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Preface

This text was designed for a second level course in Mechanics that I developed
starting in Spring 2009. At that time the engineering mechanics curriculum
at Berkeley was reorganized to combine a standalone Sophomore level statics
course with a Junior level strength of materials (engineering mechanics) course.
In the design of the new single course, most of the topics of the original two
courses were retained but the coverage and sophistication of the presentation
was reduced. With only one course in (solid) mechanics, it was felt that a
follow-on course was essential for the students. One option was to identify
the material that was no longer being taught in our new single combined
course and to assemble it into a follow-on course. However, due to the design
of the single course, this did not present a topical outline which was very
appealing. Thus we opted instead to create a course from scratch which we
felt would complement our combined statics and strength course. It would
build upon and extend the material the students has already learned but it
would explicitly not revisit the topics in more technical detail, rather it would
expand their understanding of mechanics and engineering problem solving. It
would prepare them for advanced studies.

This book covers essential topics in variational methods using structural
mechanics as the application area. At selected junctures the reader is also ex-
posed to how the analysis concepts can be applied to other areas of engineering
such as piping flow, thermal networks, ground water diffusion, and advective
pollutant transport to name several. The book begins with a quick overview
of the elementary relations governing tension-compression bars (rods), torsion
bars, and beams – all within the setting of elasticity. This review considers
the solution of such problems from a differential equation viewpoint and in-
troduces the reader to their solution using MATLAB’s bvp4c functionality.
Computer solution of problems is a central aspect of this book and this ex-
ercise is designed to introduce the reader to one option for the solution of
standard problems involving these basic systems. The basic systems are all
one-dimensional and this, of course, is rather limiting since many engineered
systems are multi-dimensional in nature. To that end, the book next treats
trusses and networks in a systematic way. Notions of kinematics are separated
from those of equilibrium and material response. The concepts developed are
intended to introduce the student to the canonical linear structure associated
with many numerical solution methods. Careful attention is paid to issues
of boundary conditions and the concept of static condensation. Problems in
this section, as is true throughout the book, are both pencil and paper as
well as programming oriented. The reader writes their own programs to solve
problems.

With this material in hand the book turns to energy, energy methods, and
the principle of stationary potential energy as a unifying concept in engi-
neering. The principle of stationary potential energy is a powerful tool to
organize our understanding of conservative systems and its exploitation is a
common analysis methodology. The emphasis here is on the method of Ritz.
Problems are presented and solved both by hand and via the construction of
computer programs. Issues of approximation and error are discussed and a
clear connection to the truss program written in the earlier section is made.
The material is then extended to the problem of structural instability, viz.,
buckling. Again problems are treated via pencil and paper as well as via the
writing of computer programs.
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The methods developed to this point are all designed for conservative sys-
tems. As not all systems are conservative we also introduce the concept of
virtual work (weak form descriptions). The equivalence of the principle of vir-
tual work to the concept of stationary potential energy is developed but the
reader is also shown how the principle applies to a non-conservative system.
The final part of the book deals with two-dimensional problems, those that
are described by partial differential equations. The method of Ritz is applied
as well as the principle of virtual work and applications are made to problems
beyond structural engineering.

As noted, computer programing is a central tool for engineering analysis
and throughout the material is developed with this in mind. The end of chap-
ter problems all include programming questions. Beyond that, Appendix C
provides at set of directed computer laboratory exercises. These are designed
to be completed most weeks during a standard 14 week semester at a single
three hour laboratory session. At Berkeley, we cover the entire contents of
this book using two hours of lecture per week plus one three hour computer
laboratory session; a sample syllabus is given in Appendix D. The pace is
modest and unhurried. Thus if desired, there is room to augment the material
covered with other application areas. Likewise the book can be comfortably
covered in a single quarter, if one provides three hours of lecture per week.

As mentioned earlier, the writing of this text began in Spring 2009. At
that time, Dr. Tsuyoshi Koyama took careful lecture notes of the original
offering of the course and typeset them. He also organized and conducted the
computational laboratory. I am very grateful for his excellent efforts. Since
that first offering the course has evolved and the notes were updated into
the present form. My colleague Dr. Shaofan Li has also taught the course
several times and I am very appreciative of his feedback as well as that from
the course’s graduate student instructors (TAs), who direct the computer
laboratory sessions.

Notwithstanding, improvement is always possible. If you find any errors or
have suggestions for improvements, please let me know.

Sanjay Govindjee
Berkeley, CA

s.g@berkeley.edu
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Review of Engineering
Mechanics 1

1.1 Tension-compression bars 1

1.2 Torsion bars 3

1.3 Beams 6

1.4 A purely structural perspec-
tive 8

Exercises 10

Elementary engineering mechanics or strength of materials deals with
approximate theories that allow one to easily compute the mechanical
behavior of simple slender bodies under the action of axial forces, trans-
verse forces and moments, as well as axial torques. In this introductory
chapter we will briefly review the essential elements of these theories
restricted to the special case of linear elastic materials. For our pur-
poses we will be interested in a formulation of the governing equations
in a manner suitable for both statically determinate and indeterminate
problems.1 1Recall statically determinate prob-

lems are ones for which the internal
forces and moments can be determined
from statics alone without the need for
kinematic considerations.

1.1 Tension-compression bars

A tension-compression bar is a slender bar subject exclusively to axial
forces. These forces can be applied to the ends of the bar as well as
distributed along the length of the bar. Additionally the bar can be
subject to kinematic boundary conditions on its axial motion. To for-
malize the governing equations, consider the bar shown in Fig. 1.1. Our
axial coordinate will be x and the bar will be subjected to a distributed
axial force b(x). The dimensions of b(x) are force per unit length. The
bar has a cross-sectional area A(x) and is assumed linear elastic with
Young’s modulus E(x).

b(x)

x

Fig. 1.1 Canonical tension-
compression bar.

If we consider a section cut at an arbitrary location x along the bar,
then we have internal (or resultant) forces R(x) acting of the faces of
the section cut. Using a differential element of length ∆x as shown in
Fig. 1.2, one sees by force equilibrium in the x-direction that

R(x+ ∆x)−R(x) +

∫ x+∆x

x

b(x) dx = 0 .

Dividing through by ∆x and then taking the limit as ∆x goes to zero
yields the differential equation of equilibrium for the bar:

dR

dx
+ b = 0 .

The internal force R(x) is related to the stresses in the bar by the relation

R(x) =

∫
A(x)

σ dA = σ ·A ,
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where the second equality follows only in the case where σ is a constant
on the cross-section (i.e., when the material is homogeneous on the cross-
section).

R(x+    x)b(x)

∆ x

x

R(x) ∆

Fig. 1.2 Differential construction for
equilibrium in a tension-compression
bar.

The primary kinematic assumption for the axial deformation of slender
bars is that plane sections remain plane under deformation. A differen-
tial argument applied to a section of the bar (see Fig. 1.3) shows that
the normal strain in the x-direction is given by

ε(x) = lim
∆x→0

u(x+ ∆x)− u(x)

∆x
=
du

dx
,

where ε(x) is the normal strain in the bar and u(x) is the displacement
field in the bar. This relation is the primary kinematic relation for axial
deformation in slender bars. It is also known as the strain-displacement
relation.

∆
∆ x

x u(x)

u(x+   x)

Fig. 1.3 Differential construction
for strain-displacement relation in a
tension-compression bar.

To close the system of equations, one needs an expression for the ma-
terial response – a constitutive relation. In this text, we will restrict our
attention to linear elastic response and hence our governing constitutive
relation will be

σ = Eε ,

where E is the Young’s modulus for the material. In total, one has 4
linear equations in 4 unknowns u(x), ε(x), R(x), and σ(x). A convenient
re-writing of these equations involves the repeated substitution of one
into the other until one is left with a single (differential) equation for
the displacement field:

d

dx

(
AE

du

dx

)
+ b = 0 . (1.1)

For a given problem this relation can be integrated twice to yield the dis-
placement field. Knowing the displacement field, the strains are easily
computed via differentiation, the stresses by multiplication, and simi-
larly for the forces.

