Questions on Vectors and Tensors

1. Basic Operations Consider two vectors $\boldsymbol{a} \sim(1,4,6)$ and $\boldsymbol{b} \sim(2,0,4)$, where the components have been expressed in a given orthonormal basis. Compute
2. $\|\boldsymbol{a}\|$.
3. The angle between \boldsymbol{a} and \boldsymbol{b}.
4. The area of the parallelogram bounded by \boldsymbol{a} and \boldsymbol{b}.
5. $\boldsymbol{b} \times \boldsymbol{a}$.
6. Projection Denote the basis in Problem 1 as $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{3}$. What is the component of \boldsymbol{a} in the direction $\boldsymbol{z}=\boldsymbol{e}_{1}+\boldsymbol{e}_{2}$.
7. Basic Operations As we have seen we can express vectors in terms of their components with respect to a particular basis. Thus we can write

$$
\boldsymbol{v}=v_{i} \boldsymbol{e}_{i} .
$$

When the particular basis is understood (ie. everyone reading the equation will assume the same basis) one can safely express the components of the vector in a "column vector"; ie. as

$$
v_{i} \rightarrow\left(\begin{array}{l}
v_{1} \\
v_{2} \\
v_{3}
\end{array}\right)
$$

This convention also applies to second order tensors. In this case we have for a basis $e=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$

$$
\boldsymbol{T}=T_{i j} \boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}
$$

If the basis is understood we can express the components in a 3×3 matrix. The following ordering is conventional:

$$
T_{i j} \rightarrow\left[\begin{array}{lll}
T_{11} & T_{12} & T_{13} \\
T_{21} & T_{22} & T_{23} \\
T_{31} & T_{32} & T_{33}
\end{array}\right]
$$

For the problems assume an orthonormal basis $e=\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ and

$$
\begin{gathered}
\boldsymbol{a}=2 \boldsymbol{e}_{1}+5 \boldsymbol{e}_{2}-7 \boldsymbol{e}_{3}, \\
\boldsymbol{b}=0 \boldsymbol{e}_{1}-8 \boldsymbol{e}_{2}+1 \boldsymbol{e}_{3}, \\
c_{i} \rightarrow\left(\begin{array}{l}
4 \\
5 \\
7
\end{array}\right),
\end{gathered}
$$

and

$$
T_{i j} \rightarrow\left[\begin{array}{lll}
1 & 8 & 2 \\
8 & 3 & 2 \\
2 & 2 & 3
\end{array}\right]
$$

Find expressions for the following. If the operation is a scalar just report the number. If the operation results in a vector, give it in dyadic form (component values times basis vectors, summed over all needed basis vectors) as well as in column vector form assuming the e basis. If the operation results in a tensor, give it in dyadic form (component values times $\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1}$ etc. summed over all needed $\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{j}$) as well as in matrix form assuming the e basis.
(a) $(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{c},(\mathrm{b}) b_{3} \boldsymbol{a} \cdot \boldsymbol{c},(\mathrm{c})(\boldsymbol{a} \cdot \boldsymbol{b}) \boldsymbol{a} \otimes \boldsymbol{b}$, (d) $\delta_{i i}$, (e) $T_{3 j} \delta_{3 j}$, (f) $T_{i j} \delta_{i j}$, (g) $T_{i j} T_{i j}$, (h) $\boldsymbol{T} \boldsymbol{c}$, (i) $I_{T},(\mathrm{j}) I I_{T},(\mathrm{k}) I I I_{T}$, (l) $\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{2}$, (m) $\boldsymbol{e}_{3} \otimes \boldsymbol{e}_{2}$.
4. Tensor Operations Let $\boldsymbol{a}=1 \boldsymbol{e}_{1}+4 \boldsymbol{e}_{2}+6 \boldsymbol{e}_{3}, \boldsymbol{b}=7 \boldsymbol{e}_{1}+2 \boldsymbol{e}_{2}+3 \boldsymbol{e}_{3}, \boldsymbol{c}=1 \boldsymbol{e}_{2}+2 \boldsymbol{e}_{3}$, and $\boldsymbol{T}=12 \boldsymbol{a} \otimes \boldsymbol{b}+7 \boldsymbol{a} \otimes \boldsymbol{c}$. Determine the following

