
Questions on Balance

1. Linear momentum balance Express linear momentum balance in strong form.

2. Angular momentum balance Express angular momentum balance in strong form.

3. “Newton’s 3rd Law” Prove “Newton’s 3rd Law” t(n,x) = −t(−n,x) by applying
global linear momentum balance to a subset Pδ ⊂ B. Here, Pδ is a rectangular region
centered at x, which has dimensions δ× δ× δ2, and which has n and −n normal to the
δ × δ faces.
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4. Sufficiency in Cauchy’s Theorem Prove sufficiency in Cauchy’s Theorem; i.e. given
t = σn, σ = σT , and div[σ] + bo = ρü show global linear and angular momentum
balance hold for any part of a body.

5. Couple stresses Suppose Cauchy’s principle is modified to include, in addition to the
surface traction t, a surface couple (torque) per unit area c. Therefore, on a surface we
have both a “regular” traction vector and a contact couple vector, c.

Further, suppose that the external loading consists of body forces bo per unit volume
and body torques ro per unit volume.

(1) Give an expression for the total force f on a part P ⊂ B of the body. [Hint: Same
as before.]

(2) Give an expression for the total torque (moment) m on a part P ⊂ B of the body.
[Hint: Regular expression plus two additional terms.]

(3) Formulate Newton’s Laws of Motion in integral form for a part P ⊂ B of the body.
Note, linear momentum l =

∫
P ρv dv and angular momentum h =

∫
P x × ρv dv, where

moments are taken about the fixed origin.



(4) Mimic the tetrahedron argument in Cauchy’s Theorem to establish the existance of
a couple stress tensor µ such that

c = µn

(5) Localize the equations of part (3) to determine the partial differential equations for
the balance of linear and angular momentum. Note: (a) In the case without couple
stresses angular momentum balance reduces to σ = σT ; here you will obtain a partial
differential equation. (b) You may employ the result t = σn without proof. (c) Use the
convention of the first index of a stress tensor identifying a force/couple direction and
the second index identifying the face.

(6) Comment on the symmetry of σ in this new setting.

6. Traction components Given the following state of stress at a point of interest

σ →

 3 4 −8
4 −2 6
−8 6 5

 ksi (15)

what are the components of the traction vectors on the planes with normals e1, e2, and
e3.

7. Normal traction For the state of stress in Problem 6, what is the normal stress on the
plane with normal n = (e1 + e2 + e3)/

√
3?

8. Shear traction For the state of stress in Problem 6, what is the maximum shear stress
on the plane with normal n = (e1 + e2 + e3)/

√
3?

9. Cauchy stress from tractions A square plate R = [0, 2]× [0, 2] is deformed such that
the deformation map is given by χ(X1, X2) = (X1 + γX2)e1 +X2e2, where γ is a given
constant. At the center of the plate the traction vector on a surface with normal e2 is

t(e2) = ae1 + be2 ,

where a and b are known constants. Likewise, at the center of the plate, the traction
vector on a surface with normal n = [1e1 − γe2]/

√
1 + γ2 is

t(n) = ce1 + de2 ,

where c and d are known constants. Determine the components of the Cauchy stress
tensor at the center of the plate in the {ek}2

k=1 basis. Are the parameters (a, b, c, d)
independent of each other? or do they satisfy some inter-relations?

10. Universal solution for hydrostatic loading Show for a solid body (without holes)
subjected to zero body forces and to a surface traction t = cn, where c ∈ R is a constant
and n is the surface normal, that the stress field is given by σ(x) = c1.
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11. Signorini’s theorem Define the volume average stress in a body Ω with volume V by

σ̄ =
1

V

∫
Ω

σ dΩ

Show that in the static case, that

σ̄ =
1

V

[∫
∂Ω

t⊗ x dΓ +

∫
Ω

bo ⊗ x dΩ

]
This last result is known as Signorini’s Theorem.

12. Average stress Consider a body of volume V which contains a single cavity of volume
V1. The surface of the cavity is subject to a traction field t = p1n, where p1 is a given
constant and n is the outward unit normal vector. The outer surface of the body is
subjected to a traction field t = p2n. Show that the volume average stress in the body
is given by

σ̄ =
V2p2 − V1p1

V
1 ,

where V2 = V + V1

n

n

V_1

V

13. Stress power The local stress power is defined as P = σijdij where d = sym[∂v/∂x]
is the symmetric velocity gradient. Show that one can express the local stress power as
P = (1/J)PiAḞiA where P = JσF−T is known as the first Piola-Kirchhoff stress tensor.

14. Referential equilibrium For the static case and zero body forces, show that σij,j = 0
implies PiA,A = 0.
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15. Differential construction for angular momentum balance Show symmetry of the
Cauchy stress tensor using a classical differential element construction.

16. Deviatoric projection tensor If σijAijklσkl = sijsij determine Aijkl.

17. Equilibrium conditions The stress distribution in a body Ω is given as

σ =
(
3x2

1 + Ax1x2 − 8x2
2

)
e1 ⊗ e1

+
(
−Bx2

1 − 6x1x2 − 2x2
2

)
(e1 ⊗ e2 + e2 ⊗ e1)

+
(
2x2

1 + x1x2 + Cx2
2

)
e2 ⊗ e2 ,

where all scalar multipliers and the constants A, B, and C have units of force per unit
length4. For what values of A, B, and C does this stress distribution represent an
equilibrium stress distribution (assume zero body forces and no accelerations).