Remarks:

(1) In the case where the Young’s modulus is not a constant on the
cross-section, then the term AE can be replaced by (AE)eff =∫
A(x)

E dA in eqn (1.1).

Example 1.1

Bar with a constant distributed load and an end-load
Consider the bar shown in Fig. 1.4 and determine the displacement

field in the bar.

x

b(x) = bo F

L

Fig. 1.4 Bar with a constant dis-
tributed load b(x) = bo and constant
AE with an end-load F̄ .

Solution: Since AE is a constant the governing differential equation
reduces to a second order ordinary differential equation with constant
coefficients:

AE
d2u

dx2
+ bo = 0 .
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This equation can be integrated twice to yield

AE
du

dx
= −box+ C1

AEu = −1

2
box

2 + C1x+ C2 .

The integration constants C1 and C2 can be determined from the bound-
ary conditions. At x = 0 the displacement is zero, thus u(0) = 0 and
C2 = 0. At x = L the applied force is F̄ and hence R(L) = F̄ . In terms
of the displacements, R = σA = AEε = AEdu/dx. Hence,

AE
du

dx
(L) = F̄ ,

which implies that C1 = F̄ + boL. Thus the final result is

u(x) =
1

AE

(
−1

2
box

2 + (F̄ + boL)x

)
.

Remarks:

(1) This method of solving the differential equation to determine the
system response works independent of whether or not the problem
is statically determinate or indeterminate – here the problem was
determinate.

(2) Once the displacement field is known all other quantities of interest
are easily computed: ε = du/dx, σ = Eε, and R = σA.

For a more comprehensive discussion and further examples of the
tension-compression bar relations see Chapter 2 in S. Govindjee Engi-
neering Mechanics of Deformable Solids, Oxford University Press, Ox-
ford (2013).

1.2 Torsion bars

A torsion bar is a slender bar subjected to distributed torques about its
long-axis as well as similarly oriented end-torques. The overall structure
of the governing equations for torsion is virtually identical to that for
tension-compression bars.

Consider the bar shown in Fig. 1.5. The bar is subject to distributed
torques t(z) with dimensions of force times length per unit length. If we
make a section cut as some location z along the length of the bar the
cut faces have resultant (internal) torques T (z) acting on them. Using a
differential argument, as in Sec. 1.1, it is easy to show that the governing
differential equation of equilibrium for a bar in torsion is

t(z)

z

Fig. 1.5 Torsion bar subjected to a dis-
tributed torque t(z).

dT

dz
+ t = 0 .
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The internal resultant torques T (z) are related to the shear stresses
(τ = σzθ) on the cross-sectional cuts via

T (z) =

∫
A(z)

rτ dA ,

where A(z) is the cross-sectional area of the bar and τ(r, z) is the shear
stress acting on the section cut. Using the plane sections remain plane
assumption along with the assumption that the cross-sections rotate as
rigid bodies, one can show that the fundamental kinematic relation is
given by

γ = r
dφ

dz
,

where γ(r, z) is the engineering shear strain 2εzθ and φ(z) is the rotation
field for the bar – i.e. the amount of rotation of each cross-section.2 The2This relation derives from assump-

tions that are only reasonable for bars
with circular cross-sections.

constitutive relation that is relevant to the present situation is

τ = Gγ ,

where G is the shear modulus – note that as before, we restrict ourselves
to the linear elastic case.

The four basic equations can be combined into a single equation by
repeated substitution. If we introduce the kinematic relation into the
constitutive relation, we find that τ = Grdφ/dz. Inserting this expres-
sion into the resultant definition, one finds that T = GJdφ/dz, where
J =

∫
A
r2 dA is the polar moment of inertia for the cross-section. Com-

bining this last result with the equilibrium relation gives

d

dz

(
GJ

dφ

dz

)
+ t = 0 . (1.2)

Remarks:

(1) This equation is mathematically identical to the one for tension-
compression bars. Note that in the present setting GJ takes the
place of AE, φ takes the place of u, z takes the place of x, t takes
the place of b, and T takes the place of R.

(2) To solve structural analysis problems in torsional systems, stat-
ically determinate or indeterminate, one can integrate our final
ordinary differential equation twice to find φ(z). Constants of in-
tegration are determined from the boundary conditions and all
other quantities of interest can be determined from φ via the op-
erations of differentiation and multiplication.

(3) In the case that the shear modulus is not a constant on the cross-
section, then the productGJ can be replaced by (GJ)eff =

∫
A(z)

Gr2 dA

in eqn (1.2).
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Example 1.2

Statically indeterminate torsion bar with a point load
Consider the torsion bar shown in Fig. 1.6. It is subjected to a point

torque To at mid-span and has a constant GJ . Find the rotation field
for the bar. o

L/2 L/2

z

T

Fig. 1.6 Doubly built-in torsion bar
with a point torque To at mid-span and
constant GJ .

Solution: The appropriate distributed torque expression for a point
torque is a Dirac delta function (see Appendix B):

t(z) = Toδ

(
z − L

2

)
.

Since GJ is constant we have

GJ
d2φ

dz2
= −Toδ

(
z − L

2

)
GJ

dφ

dz
= −ToH

(
z − L

2

)
+ C1

GJφ = −To
〈
z − L

2

〉
+ C1z + C2 .

Note that H(·) is the Heaviside step function and 〈·〉 are the Macauley
brackets (they evaluate to their argument if the argument is positive,
else they evaluate to zero).3 The boundary conditions for the bar are 3∫ δ(x) dx = H(x) + C,

∫
H(x) dx =

〈x〉+ C, and
∫
〈x〉n dx = 1

n+1
〈x〉n+1 +

C.
φ(0) = φ(L) = 0:

φ(0) = 0 ⇒ 0 = −To
〈
−L

2

〉
︸ ︷︷ ︸

=0

+C1 · 0 + C2 ⇒ 0 = C2 .

and

φ(L) = 0 ⇒ 0 = −To
〈
L− L

2

〉
+ C1L ⇒ C1 = To/2 .

Thus,

φ(z) =
1

GJ

(
−To

〈
z − L

2

〉
+

1

2
Toz

)
.

Remarks:

(1) A plot of the solution is shown in Fig. 1.7. Note that the first term
in the Macauley brackets only gives a non-zero result for z > L/2.

φ

L/2 L

(z)
T L

4GJ
o

Fig. 1.7 Rotation field for Example
1.2.

For a more comprehensive discussion and further examples of the tor-
sion bar relations see Chapter 7 in S. Govindjee Engineering Mechanics
of Deformable Solids, Oxford University Press, Oxford (2013).
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1.3 Beams

A slender bar acts as a beam when it is subjected to transverse loads
and/or moments perpendicular to its long axis. For our purposes we
will be concerned with beam bending in the x-y plane.

y

q(x)

x

Fig. 1.8 Beam subjected to a dis-
tributed load q(x).

x

q(x)

M V MV

(+)

y

z

Fig. 1.9 Assumed positive sign conven-
tion for distributed loads, internal shear
forces, and internal bending moments.

Consider the beam shown in Fig. 1.8. The beam is subjected to a
distributed load q(x) with dimensions of force per unit length. If we
make a section cut at some location x along the length of the beam, then
the cut faces will have resultant (internal) shear forces V (x) and bending
moments M(x) acting on them. Fig. 1.9 shows our sign convention
for positive values; note further, we assume that the beam deflection
v(x) is positive in the positive y-direction. Using a differential element
argument one can show that force equilibrium in the y-direction and
moment equilibrium about the z-axis, respectively, imply that

dV

dx
+ q = 0

dM

dx
+ V = 0 .