1. $\boldsymbol{T} \cdot \boldsymbol{T}$
2. $\boldsymbol{T} \boldsymbol{e}_{1}$
3. \boldsymbol{T}^{T}
4. Tensor-Vector Operations [This is a two dimensional problem.] Let the components of a 2 nd order tensor \boldsymbol{A} be $A_{11}=1, A_{12}=A_{21}=2, A_{22}=3$. Let the components of a vector \boldsymbol{v} be $v_{1}=1, v_{2}=2$.
5. Compute the components of $\boldsymbol{w}=\boldsymbol{A} \cdot \boldsymbol{v}$
(a) using the relation $w_{i}=A_{i j} v_{j}$,
(b) using matrix vector multiplication rules.
6. Compute the scalar $s=\boldsymbol{v} \cdot \boldsymbol{A} \cdot \boldsymbol{v} \equiv \boldsymbol{A}(\boldsymbol{v}, \boldsymbol{v})$
(a) using the relation $s=A_{i j} v_{i} v_{j}$,
(b) using matrix vector multiplication.
7. Orthogonality of Skew and Symmetric Tensors If \boldsymbol{A} is a symmetric tensor and \boldsymbol{B} is skew-symmetric tensor, show $\operatorname{tr}\left[\boldsymbol{A}^{T} \boldsymbol{B}\right]=A_{i j} B_{i j}=0$.
8. Symmetric Contraction Consider a tensor $\boldsymbol{A} \in \mathbb{S}^{3}$ (i.e. symmetric) and an arbitrary tensor \boldsymbol{B}. Prove that $\boldsymbol{A}: \boldsymbol{B}=\boldsymbol{A}: \operatorname{sym}[\boldsymbol{B}]$.
9. Vector Component Extraction Given $\boldsymbol{a}=3 \boldsymbol{e}_{1}+4 \boldsymbol{e}_{2}+5 \boldsymbol{e}_{3}$ find a_{A} in the $\boldsymbol{E}_{\boldsymbol{A}}$ basis as defined in the following figure. Do this by using our component extraction rules.

10. Tensor Component Extraction Consider a 2nd order tensor \boldsymbol{T} whose components in the \boldsymbol{e}_{i} basis are given by

$$
\boldsymbol{T} \rightarrow\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 3 & 5 \\
2 & 4 & 0
\end{array}\right]
$$

Using the component extraction rule for tensors, find T_{12} and T_{33} in the \boldsymbol{E}_{A} basis. Assume \boldsymbol{e}_{i} and \boldsymbol{E}_{A} are as defined in Problem 8. [Do not try and assemble the rotation tensor. It is a waste of time for this problem.]
10. Basis conversion for tensor components Consider the tensor $\boldsymbol{T}=T_{i j} \hat{\boldsymbol{e}}_{i} \otimes \hat{\boldsymbol{e}}_{j}$, where

$$
\boldsymbol{T} \sim\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]_{\left\{\hat{\boldsymbol{e}}_{i}\right\}}
$$

Consider a second basis $\left\{\hat{\boldsymbol{E}}_{A}\right\}$ whose relation to the basis $\left\{\hat{\boldsymbol{e}}_{i}\right\}$ is given by

$$
\begin{aligned}
& \hat{\boldsymbol{E}}_{1}=\frac{1}{2} \hat{\boldsymbol{e}}_{1}+\frac{\sqrt{3}}{2} \hat{\boldsymbol{e}}_{2} \\
& \hat{\boldsymbol{E}}_{2}=-\frac{\sqrt{3}}{2} \hat{\boldsymbol{e}}_{1}+\frac{1}{2} \hat{\boldsymbol{e}}_{2} .
\end{aligned}
$$

