A, B, and C are constants.

(a) Determine the values of A, B, and C for this body to be in equilibrium in the absence
of body forces.

(b) Does this stress field lead to a single-valued displacement field?

34. For a linear elastic body Ω with boundary Γ, show that∫
Ω

2W dΩ =

∫
Γ

u · t dΓ +

∫
Ω

u · bo dΩ ,

where W is the strain energy density for the material.

35. Use Clapeyron’s Theorem and the fact that in linear elasticity the strain energy density
W (·) is positive definite to prove uniqueness of the linear elastic boundary value problem.
In other words, consider a given boundary value problem with imposed body forces,
surface tractions, and surface displacements. Show that if there are two solutions to the
given boundary value problem, then their difference must necessarily be zero. Note that
positive definiteness of the strain energy means W (ε) ≥ 0 for all ε and that the equality
holds only for ε = 0.

36. Carefully explain with complete sentences and select equations the connections between
the strong, weak, and minimization forms of 3-D linear elasticity.
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37. Consider the linear elastic body shown. When the applied boundary loads are

t̄(x) = −pn ∀x ∈ ∂Ω2 (48)

t̄(x) = 0n ∀x ∈ ∂Ω1 (49)

the solution for the stresses is known to be given by τ ∗(x), where n is the boundary
normal vector. Find the solution for the stress field when the applied loads are given as

t̄(x) = 0n ∀x ∈ ∂Ω2 (50)

t̄(x) = −pn ∀x ∈ ∂Ω1 (51)

Express your answer in terms of τ ∗(x) and p.

Ω

Ω

Ω

2

1

38. Consider Eshelby’s energy-momentum tensor for elastic bodies with zero body forces

Pij = W (ε)δij − σliul,j

where W (ε) is the strain energy density of the material. Show that Pij,i = 0.
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39. Maxwell-Betti Relation Consider a linear elastic body Ω of general symmetry and
two different stress-strain fields over the body, (σ(1), ε(1)) and (σ(2), ε(2)). Show that∫

Ω

σ(1) : ε(2) =

∫
Ω

σ(2) : ε(1) .

40. The potential energy of a linear elastic body Ω under given surface tractions, t, and
body forces, b is

Π(u) =

∫
Ω

1

2
ε : C : ε dΩ−

∫
Ω

b · u dΩ−
∫
∂Ω

t · u dΓ

The actual displacement field u renders Π a minimum. Show that this implies the
statement of virtual work:∫

Ω

σ : ∇sη dΩ =

∫
Ω

b · η dΩ +

∫
∂Ω

t · η dΓ

for all vector fields η, where ∇sη = 1
2
(∇η + (∇η)T ). Further show that this implies

div[σ] + b = 0 x ∈ Ω

σn = t x ∈ ∂Ω
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