These two equations can be combined into a single differential equation
of equilibrium by eliminating the shear force to give

d2M

dx2
= q .

The internal bending moment M(x) is related to the normal stress (σ =
σxx) on the cross-section by

M =

∫
A(x)

−yσ dA .

Using a plane-sections remain plane and normals remain normal assump-
tion, one can shown that the fundamental kinematic relation for a beam
is given by

ε = −yκ(x) ,

where ε(x, y) is the bending strain (εxx), κ(x) = dθ/dx is the bending
curvature, and θ(x) = dv/dx is the cross-section rotation field.4 The4Note that one can also write κ =

d2v/dx2. constitutive relation that is relevant to the present situation is

σ = Eε ,

where E is the Young’s modulus.
The basic equations can be combined into a single governing differ-

ential equation by repeated substitution. If we introduce the kinematic
relation into the constitutive relation, we find that σ = −yEκ. Insert-
ing this into the moment resultant definition, one finds that M = EIκ,
where I =

∫
A
y2 dA is the moment of inertia of the cross-section (about
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the z-axis). Combining this last result with the equilibrium relations
gives

d2

dx2

(
EI

d2v

dx2

)
= q . (1.3)

Remarks:

(1) The governing equation here is a fourth order ordinary differential
equation. In the case that EI is not a function of x, this is an
ordinary differential equation with constant coefficients.

(2) The solution of the governing equation for the deflection v(x) for
statically determinate or indeterminate problems requires one to
integrate four times. This will produce four constants of inte-
gration. For their determination, one will need four boundary
conditions. Typically, two are taken from the left and two are
taken from the right. These will normally be given in terms of the
deflection directly, the rotation θ = dv/dx, the bending moment
M = EId2v/dx2, or the shear force V = −EId3v/dx3. Once the
deflection field has been determined, then all other quantities of
interest can be found from v(x) via differentiation and multiplica-
tion.

(3) In the case that the Young’s modulus is not a constant on the cross-
section, the product EI can be replaced by (EI)eff =

∫
A(x)

Ey2 dA

in eqn (1.3).

Example 1.3

Cantilever beam with an end-force
Consider the cantilever beam shown in Fig. 1.10. It is subjected to an

end-force P at x = L and has a constant EI. Find the deflection field
for the beam.

x

L

P

Fig. 1.10 Cantilever beam with an
end-force P at x = L and constant EI.

Solution: The distributed load in this problem is zero; i.e. q = 0. Since
EI is constant we have

EI
d4v

dx4
= 0

EI
d3v

dx3
= C1

EI
d2v

dx2
= C1x+ C2

EI
dv

dx
=

1

2
C1x

2 + C2x+ C3

EIv =
1

6
C1x

3 +
1

2
C2x

2 + C3x+ C4 .



8 Review of Engineering Mechanics

The boundary conditions for the beam are v(0) = 0, θ(0) = dv/dx(0) =
0, M(L) = EId2v/dx2(L) = 0, and V (L) = −EId3v/dx3(L) = P . The
first two boundary conditions give:

v(0) = 0 ⇒ 0 =
1

6
C1 · 0 +

1

2
C2 · 0 + C3 · 0 + C4 ⇒ 0 = C4

and

dv

dx
(0) = 0 ⇒ 0 =

1

2
C1 · 0 + C2 · 0 + C3 ⇒ 0 = C3 .

The condition on the end-shear gives

−EI d
3v

dx3
(L) = P ⇒ P = −C1 .

Lastly, the moment condition gives

EI
d2v

dx2
(L) = 0 ⇒ 0 = −PL+ C2 ⇒ C2 = PL .

Thus,

v(x) =
Px2

2EI

(
L− x

3

)
.

Remarks:

(1) This procedure is applicable to both determinate and indetermi-
nate problems. The example shown was determinate.

For a more comprehensive discussion and further examples of the
beam bending relations see Chapter 8 in S. Govindjee Engineering Me-
chanics of Deformable Solids, Oxford University Press, Oxford (2013).

1.4 A purely structural perspective

In Sec. 1.1–1.3 we have presented the classical equations learned in ele-
mentary mechanics courses. The presentation follows the typical devel-
opment and the underpinning assumption of each theory is a kinematic
assumption on the three dimensional motion of the system in question.
However, from a purely structural perspective, leaving aside three di-
mensional issues and issues of the detailed response of the material on
the cross-section, one can abstract complete theories from the equations
presented that only involve functions of the axial coordinate. These rela-
tions are already present in what was reviewed but for added clarity we
summarize them here. The main principle is to select a set of equations
that only depend upon a single coordinate and constitute a complete
system of equations.
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1.4.1 Tension-compression bars

For tension-compression bars, this can be achieved by constructing a
system of equations in terms of the internal forces and the displacements
as:

dR

dx
+ b = 0

du

dx
=

R

AE
.

Alternately, in vector form we have

d

dx

(
u
R

)
=

(
R/AE
−b

)
.

In this system of two coupled ordinary differential equations, we have
two unknown fields u(x) and R(x). The remaining terms are the ap-
plied loading b(x) and the property combination A(x)E(x), which is
sometimes called the axial stiffness or axial rigidity. As written this is a
first order system. If one combines these two relations, then one recovers
the second order differential equation from Sec. 1.1. Note that nowhere
in these equations do we encounter terms that depend on the y or z
coordinates.

1.4.2 Torsion bars

For torsion bars, this can be achieved by constructing a system of equa-
tions in terms of the internal torques and the rotations as:

dT

dx
+ t = 0

dφ

dz
=

T

GJ
.

Alternately, in vector form we have

d

dz

(
φ
T

)
=

(
T/GJ
−t

)
.

In this system of two coupled ordinary differential equations, we have
two unknown fields φ(x) and T (x). The remaining terms are the applied
loading t(z) and the property combination G(z)J(z), which is sometimes
called the torsional stiffness or torsional rigidity. As written this is a
first order system. If one combines these two relations, then one recovers
the second order differential equation from Sec. 1.2. Note that nowhere
in these equations do we encounter terms that depend on the r or θ
coordinates.
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1.4.3 Beams

For beams, the same can be achieved by constructing a system of equa-
tions in terms of the internal forces and moments as well as the deflec-
tions and rotations as:

dV

dx
+ q = 0

dM

dx
+ V = 0

dθ

dx
=
M

EI
dv

dx
= θ .

Alternately, in vector form we have

d

dx


v
θ
M
V

 =


θ

M/EI
−V
−q

 .

In this system of four coupled ordinary differential equations, we have
four unknown fields v(x), θ(x), M(x), and V (x). The remaining terms
are the distributed load q(x) and the property combination E(x)I(x),
which is sometimes called the bending stiffness or the flexural rigidity. As
written this is a first order system. If one combines these four relations,
then one recovers the fourth order differential equation from Sec. 1.3.
Note that nowhere in these equations do we encounter terms that depend
the y or z coordinates.

Remarks:

(1) The utility of expressing the governing system of equations in these
matrix formats is that they are then seen to fit the abstract format
dy/dx = f(y, x) for which effective numerical schemes are known
to exist.

Exercises

(1.1) Using the governing equation for the axial deforma-
tion of a bar, argue why the displacement field must
be linear (independent of the boundary conditions
for the bar) in the absence of any distributed body
forces; i.e. for the case where b(x) = 0. Assume
AE is constant.

(1.2) Consider the linear elastic tension-compression bar
shown. The bar is subjected to an end-force P and
a distributed load b(x) = bo sin(kx), where bo and
k are given constants. Assume that AE is constant
and determine the displacement field of the bar.