Find the value of T_{11} in the $\left\{\hat{\boldsymbol{E}}_{A}\right\}$ basis.
11. Identity Representation Consider an arbitrary vector Starting from $\boldsymbol{a}=\boldsymbol{a}$ show that the identity tensor can be expressed as $\mathbf{1}=\boldsymbol{e}_{i} \otimes \boldsymbol{e}_{i}$ where $\left\{\boldsymbol{e}_{i}\right\}_{i=1}^{3}$ represents any orthonormal basis. Not that the identity tensor is defined to be the tensor $\mathbf{1}$ such that $a=1 a$ for all vectors a.
12. Cross Product Let $\boldsymbol{v}=1 \boldsymbol{e}_{1}+2 \boldsymbol{e}_{2}, \boldsymbol{w}=2 \boldsymbol{e}_{3}+2 \boldsymbol{e}_{1}+1 \boldsymbol{e}_{2}$ and $\boldsymbol{z}=\boldsymbol{v} \times \boldsymbol{w}$. What is z_{3} ? Do this problem using indicial notation methods. Do NOT use the classical technique with the determinant.
13. Permutation Symbol Show that $e_{i j k} e_{i j k}=6$.
14. Orthogonal Tensor In two dimensions, any orthogonal tensor can be expressed as

$$
\begin{aligned}
\boldsymbol{R} & =\cos (\theta) \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1}+\sin (\theta) \boldsymbol{e}_{1} \otimes \boldsymbol{e}_{2} \\
& -\sin (\theta) \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{1}+\cos (\theta) \boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2}
\end{aligned}
$$

1. Show that $\boldsymbol{R}^{T} \boldsymbol{R}=\mathbf{1}$; ie. prove that the inverse of an orthogonal tensor is its transpose.
2. Show that $\|\boldsymbol{v}\|=\|\boldsymbol{R} \boldsymbol{v}\|$ for all \boldsymbol{v}; ie. an orthogonal tensor does not change the length of a vector.
3. Rodriguez Formula Let $\boldsymbol{\Lambda} \in S O(3)$ (i.e. a rotation tensor).
(a)Argue that $\boldsymbol{\Lambda}$ admits the following representation:

$$
\begin{equation*}
\boldsymbol{\Lambda}=\boldsymbol{e}_{3} \otimes \boldsymbol{e}_{3}+\sin (\theta)\left(\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{1}-\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{2}\right)+\cos (\theta)\left(\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1}+\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2}\right) \tag{*}
\end{equation*}
$$

where $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right\}$ form an orthonormal basis. [Hint: Every rotation has a vector \boldsymbol{e}_{3} such that $\Lambda e_{3}=e_{3}$.]
(b) Using the representation in part (a) show that one also has the following representation for Λ :

$$
\boldsymbol{\Lambda}=\mathbb{I}+\frac{\sin (\theta)}{\theta} \boldsymbol{\Theta}+\frac{1}{2} \frac{\sin ^{2}(\theta / 2)}{(\theta / 2)^{2}} \boldsymbol{\Theta}^{2}
$$

where $\boldsymbol{\Theta}$ is the skew-symmetric tensor with axial vector $\check{\boldsymbol{\Theta}}=\theta \boldsymbol{e}_{3}$. [Remark: Formula (\#) is often referred to as Rodriguez' formula. This representation plays a crucial role in non-linear computational mechanics.]
16. Indices How many indices will a rank 3 tensor have?
17. Tensor Classification Classify $A_{i j} B_{j} C_{i} D_{l m n} X_{m n} Y_{l}$ as the components of a scalar, vector, or higher order tensor.
18. Tensor Classification Classify $A_{i} b_{i k l} C_{m n p p} d_{l n}$ as the components of a scalar, vector, or higher order tensor.
19. 3rd Order Tensor Let φ be a third order tensor that is skew-symmetric; i.e.

$$
\varphi(\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w})=-\varphi(\boldsymbol{v}, \boldsymbol{u}, \boldsymbol{w})=-\varphi(\boldsymbol{u}, \boldsymbol{w}, \boldsymbol{v})=-\varphi(\boldsymbol{w}, \boldsymbol{v}, \boldsymbol{u})
$$

for all vectors $\boldsymbol{u}, \boldsymbol{v}, \boldsymbol{w}$. Let \boldsymbol{S} be a second order tensor; show that

$$
\varphi\left(\boldsymbol{S} \boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)+\varphi\left(\boldsymbol{e}_{1}, \boldsymbol{S} \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)+\varphi\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{S} \boldsymbol{e}_{3}\right)=\operatorname{tr}[\boldsymbol{S}] \varphi\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)
$$