18. Integral theorem Consider a deformable body Ω with boundary ∂Ω = ∂uΩ ∪ ∂τΩ
where ∂uΩ ∩ ∂τΩ = ∅. Assume ∀x ∈ Ω that εij = 1

2
(ui,j + uj,i), σij,j + boi = 0, and

σij = σji; ∀x ∈ ∂uΩ that ui = ūi (given); and ∀x ∈ ∂τΩ that τijnj = t̄i (given). Show
that ∫

Ω

εijσij =

∫
∂τΩ

t̄iui +

∫
∂uΩ

σijnjūi +

∫
Ω

boiui

19. Analysis of stress state

σ(x) = x2
1 e1 ⊗ e1 + x2

2 e1 ⊗ e2 − 2x3(x1 + x2) e1 ⊗ e3

+x2
2 e2 ⊗ e1 − x2

2 e2 ⊗ e2 + 7 e2 ⊗ e3

−2x3(x1 + x2) e3 ⊗ e1 + 7 e3 ⊗ e2 − x2
3 e3 ⊗ e3

(41)

in a body occuping the domain Ω = {xi | 0 < x1 < 1 , 0 < x2 < 1 , 0 < x3 < 4}.

1. What is the total force acting on the surface x1 = 1?

2. What are the maximum and minimum normal stresses at the center of the body?

3. What is the maximum shear stress of the center of the body?

4. If there are no body forces acting in Ω, does σ represent an equilibrated stress field?

5. What is the deviatoric stress at (1, 1, 0)? What is the pressure at (1, 1, 0)?

20. Analysis of stress state Consider a body Ω where the Cauchy stress, σ, has been
measured. The principal stresses are found to be

σ1 = 0 , σ2 =
√
x2

1 + x2
2 , σ3 = −

√
x2

1 + x2
2 .
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and the corresponding principal directions are found to be

n1 =
x1√
x2

1 + x2
2

e1 +
x2√
x2

1 + x2
2

e2

n2 =
1√
2

[
x1√
x2

1 + x2
2

e2 −
x2√
x2

1 + x2
2

e1 + e3

]

n3 =
1√
2

[
x1√
x2

1 + x2
2

e2 −
x2√
x2

1 + x2
2

e1 − e3

]
.

1. Find the components of σ in the {ei}3
i=1 basis.

2. Find the principal invariants of σ.

3. Consider any surface with normal e3. What is the traction vector on such a surface?

21. Uniaxially Loaded Bar Consider a prismatic bar with axis along the 1-direction in
the reference configuration. Assume that the bar is in a homogeneous state of uniaxial
stress (along its axis) but that its current orientation is along the (1, 1, 1)-direction.
What is the Cauchy stress tensor? What is the 1st Piola-Kirchhoff stress tensor? You
may assume that

F = λv1e1 + v2e2 + v3e3 ,

where v1 = (1/
√

3)(e1 +e2 +e3), v2 = (1/
√

2)(e1−e2), and v3 = (1/
√

6)(e1 +e2−2e3).
Assume that λ is a given constant.

22. Equilibrium equations for rods as averages of the 3D equilibrium equations
Consider a prismatic beam made from an arbitrary material which is subjected to trac-
tions and body forces in the x1 and x2 directions. The cross-sectional area is A = b · h,
where b is the width in the 3-direction and h is the depth in the 2-direction.

x

x

x

1

2

3

Assume the following stresses are zero: σ33 = σ23 = σ13 = 0. Allow for general surface
tractions within these assumptions. Assume there is no body force in the 3-direction but
do not assume the other two body force components are are zero. Assume there are no
dependencies upon x3.

Page 5



1. Define the axial force resultant on a cross-section as

P =

∫
A

σ11 dA (49)

and the shear force resultant on the cross-section as

V =

∫
A

σ12 dA . (50)

By integrating the equilibrium equations for the stresses over the cross-section,
show that

P,1 + p = 0 (51)

V,1 + q = 0 . (52)

Provide suitable definitions for the p and q and argue why they are appropriate.

2. Define the moment resultant on the cross-section as

M = −
∫
A

x2σ11 dA . (53)

Consider the first moment of the equilibrium equations for the stresses and show

M,1 + V +m = 0 (54)

Provide a suitable definition for m and argue why it is appropriate. [The first
moment of any quantity f , in this context, is simply

∫
A
x2f dA.]

23. Virtual infinitesimal rotations Consider the weak equilibrium equations for a body
subject to arbitrary body forces and surface tractions. Assume there are no displacement
boundary conditions; i.e. ∂Ru = ∅. Now, consider a test function (virtual displacement)
of the form

δui = eijkδω̌jxk

(an infinitesimal rotation). Note, δω̌j is arbitrary and constant (not a function of po-
sition). If you use this test function in the weak equilibrium (virtual work) equations,
what important principle of mechanics do you recover?

24. Local balance of energy Consider a body R that is being deformed in time. The
global statement of energy (or power) balance/conservation is given as

d

dt

∫
R′
t

1

2
ρvivi dV +

d

dt

∫
R′
t

ρe dV =

∫
R′
t

bivi dV +

∫
∂R′

t

tivi dA , ∀R′t ⊂ Rt

where new here is e, the internal energy of the body per unit mass. The first term on
the left-hand side is the time rate of change of the kinetic energy; the second term is
the time rate of change of the internal energy. The first integral on the right-hand side
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is the power of the body forces (given per unit volume) and the second integral is the
power of the surface tractions. Show that the local form of this balance law is given by

ρė = dijσij ,

where dij, the rate of deformation tensor, is given by dij = 1
2
(vi,j + vj,i). Note ρ is the

current/spatial density and vi is the velocity field.
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