Exercises 11

P

b(x) = b sin(kx)o

x

(1.3) Consider a bar of length L with constant EA and
constant density ρ. The bar is supported by a
fixed pivot and spun about it at angular frequency
ω. Doing so produces a distributed body force of
b(x) = Aρω2x, where x is measured from the pivot.
Find the maximum and minimum strains and their
locations. Write down the governing ordinary dif-
ferential equation, then solve.

ω

L

(1.4) For the bar shown determine the displacement field
u(x).

L

b(x) = b cos(x/L)o

AE − constant

(1.5) You are given a prismatic bar with constant cross-
sectional area A, Young’s Modulus E, and length
L. Determine the reaction force at the top of the
bar due to the load P .

x

L/2

L/2


P

(1.6) The bar shown is built-in at the left and supported
by a spring with spring constant k at the right. List
the boundary conditions at x = 0 and x = L. Find
the expression for u(x).

AE − constant

L

b(x) = exp(x/L)

x k

(1.7) Consider an elastic bar with constant Young’s mod-
ulus, E, and constant cross sectional area, A. The
bar is built-in at both ends and subject to a spa-
tially varying distributed axial load

b(x) = bo sin(
2π

L
x) ,

where bo is a constant with dimensions of force per
unit length. Determine the largest (in magnitude)
compressive internal force. Write down the gov-
erning ordinary differential equation, then solve.

y

x

b(x)

L

(1.8) For the linear elastic bar shown. Determine the
axial displacement as a function of x. Note that
there is a distributed load and a point load. The
point load should be modeled using a Dirac delta
function. Write down the governing ordinary dif-
ferential equation, then solve.
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P

Distributed Load b(x) = Cx

x

AE −− constant

a L − a

(1.9) Consider an elastic bar with length L and constant
AE that is subjected to a point force at x = a.
Find u(x).

1
k kP

x

2

(1.10) Find the axial deflection u(x) in the bar shown.
The bar has length L and a constant AE. Write
down the governing ordinary differential equation,
then solve.

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

x

b = constant

EA

k

(1.11) Consider the bar shown in Fig. 1.4. Assume that
in addition to the loads shown, that it is sub-
ject to a temperature change ∆T . Formulate the
governing differential equations in first order form
along with expressions for the boundary condi-
tions. Assume that the material response is given
by σ = E(ε − α∆T ), where α is the coefficient of
thermal expansion.

(1.12) An elastic solid circular bar of length L with po-
lar moment of inertia J and shear modulus G is
built-in at both ends and subject to a system of
distributed torques:

t(z) =

 0 z < d

c z ≥ d

Determine the support torques T (0) and T (L) at
the two ends of the bar. Solve this problem using
the governing ordinary differential equation.

c

d L − d

T(0) T(L)

(1.13) For the round torsion bar show, with constant GJ ,
find the maximum torque (magnitude) and its lo-
cation.

8 Nm 4 Nm

2 m 1 m 1 m

(1.14) Consider a circular bar which is built-in at both
ends and loaded by a linear distributed load, t(z) =
to z. By solving the governing second order or-
dinary differential equation find the value of to
needed to induce a rotation θ̂ at the mid-point of
the bar. Assume GJ is a constant.

(1.15) Consider the linear elastic (circular) bar shown be-
low. Determine the rotation field, φ(z), for the bar.
Assume GJ to be constant.

t(z) = t  z/L  o

L

(1.16) In the statically indeterminate beam shown, find
the reactions at the wall by integrating the differ-
ential equation for the deflection of the beam.

L

q(x)=3Wx / L
2 3

x

(1.17) For the beam shown below, with imposed deflection
∆, find the deflection curve v(x) and the location
and magnitude of the maximum bending stress.
Assume EI is constant and the maximum distance
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from the neutral axis to the outer fibers of the beam
is c. Use the governing ordinary differential equa-
tion to solve this problem.

 ∆

L

x

(1.18) The beam shown below is loaded by a point mo-
ment at x = 2; find the maximum internal moment
(in absolute value – i.e. independent of sign) by
first solving the governing fourth order differential
equation. [Hint: to find the maximum value just
plot your answer.]

M = 100

2 1

EI - constant

x

(1.19) Find the equation for the deflection of the beam
shown. Assume a constant value for EI. Use the
given coordinate system.

a L-a

x

q

(1.20) Consider a simply supported beam with a trans-
verse load P applied at its mid-span.

P
x

L

EI −− constant

Determine the deflection of the beam using the gov-
erning ordinary differential equation as follows:

(a) State the relevant boundary conditions.

(b) State the relevant distributed load function.

(c) Solve the relevant ODE for the beam’s deflec-
tion.

(1.21) For each system below, (i) state the relevant bound-
ary conditions in the form needed to solve for the
motion of each when using the governing ordinary
differential equation, (ii) provide the proper expres-
sion for the distributed loads, if relevant.

(a)

P

x
L

(b)

x
a L-a

P

(c)

z
L/2 L/2

Ta kt

(d)

x
L

Ppo

MATLAB Exercises

(1.22) Write a MATLAB program using bvp4c that solves
Exercise 1.11 for the case of bo = 0, F̄ = 0, A =
100 mm2, E = 210 × 103 N/mm2, L = 1000 mm,
α = 6 × 10−6 1/C, and ∆T = 300 C. You should
check your computation against a hand solution.

(1.23) Re-solve Exercise 1.22 where the boundary condi-
tion at x = L has been changed to u(L) = 0 (in-
stead of being force free).
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(1.24) The bar shown below is built-in at the left. On
the right, it is free to expand, until a distance β.
At that point it encounters a rigid wall. The bar
is subject to change in temperature which may or
may not induce contact with the wall. Write a
MATLAB program that uses bvp4c and can han-
dle the case of contact or no contact without the
need for re-coding. Assume A = 100 mm2, E =
210×103 N/mm2, L = 1000 mm, α = 6×10−6 1/C,
and β = 3 mm. Test your program with the tem-
perature changes ∆T = {100, 500, 600} C. These
represent no contact, just touching, and contact,
respectively.

βL

x

(1.25) An elastic circular bar is fixed at one end and
attached to a spring support at the other end.
The torsional stiffness of the spring support is
k = 50 N m/rad. If a concentrated torque of mag-
nitude Ta = 500 N m is applied in the center of
the bar, what is the rotation at the end of the bar,
φ(L), where L = 300 mm? Assume a shear modu-
lus G = 10 kN/mm2 and polar moment of inertia
J = 2000 mm4. Use the built-in MATLAB func-
tion bvp4c to solve this problem. Make sure to
double check your code by looking at the limits of
zero and very high spring stiffness compared to a
hand computation.

���
�����

Ta

k

L

L/2

(1.26) Consider a solid round elastic bar with constant
shear modulus, G = 140 kN/mm2, and cross sec-
tional area, A = 40 mm2. The bar is built-in at
both ends and subject to a spatially varying dis-

tributed torsional load

t(x) = p sin(
2π

L
x) ,

where p = 50 N ·mm/mm and L = 1000 mm. Solve
for the system response and determine the location
and magnitude of the maximum internal torque in
the bar. Use the built-in MATLAB function bvp4c

to solve this problem.

(1.27) Consider an elastic beam of length L = 10 ft with
constant Young’s modulus E = 30 × 106 psi, and
cross sectional area moment of inertia I = 256 in4.
The beam is subject to a point moment at x = a =
5 ft. Determine the torsional stiffness at x = a; i.e.
determine kT = S/θ(a). Use the built-in MATLAB
function bvp4c to solve this problem.

a

S

x

L−a

[Remark: S is intensionally unspecified. Why?]