[Hint: First show $\varphi\left(\boldsymbol{S e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)=S_{11} \varphi\left(\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \boldsymbol{e}_{3}\right)$.]
20. Components of the isotropic elasticity tensor Consider the 4 th order tensor \mathbb{C} with components $\lambda \delta_{i j} \delta_{k l}+\mu\left(\delta_{i k} \delta_{j l}+\delta_{i l} \delta_{j k}\right)$, where λ and μ are given constants.

1. Determine the value of $\mathbb{C}_{1122}=\mathbb{C}\left(\hat{\boldsymbol{e}}_{1}, \hat{\boldsymbol{e}}_{1}, \hat{\boldsymbol{e}}_{2}, \hat{\boldsymbol{e}}_{2}\right)$.
2. Determine the value of $\mathbb{C}_{1112}=\mathbb{C}\left(\hat{\boldsymbol{e}}_{1}, \hat{\boldsymbol{e}}_{1}, \hat{\boldsymbol{e}}_{1}, \hat{\boldsymbol{e}}_{2}\right)$.
3. Basic Field Operations Let $\boldsymbol{v}(\boldsymbol{x})$ and $\boldsymbol{w}(\boldsymbol{x})$ be two vector fields and $\boldsymbol{S}(\boldsymbol{x})$ be a tensor field. Convert the following expressions to indicial or symbolic notation as appropriate.
4. $\operatorname{div}[\boldsymbol{S}] \cdot \boldsymbol{w}$
5. $\boldsymbol{v} \otimes(\boldsymbol{S w})$
6. $v_{i} w_{j} w_{k, k}$
7. $w_{j} S_{i j} u_{l, i}$
8. Eigenvalues Consider the scalar $\boldsymbol{x} \cdot \boldsymbol{S} \boldsymbol{x}$ for symmetric \boldsymbol{S}. Show that the necessary equations that this quantity be a maximum over all unit vectors \boldsymbol{x} is given by the eigenvalue equation $\boldsymbol{S} \boldsymbol{x}=s \boldsymbol{x}$. To do this extremize $\boldsymbol{x} \cdot \boldsymbol{S} \boldsymbol{x}$ with respect to \boldsymbol{x} subject to the constraint $\|\boldsymbol{x}\|=1$ using a Lagrange multiplier method.
9. Invariants Consider the tensor $\boldsymbol{S}=2\left(\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{1}+\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{2}\right)$. Compute the principal invariants of \boldsymbol{S}.
10. Spectral Form Consider the tensor $\boldsymbol{S}=1\left(\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{1}+\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{2}\right)+2\left(\boldsymbol{e}_{2} \otimes \boldsymbol{e}_{1}+\boldsymbol{e}_{1} \otimes \boldsymbol{e}_{2}\right)$. Express \boldsymbol{S} in spectral form.
11. Directional Derivative Given a stress field $\boldsymbol{\sigma}(\boldsymbol{x})$ on a domain $\Omega \subset \mathbb{R}^{3}$, explain in words the meaning of $\mathrm{D}_{\boldsymbol{v}} \boldsymbol{\sigma}(\boldsymbol{x})=\left.\frac{d}{d \alpha}\right|_{\alpha=0} \boldsymbol{\sigma}(\boldsymbol{x}+\alpha \boldsymbol{v})$, where $\boldsymbol{v} \in \mathbb{R}^{3}$ is given. In particular, your answer should allow one to understand the meaning of the components of $\mathrm{D}_{\boldsymbol{v}} \boldsymbol{\sigma}(\boldsymbol{x})$.
12. Directional Derivative Compute $D \boldsymbol{G}(\boldsymbol{A})$ where $\boldsymbol{G}(\boldsymbol{A})=\operatorname{tr}(\boldsymbol{A}) \boldsymbol{A}$.
13. Directional Derivative of 2 nd Invariant The second invariant of a rank 2 tensor \boldsymbol{A} is given by $I_{2}(\boldsymbol{A})=\frac{1}{2}\left[A_{i i} A_{j j}-A_{k l} A_{l k}\right]$. Determine the directional derivative of $I_{2}(\boldsymbol{A})$ in the direction \boldsymbol{H}. Infer from this result the expression for $\frac{\partial}{\partial A_{i j}} I_{2}(\boldsymbol{A})$ by applying the relation

$$
\frac{\partial I_{2}(\boldsymbol{A})}{\partial A_{i j}} H_{i j}=D I_{2}(\boldsymbol{A})[\boldsymbol{H}]
$$