(1.28) Consider a beam supported by a distributed spring
foundation (e.g. a railroad rail or grade beam).
Such spring supports are known as Winkler foun-
dations5 . Assume the beam is 100 ft long with
a Young’s modulus of E = 30 × 106 psi and a
cross sectional area moment of inertia I = 77.4 in4.
Assume a foundation stiffness of k = 100 lb/in2

and determine the maximum positive and negative
moments in the beam for a 30 × 103 lb load dis-
tributed over 3 in at the beam’s center. Note that
for this problem the governing equation is given by
EIv(x)′′′′ = q(x), where q(x) = qapplied(x)−kv(x).
For boundary conditions, assume zero moment and
shear. Use the built-in MATLAB function bvp4c

to solve this problem.

L/2

3"

30,000 lbf

L/2

(1.29) Consider an elastic beam of length L = 10 ft with
constant Young’s modulus E = 30 × 106 psi, and
cross sectional area moment of inertia I = 256 in4.
The beam is subject to a point force P at x = b =

5If you are interested in historical matters, you can find Emil Winkler’s original de-
velopments in his 1867 book on Elasticity and Strength on Google Books. Search on
“Die Lehre von der Elasticitaet und Festigkeit” pages 182-184.
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6 ft. Determine the transverse stiffness at x = b; i.e.
determine k = P/v(b). Use the built-in MATLAB
function bvp4c to solve this problem. P

L

b

[Remark: P is intentionally unspecified. Why?]
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2.1 Analysis of truss structures

So far we have looked at the solution of basic one dimensional systems
under various types of loadings. Real engineering systems, of course,
come in a much greater variety. We wish to look at an extension of
our basic notions to examine systems with greater geometric complexity
while still being composed of elementary parts. Our central example will
be trusses but the methodologies developed also allow one to study pip-

P

Fig. 2.1 Statically indeterminate truss
with 4 unknown reactions.

ing systems for water delivery, traffic networks for flow properties, as well
as other network systems that appear in fields ranging even to electrical
and mechanical engineering. We will see that the basic concepts of kine-
matics, equilibrium, and constitutive relations also have counterparts in
these more complex settings. Lastly, we will encounter mathematical
constructs that are central to many areas of engineering and science. In
the context of trusses we will be able ascribe concrete physical meaning
to them and this will help us later on when we encounter them in more
abstract settings.

2.1.1 Introduction
P

Fig. 2.2 Statically determinate truss
with 3 unknown reactions.

A truss is a mechanical system composed of tension-compression bars
that are connected together by frictionless hinges, or nodes, and is loaded
only at its nodes. Thus, truss structures are mechanical structures in
which we make the following restrictions or assumptions in the theory:

• Tension-compression bars are the individual components which
constitute the structure.

• All joints, or nodes, are friction free pin connections.

• Applied loads can only occur at nodes.

Some examples are shown in Figs. 2.1-2.3. An important consequence
of these assumptions is that internal forces in the bars are co-linear
with the bars and are constants for each bar in the truss; consequently
the stresses and strains are also constants. Further, under small strain
assumptions, the axial displacements will be linear. P

Fig. 2.3 Statically indeterminate truss
with 4 unknown reactions.

Simple trusses

An important sub-category of trusses are simple trusses. Simple trusses
are trusses that can be built-up sequentially from a single triangular
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truss, through the step-by-step addition of two bars and one joint to the
current configuration of the truss, where the two new bars in each step
are precluded from being co-linear. Figures 2.2 and 2.3 are examples
of simple trusses. Figure 2.4 shows an example of a non-simple truss.

P

Fig. 2.4 Statically indeterminate non-
simple truss with 4 unknown reactions.

A fundamental advantage of simple trusses is that one can determine
whether or not they are statically determinate via a simple counting
procedure, which we will discuss later.

2.1.2 Governing equations

Our interest will be in developing an analysis scheme that will work
for understanding the behavior of both determinate and indeterminate
trusses. Our plan of attack will be to develop the relevant equilibrium,
kinematic, and constitutive relations for general trusses and then com-
bine the expressions to produce a single equation capable of describing
the behavior of the system, determinate or indeterminate, just as we
did in Chapter 1 for the basic one-dimensional problems of tension-
compression bars, torsion rods, and beams. Our final result will be a
set of equilibrium equations solely in terms of the displacements of the
nodes of the truss. Thus it will be quite analogous, for example, to the
relation AEd2u/dx2 + b = 0.

Equilibrium31

2

21

P

Fig. 2.5 2 bar truss structure.

To develop the equilibrium equations for the truss, let us examine the
truss system in Fig. 2.5. We will begin by defining a unit vector pointing
from node i to node j in the following manner,

eij :=
xj − xi
‖xj − xi‖

.

As a result of the definition, one can also observe the relation

eji = −eij .

For example the unit vector pointing from node 1 to node 2 is denoted
as

e12 :=
x2 − x1

‖x2 − x1‖
=
x2 − x1

L1
,

where L1 is the length of bar 1, and x1 and x2 are the positions of nodes
1 and 2.

For each node in the truss, one can write an equilibrium equation.
For example, considering node 2, the balance of forces can be depicted
as shown in Fig. 2.6. R1 and R2 denote the axial forces in bars 1 and

2

21

P

e21R1 e23R2

Fig. 2.6 Equilibrium at Node 2.

2, respectively. The nodal equilibrium equation is,

R1e21 +R2e23 + P = 0 . (2.1)



2.1 Analysis of truss structures 19

Remarks:

(1) Equation (2.1) is a vector equation and thus represents two scalar
equations – balance of forces in the horizontal and vertical direc-
tions.

(2) Note that our convention is to always assume that forces are ten-
sile. If they are actually compressive, then they will come out to
be negative at the end of the analysis.

If we now consider equilibrium at node 1, the balance of forces can
be depicted as shown in Fig. 2.7. R1 denotes the axial force in bar 1
and F r1 is the reaction force at node 1. Thus, the nodal equilibrium
equation is

e12R1

F r1

1

1

Fig. 2.7 Equilibrium at Node 1
R1e12 + F r1 = 0 .

The last node in the truss is node 3. The balance of forces at this node
is depicted in Fig. 2.8. R2 denotes the axial force in bar 2 and F r3 is
the reaction force at node 3. The nodal equilibrium equation is

R2e32 + F r3 = 0 .

e32R2

F r3

3

2

Fig. 2.8 Equilibrium at Node 3

Gathering the nodal equations of equilibrium, one has 3 vector (6
scalar) equations:

e12R1 + F r1 = 0,
e21R1 +e23R2 + P = 0,

e32R2 + F r3 = 0,

which can be written as a single equation: e12 0
e21 e23

0 e32

[ R1

R2

]
+

 F r1
P
F r3

 = 0,

⇔

 e21 0
e12 e32

0 e23

[ R1

R2

]
=

 F r1
P
F r3

 ,
⇔ ATR = F ,

where we have defined,

R :=

[
R1

R2

]
2×1

,

F :=

 F r1
P
F r3


6×1

,

A :=

[
eT21 eT12 0
0 eT32 eT23

]
2×6

.
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R is the vector of internal bar forces, F is the vector of external nodal
forces (applied forces as well as reaction forces), and A is called the
compatibility matrix. The rows of A correspond to bars, one row for
each bar, and the block columns correspond to the nodes, one block
column for each node. This view point allows for a systematic element-
by-element construction of the compatibility matrixA. One sequentially
loops over the number of bars, constructing one row at a time until the
full matrix has been determined. Note that the vectors eij are assumed
to be column vectors.

Remarks:

(1) The expression ATR = F is the equilibrium relation for the truss;
i.e. it is the analog to dR/dx+b = 0, dT/dz+t = 0 and d2M/dx2 =
q. F plays the role of the applied loads; R plays the role of the
internal resultant fields; and A plays the role of the differential
operator.

(2) The individual scalar rows in ATR = F represent force equilib-
rium in the horizontal and vertical directions at the nodes of the
truss.

(3) It should be observed that A will in general not be square.

(4) The unknown forces appear in both R and certain entries of F .
This slightly complicates the solution of these equations and the
determination of whether or not the system of equations is stati-
cally determinate or not.

(5) To write AT in expanded form, for our example, one simply needs
expressions for the unit (column) vectors connecting the nodes. If
we assume that bar 1 makes an angle of π/3 with respect to the
horizontal, then e12 = (1/2,

√
3/2)T and e32 = (0, 1)T , implying

that

AT =



−1/2 0

−
√

3/2 0
1/2 0√
3/2 1
0 0
0 −1

 .

Static determinacy and indeterminacy

As with tension-compression bars, torsion rods, and beams, trusses can
be either statically determinate or indeterminate. Deciding whether a
truss is statically determinate or indeterminate comes down to examin-
ing the equilibrium equations, ATR = F , and trying to decide if one
can uniquely solve them for all the unknowns: If all the unknowns in
these equations can be uniquely solved for, then the system is considered
to be statically determinate. If the unknowns can not be uniquely solved
for, then the system is considered to be statically indeterminate.

The equilibrium equations, as given, are a bit tricky to analyze since
there are unknown quantities on both the left- and right-hand sides of
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the equation. So before looking at them, let us first consider the classic
linear algebra question of solving the linear equations Mx = b for the
vector x ∈ Rn when the matrix M ∈ Rm×n and the vector b ∈ Rm are
given. The Roché-Capelli Theorem of linear algebra tells us whether or
not this system of equations can be uniquely solved for x. The theorem
considers two matricies, M and the augmented matrix [M b], which is
simply the matrix M with an additional column composed of the entries
of b. The theorem enumerates three possibilities:

(1) If rank(M) 6= rank([M b]), then the system of equations has no
solution.

(2) If rank(M) = rank([M b]) = n, then the system of equations has
a unique solution.

(3) If rank(M) = rank([M b]) < n, then the system of equations has
an infinite number of solutions.

Given a system of equations, it is a simple matter to determine the rank
of the relevant matrices; for example, one can convert the matrices to
(row) echelon form and count the number of non-zero rows.

In our case the vector of unknowns is composed of the bar forces,
R, and any unknown reaction force components, which we collectively
denote as F r:

x =

[
R
F r

]
.

The vector b is equal to the original vector F where every unknown
reaction force component has been set to zero. Lastly the matrix M =
[AT C], where the matrix C accounts for the fact that the unknown
reaction force components have been moved to the left-hand side of the
equation. The number of rows in C matches the number of equilib-
rium equations, and its number of columns is equal to the number of
unknown reaction force components. Most of the entries of C are zero.
However, if a particular reaction force component contributes to a given
scalar equilibrium equation, then in that row one sets the corresponding
column entry to minus one (−1). Once constructed one can apply the
Roché-Capelli Theorem to see if the system of equations has a unique
solution and is thus statically determinate.

The use of the Roché-Capelli Theorem works for all trusses, whether
they are simple trusses or not. However in the case of simple trusses,
a simpler procedure is available to determine if a truss is statically de-
terminate or not. The procedure simply counts the number of available
equilibrium equations and compares the count to the number of unknown
forces. In general, for simple trusses compare the two quantities,

b+ r , (2.2)

and
n× d , (2.3)

where
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b : Number of bars in the truss
d : Space dimension of the problem

(d = 2 for planar trusses ) and
3D(d = 3 for space trusses )

n : Number of nodes in the truss
r : Number of support reaction forces

Note that b+r in eqn (2.2) represents the total number of force unknowns
in the problem and n × d in eqn (2.3) represents the total number of
available equilibrium equations in the problem. The criterion for ascer-
taining determinacy versus indeterminacy is given as:

b+ r > n× d : Indeterminate of degree (b+ r)− (n× d)
= : Determinate (but possibly unstable)
< : Indeterminate (unstable)

3
P

Fig. 2.9 Statically indeterminate truss
structure with 7 elements.

The three cases correspond directly to the three cases of the Roché-
Capelli Theorem but in an quicker to ascertain manner. Beware, how-
ever, this counting methodology is only guaranteed to work for simple
trusses.

Example 2.1

Seven bar truss
Consider the 7 bar truss shown in Fig. 2.9 and find the equilibrium

equations for the truss.
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Solution: To construct the equilibrium equations for the truss, one
needs to number the nodes and the bars. This is arbitrary but necessary.
The numbering scheme we will use is shown in Fig. 2.10, where the
supports have been replaced by the (unknown) support reactions which
they provide. Once the numbering scheme has been established, the
equilibrium equations are easily formed by assembling the compatibility
matrix (in transpose form). Each row represents one node and each
column corresponds to a bar. Begin with the first row (node) and add
entries in the columns associated with the bars that connect to it – in
this case bars 1 and 2. Thus we get entries in columns 1 and 2. The
first subscript of the ett entry will be the node the corresponding bar
connects to and the second subscript will be the row number. All other
row entries will be zero. Likewise, if there are any applied forces or
support reactions on the node, then an entry needs to be added to the
right-hand side load vector. For the truss shown the result will be


e21 e31 0 0 0 0 0
e12 0 e32 e42 0 0 0
0 e13 e23 0 e43 e53 0
0 0 0 e24 e34 0 e54

0 0 0 0 0 e35 e45





R1

R2

R3

R4

R5

R6

R7


=


F r1
0
P 3

0
F r5


⇔ ATR = F .

For this structure, the expanded size of the matrix AT is 10× 7. The

r5

2

P
3

F F
r1

3

4

2

5 7

6

1

1

4

5

3

Fig. 2.10 Statically indeterminate
truss structure with 7 elements (with
support forces shown).

10 comes from n = 5 nodes times d = 2 and the 7 comes from b = 7
bars. This implies that the system of equations expressing equilibrium is
10 scalar equations in 7 unknown bar force variables. The total number
of unknowns is actually larger, since r = 4 (scalar) entries in F are also
unknown; these correspond to the 4 scalar components of the support
reactions. Thus we have 10 equilibrium equations for the truss but there
are 11 unknown force quantities in the problem. Since the truss is simple,
we can conclude that the system is statically indeterminate.

Remarks:

(1) If one adjusts the structure to allow, for example, node 5 to freely
move in the horizontal direction, then there will only be r = 3
(scalar) support reactions and the system will be statically deter-
minate; i.e. one will have 10 equations in 10 unknowns.

(2) In the determinate case, from the solution to R, we also immedi-
ately know the bar stresses by division by the bar areas and the
bar strains by subsequent division by the bar moduli. Determining
the displacements, however, is a bit trickier and we will take that
up next by considering the kinematics of truss systems.
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Kinematics

In considering the kinematics of a truss, we are interested in finding the
relation between the nodal displacements and the bar strains. Consider
the structure in Fig. 2.11. One can relate the change in length, ∆Li, of
bar i with the strain εi through the relations

ε1 =
∆L1

L1
,

ε2 =
∆L2

L2
.

Note that the bar strains are constant for each bar since the loads are
restricted to the nodes. Here, L1 and L2 are defined as the undeformed
bar lengths. This relation can be reorganized in matrix notation as,

31

2

21

Fig. 2.11 2 bar truss structure.