28. Directional Derivative Consider $f(\boldsymbol{x})=x_{1} x_{2} x_{3}+x_{1} x_{2}$
29. Compute the directional derivative of f in the direction $\hat{\boldsymbol{e}}_{1}+\hat{\boldsymbol{e}}_{2}+\hat{\boldsymbol{e}}_{3}$ at the point $(1,2,3)$. [Warning! Normalize!]
30. Compute the gradient of f - i.e. ∇f.
31. Directional derivative Consider $f(\boldsymbol{x})=x_{1} x_{2} x_{3}$
32. Compute the directional derivative of f in the direction of $\hat{\boldsymbol{e}}_{1}+\hat{\boldsymbol{e}}_{2}$ at the point $(2,2,2)$. [Warning! Normalize!].
33. Compute the gradient of f.
34. Gradient of a vector field Consider a vector field $\boldsymbol{v}=v_{i} \hat{\boldsymbol{e}}_{i}$, where $v_{1}=x_{1}^{2}, v_{2}=x_{2}$, and $v_{3}=x_{3} x_{1}$. Compute the components of $\nabla \boldsymbol{v}$.
35. Directional Derivative Consider $\boldsymbol{g}(\boldsymbol{x})=4\left(x_{1}\right)^{2} \hat{\boldsymbol{e}}_{1}+x_{1} x_{2} x_{3} \hat{\boldsymbol{e}}_{2}+x_{3} \hat{\boldsymbol{e}}_{3}$ and compute $D \boldsymbol{g}[\hat{\boldsymbol{h}}]$ at the point $(0,0,0)$ where $\hat{\boldsymbol{h}}=\left(\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}\right) / \sqrt{3}$
36. Directional Derivative The definition of the derivative of a scalar valued function of a second order tensor is the operator $\frac{\partial f}{\partial \boldsymbol{A}}$ such that

$$
\left.\frac{d}{d \alpha}\right|_{\alpha=0} f(\boldsymbol{A}+\alpha \boldsymbol{H})=\frac{\partial f}{\partial A_{i j}} H_{i j} .
$$

Use this definition to show that

1. $\frac{\partial \frac{1}{3} \operatorname{tr}[\boldsymbol{\sigma}]}{\partial \boldsymbol{\sigma}}=\frac{1}{3} \mathbf{1}$
2. $\frac{\partial\left(\varepsilon_{i j} \varepsilon_{i j}\right)}{\partial \varepsilon_{k l}}=2 \varepsilon_{k l}$
3. Gradient Consider $f: \mathbb{S}^{3} \rightarrow \mathbb{R}$ of the form $f(\boldsymbol{\sigma})=\|\boldsymbol{s}\|-(R+k \operatorname{tr}[\boldsymbol{\sigma}])$, where \boldsymbol{s} is the deviatoric part of $\boldsymbol{\sigma}$ and R and k are constants. Find $\frac{\partial f}{\partial \boldsymbol{\sigma}}$.
4. Gradient Consider $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ where $f(\boldsymbol{x})=x_{k} x_{i} A_{k i}+e_{i j k} x_{j} c_{k} d_{i}$. A, \boldsymbol{c}, and \boldsymbol{d} are given constant tensors and vectors.
5. Compute the components of the gradient of $f(\cdot)$; i.e., find $\partial f / \partial x_{i}$.
6. Express $\partial f / \partial \boldsymbol{x}$ in symbolic form.
7. Directional Derivative Determine the rate of change of the following tensor valued function:

$$
\boldsymbol{T}(\boldsymbol{x})=\left[5 \boldsymbol{x} \cdot \boldsymbol{x}+\frac{1}{2} \boldsymbol{x} \cdot \boldsymbol{A} \boldsymbol{x}\right] \boldsymbol{x} \otimes \boldsymbol{x}
$$

at the point $\boldsymbol{x}=\hat{\boldsymbol{e}}_{1}+\hat{\boldsymbol{e}}_{3}$ in the direction $\hat{\boldsymbol{h}}=\left(\hat{\boldsymbol{e}}_{1}+\hat{\boldsymbol{e}}_{2}+\hat{\boldsymbol{e}}_{3}\right) / \sqrt{3}$, where $\boldsymbol{A}=\hat{\boldsymbol{e}}_{1} \otimes \hat{\boldsymbol{e}}_{1}+$ $\hat{\boldsymbol{e}}_{2} \otimes \hat{\boldsymbol{e}}_{3}+\hat{\boldsymbol{e}}_{3} \otimes \hat{\boldsymbol{e}}_{2}$.
36. Gradient Consider $f: \mathbb{E}^{3} \rightarrow \mathbb{R}$ where $f(\boldsymbol{x})=x_{1}^{2}+2 x_{1} x_{2}^{2}+3 x_{2}^{2} x_{3}$. Find $\operatorname{grad}(f)$.
37. Gradient Consider $f(\boldsymbol{x})=x_{1}^{2}+x_{1} x_{2} x_{3}$. Compute ∇f
38. Directional Derivative Consider $f(\boldsymbol{x})=4 x_{1}+x_{1} x_{2} x_{3}+\cos \left(x_{2}\right)$.

1. Compute the directional derivative of f in the direction $\boldsymbol{e}_{1}+\boldsymbol{e}_{2}$ at the point $(1,1,1)$.
2. Compute the gradient of $\mathrm{f}, \nabla f$.
3. Directional Derivative Consider $f(\boldsymbol{x})=4\left(x_{1}\right)^{2}+x_{1} x_{2} x_{3}$.
4. Compute the directional derivative of f in the direction $\boldsymbol{e}_{1}+\boldsymbol{e}_{2}+\boldsymbol{e}_{3}$ at the point $(0,1,1)$. [Warning! Normalize!]
5. Compute the gradient of $\mathrm{f}, \nabla f$.
6. Divergence theorem Use the Divergence Theorem to show that

$$
\int_{\partial \mathcal{R}} \frac{1}{3} \boldsymbol{x} \cdot \hat{\boldsymbol{n}} d A=\operatorname{vol}[\mathcal{R}]
$$

where \mathcal{R} is a simply connected region of space with boundary $\partial \mathcal{R}$ and outward unit normal $\hat{\boldsymbol{n}}$.
41. Divergence Theorem Use the Divergence Theorem to show that

$$
\int_{\mathcal{R}} 5 x_{i} x_{j} d V=\int_{\partial \mathcal{R}} x_{i} x_{j} x_{k} \hat{n}_{k} d A
$$

42. Divergence Theorem Consider a ball, B, of radius 4 centered at the origin. Using the divergence theorem, compute

$$
\int_{\partial B} \boldsymbol{x} \cdot \boldsymbol{n} d A
$$

where \boldsymbol{x} is (as usual) the position vector and \boldsymbol{n} is the unit outward normal to the surface ∂B.
43. Divergence theorem Compute the value of the integral

$$
\int_{\partial \mathcal{R}} \hat{\boldsymbol{n}} d A,
$$

where \mathcal{R} is a simply connected region of space with boundary $\partial \mathcal{R}$ and outward unit normal $\hat{\boldsymbol{n}}$.
44. Divergence Theorem Consider the unit ball $\mathcal{B}=\{\boldsymbol{x} \mid\|\boldsymbol{x}\|<1\}$ with boundary $\partial \mathcal{B}=S^{2}=\{\boldsymbol{x} \mid\|\boldsymbol{x}\|=1\}$. Using the divergence theorem compute

$$
\int_{\mathcal{B}} \operatorname{div}\left(\frac{\boldsymbol{x}}{\|\boldsymbol{x}\|}\right) d V
$$