[
ε1

ε2

]
=

[ 1
L1

1
L2

] [
∆L1

∆L2

]
or more compactly as

ε =

⌈
1

L

⌋
∆L ,

where d1/Lc is understood to be a diagonal matrix with one-over-the
length of each bar on the diagonal1, ε is a vector of bar strains (one
entry per bar), and ∆L is a vector of changes of lengths of the bars (one
entry per bar) . This gives us the relation between the bar strains and
the changes in length of the bars. To convert this to the desired relation
between bar strains and nodal displacements, we will need to develop a
relation between ∆L and the displacements of the nodes.

e21

u1

u2

e12 u2

u1T

T

1

1

2

Fig. 2.12 Compatibility for element 1.

Consider, first, bar 1 as shown in Fig. 2.12. The relation between the
change in length ∆L1 and the displacements of the nodes at the ends
u1, u2 is obtained as,

∆L1 = eT21u1 + eT12u2 .

The change in length is computed by projecting the nodal displacement
vector at each end onto the unit vector parallel to the bar.

Consider now bar 2 as shown in Fig. 2.13. The relation between the
change in length ∆L2 and the displacements of the nodes at the ends
u2, u3 is obtained as,

∆L2 = eT32u2 + eT23u3 .

The change in length is computed, again, by projecting the nodal dis-
placement vector at each end onto the unit vector parallel to the bar.

e32

u2

u3

e23 u3

u2T

T

3

2

2

Fig. 2.13 Compatibility for element 2.
1The notation M = dfc is defined to mean a diagonal matrix with entries Mii = fi.
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The two equations can be organized in matrix notation as:[
∆L1

∆L2

]
=

[
eT21 eT12 0
0 eT32 eT23

] u1

u2

u3


or

∆L = Au ,

where the matrix A is the same matrix that appears in the equilibrium
equations. Combining ε = d1/Lc∆L and ∆L = Au, one obtains a
single equation relating the vector of bar strains ε with the vector of
nodal displacements:

ε =

⌈
1

L

⌋
Au .

Remarks:

(1) It should be emphasized that the rows of the compatibility matrix
correspond to each bar and the block columns correspond to each
node

node 1 node 2 node 3
↓ ↓ ↓

bar 1→
bar 2→

[
eT21 eT12 0
0 eT32 eT23

]
Thus the size of A is b-by-(d · n).

Constitutive relation

The relationship between the stress σ and strain ε in bar i is given as,
σi = Eiεi, where Ei is the Young’s modulus of bar i. One can organize
this in matrix notation as,

σ = dEcε ,

where dEc is a diagonal matrix with the Young’s modulus of each bar
as the diagonal components and the bold σ and ε are vectors containing
the stresses and strains of the bars, respectively.

Resultant definition

The relationship between the bar force R and bar stress σ in bar i is
given as, Ri = Aiσi, where Ai is the cross-sectional area of the bar. One
can organized this in matrix notation as

R = dAcσ ,

where dAc is a diagonal matrix with the cross-sectional area of each bar
as the diagonal components.
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2.1.3 Problem setting

If we now collect all of our results, we will see that we have a system of
equations that is quite analogous to those governing the basic problems
of tension-compression bars, torsion rods, and beams. In particular we
have:

• Equilibrium

ATR = F ,

• Compatibility/Strain-displacement relation

ε =

⌈
1

L

⌋
Au ,

• Constitutive relation

σ = dEcε ,

• Resultant definition

R = dAcσ .

Thus our system of equations has an identical structure to the problems
we are already familiar with. This indicates that if we want, we can
combine them as we did before to create a single equilibrium equation
in terms of the displacements of the system and this system can be
used to solve both determinate and indeterminate problems once the
boundary conditions are known.

Equilibrium in terms of the nodal displacements

To create the equilibrium equation in terms of the nodal displacements
we can proceed as before; viz., we can substitute the strain-displacement
relations into the constitutive relation, into the resultant definition, and
finally into the equilibrium equation. Thus the stresses in terms of dis-
placements is given as:

σ = dEc
⌈

1

L

⌋
Au =

⌈
E

L

⌋
Au

and the internal resultants in terms of the displacements are given as:

R = dAc
⌈
E

L

⌋
Au =

⌈
AE

L

⌋
Au .

Substitution into the equilibrium equation yields the final result:

AT dAE/LcAu = F .

This is the equilibrium equation for a truss in terms of the nodal dis-
placement vector u.
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Remarks:

(1) K := AT dAE/LcA is called the stiffness matrix. It is important
to note that this matrix is symmetric. This can be shown through
the following manipulation:

KT =
(
AT dAE/LcA

)T
= AT dAE/LcT (AT )T = AT dAE/LcA ,

where we have used the fact that dAE/LcT = dAE/Lc since it is
a diagonal matrix.

(2) A is the compatibility matrix.

(3) K is a (d ·n)-by-(d ·n) square matrix, and u and F are vectors of
size (d · n)-by-1.

(4) It customary in structural engineering to write d for u. Employing
this notation, the equilibrium equation in terms of nodal displace-
ments is often written as

Kd = F .

Example 2.2

Computation of the stiffness matrix
Compute the stiffness matrix K of the structure in Fig. 2.14.
Solution: The nodes and bars are numbered as shown. The compati-

bility matrix for the structure is

21

3

21

P

L=1

L=1

=1

Fig. 2.14 2 bar truss structure.
A =

 eT31 0 eT13

0 eT32 eT23

 .
The stiffness matrix is then obtained through the computation:

K = AT dAE/LcA

=

 e31 0
0 e32

e13 e23

[ (AEL )1 0

0
(
AE
L

)
2

] [
eT31 0 eT13

0 eT32 eT23

]

=

 e31

(
AE
L

)
1

0

0 e32

(
AE
L

)
2

e13

(
AE
L

)
1
e23

(
AE
L

)
2

[ eT31 0 eT13

0 eT32 eT23

]

=


e31

(
AE
L

)
1
eT31 0 e31

(
AE
L

)
1
eT13

0 e32

(
AE
L

)
2
eT32 e32

(
AE
L

)
2
eT23

e13

(
AE
L

)
1
eT31 e23

(
AE
L

)
2
eT32 e23

(
AE
L

)
2
eT23 + e13

(
AE
L

)
1
eT13

 ,
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where

e32 =

[
0
−1

]
, e31 =

[
− 1√

2

− 1√
2

]
,

e32e
T
32 =

[
0
−1

] [
0 −1

]
=

[
0 0
0 1

]
, e31e

T
31 =

[
− 1√

2

− 1√
2

] [
− 1√

2
− 1√

2

]
=

[
1
2

1
2

1
2

1
2

]
.

To simplify matters a little bit let us assume that each bar has the same
Young’s modulus and cross-sectional area. Further, let us define the
matrices

k1 :=

(
EA

L

)
1

e31e
T
31 =

EA√
2L

[ 1
2

1
2

1
2

1
2

]
,

k2 :=

(
EA

L

)
2

e32e
T
32 =

EA

L

[
0 0
0 1

]
.

With these definitions, one has the following structure for the stiffness
matrix K:

K =

 k1 0 −k1

0 k2 −k2

−k1 −k2 k1 + k2

 .

The individual matrices (the so-called truss bar stiffness matrices) k1

and k2 are symmetric, and the entire stiffness matrix K is symmetric.
If we fully expand the stiffness matrix (to have scalar rows and columns)
we have

K =
AE

L



√
2

4

√
2

4 0 0 −
√

2
4 −

√
2

4

√
2

4

√
2

4 0 0 −
√

2
4 −

√
2

4

0 0 0 0 0 0

0 0 0 1 0 −1

−
√

2
4 −

√
2

4 0 0
√

2
4

√
2

4

−
√

2
4 −

√
2

4 0 −1
√

2
4 1 +

√
2

4


.

Boundary conditions

To solve for the vector of nodal displacements u, which has a total of
d · n unknowns (degrees-of-freedom), one must specify the boundary
conditions. This situation is identical to the setup for the previously in-
troduced mechanical problems governed by differential equations. When
boundary conditions on the displacements are specified (e.g., in the case
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of a pin support the displacements are restrained to be zero) the value
of the displacement for the corresponding degree-of-freedom ui becomes
a known value but the corresponding entry in the right-hand side Fi
is unknown. For the other degrees-of-freedom where the displacement
value is not specified, the degree-of-freedom ui is free to move and conse-
quently must be solved for; the corresponding entry in the force vector is
known. Based on these delineations, one can separate the set of degrees-
of-freedom (a total of d · n) into two disjoint groups:

• idf : The degrees-of-freedom which are (F)REE TO MOVE,

• idd: The degrees-of-freedom where the (D)ISPLACEMENTS ARE
KNOWN.

It should be noted that at the degrees-of-freedom associated with the
set idf the value of the applied force Fi is known and at the degrees-of-
freedom which are in the set idd the value of the applied forces Fi are
unknown. These unknown forces are exactly the reaction forces at the
supports.

Using these two disjoint sets of indices, one can group the nodal dis-
placement degrees-of-freedom into two vectors uf and ud. Similarly the
entries of the force vector can also be grouped into two vectors F f and
F d. To clarify this concept, assume that id contains all the degrees-of-
freedom id = {1, 2, 3, 4, 5, 6} where we have assumed the problem has a
total of 6 degrees-of-freedom. Let us assume that idf and idd are defined
as

idf := {3, 5, 6},
idd := {1, 2, 4} .

Then,

uf =

u3

u5

u6

 , ud =

u1

u2

u4

 , F f =

F3

F5

F6

 , F d =

F1

F2

F4

 .

Let us additionally define the vectors û and F̂ as,

û :=

[
uf
ud

]
, F̂ :=

[
F f
F d

]
.

These two vectors are permuted versions of u and F , i.e., the entries of
the vectors have been reordered as:

u =


u1

u2

u3

u4

u5

u6


permute entries−−−−−−−−−−→ û =


u3

u5

u6

u1

u2

u4


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We can permute the entries of the stiffness matrix K to respect this
permutation and obtain its permuted version K̂

K =


K11 K12 K13 K14 K15 K16

K21 K22 K23 K24 K25 K26

K31 K32 K33 K34 K35 K36

K41 K42 K43 K44 K45 K46

K51 K52 K53 K54 K55 K56

K61 K62 K63 K64 K65 K66


permute entries−−−−−−−−−−→

K̂ =


K33 K35 K36 K31 K32 K34

K53 K55 K56 K51 K52 K54

K63 K65 K66 K61 K62 K64

K13 K15 K16 K11 K12 K14

K23 K25 K26 K21 K22 K24

K43 K45 K46 K41 K42 K44


which relates û and F̂ by

K̂û = F̂ .

Just as uf and ud partition û, we can partition K̂ accordingly:

K̂ =

[
Kff Kfd

Kdf Kdd

]
.

The subscript f denotes that the rows or columns correspond to entries
coming from the set idf and the subscript d denotes that the rows or
columns correspond to entries coming from the set idd. Thus for our 6
degree-of-freedom example,

Kff =

K33 K35 K36

K53 K55 K56

K63 K65 K66


and

Kdf =

K13 K15 K16

K23 K25 K26

K43 K45 K46

 .

It should be emphasized that physically there is no difference between
the expressions K̂û = F̂ andKu = F . They are just permuted versions
of each other. Thus one can also solve the mechanical problem using the
permuted form. Employing the partitioned form, one has[

Kff Kfd

Kdf Kdd

] [
uf
ud

]
=

[
F f
F d

]
.

Employing the fact that ud is known, we can solve for the unknowns uf
and F d in the following two steps:

(1) Use the first (block) row to determine uf as:

uf = K−1
ff (F f −Kfdud) .
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(2) Evaluate F d from the second (block) row

F d = Kdfuf +Kddud ,

since uf is now a known quantity from step 1.

(3) This procedure is commonally known as static condensation.

Example 2.3

Solution of direct-stiffness equations
Solve for the displacements and reaction forces of the structure shown

in Fig. 2.15. The compatibility matrix A and stiffness matrix K for this
structure have been computed in Example 2.2.

21

3

21

P

L=1

L=1

1

2

5
6

3
4

Fig. 2.15 2 bar truss structure with
DOF labeling; assume P = 1.

Solution: First determine the sets idf and idf . Since node 3 is free
to move in the x and y directions, these are the (F)ree degrees-of-
freedom. The remaining degrees of freedom correspond to the known
(D)isplacement degrees-of-freedom:

idf := {5, 6},
idd := {1, 2, 3, 4} .

From this identification, one has,

ud =


u1

u2

u3

u4

 =


0
0
0
0

 F f =

[
F5

F6

]
=

[
1
0

]
,

and

Kff =
AE

L

[ √
2

4

√
2

4
√

2
4

√
2

4 + 1

]
.

Note Kff is obtained directly from the full K matrix by extracting the
rows and columns corresponding to the idf indices; i.e. one extracts rows
5,6 and columns 5,6. Since ud = 0, the linear system we must solve for
uf is

F f = Kffuf

⇔
[

1

0

]
=
AE

L

[ √
2

4

√
2

4
√

2
4

√
2

4 + 1

][
u5

u6

]

⇒
[
u5

u6

]
=

L

EA

[
1 + 2

√
2

−1

]
.
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Since uf is now known, one can compute the support reactions F d,

F d = Kdfuf +Kddud

= Kdfuf

=
AE

L


−
√

2
4 −

√
2

4

−
√

2
4 −

√
2

4

0 0

0 −1


L

EA

[
1 + 2

√
2

−1

]

=


−1
−1

0
1

 .

Remarks:

(1) Knowing the displacement vector u one can also compute the
changes in lengths, strains, stresses, and forces in the bars through
the expressions:

∆L = Au,

ε = d1/LcAu,
σ = dE/LcAu,
R = dEA/LcAu .

Solution procedure

The procedure of solving truss structures can be summarized as follows:

(1) Determine the geometry and boundary conditions (loading and
supports).

(2) Form the matricesA, dEc, dAc, d1/Lc, and computeK = AT dAE/LcA.

(3) Identify the (F)ree degrees-of-freedom and known (D)isplacement
degrees-of-freedom, to extract Kff and form F f −Kfdud.

(4) Solve for the displacements uf through the equation Kffuf =
F f −Kfdud.

(5) Evaluate F d = Kdfuf +Kddud for the support reactions.

(6) Post-process the results for other desired quantities such as bar
forces, stresses, and strains.
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2.2 Analysis of flow networks

As an example of other network like structures that can be analyzed
with a similar method, let us look at the problem of fluid flow in a pip-
ing network. Such systems are made from pipes with varying diameters
and subject to in-flow/out-flow conditions and/or imposed fluid pres-
sures. Shown in Fig. 2.16 is an example network composed of 7 pipes
with possibly varying resistances to fluid flow. The system of pipes is
connected at 6 nodes or pipe junctions. Knowing the specified values
and the pipe geometry the standard question is to determine the flow
in each pipe as well as the fluid pressure at the nodes. For our analysis
we will make the assumption that the fluid flow is viscous and laminar
(i.e. one has what is known as Poiseuille flow in the pipes which we will
assume to be circular).

Qr6

Q2

2

3

4

5

7

Q71

6

1

2

3

4

5

6

Q6

Q1

Q3
Q4

Q5
Qr1

Fig. 2.16 Example piping network with imposed pressures at nodes 1 and 6.

The important physical variables in such problems are:

(1) The lengths of the pipes, Li.

(2) The areas of the pipes, Ai = πd2
i /4, where di are the pipe diame-

ters.

(3) The resistances to fluid flow in the pipes per unit length, Ri. For
viscous laminar flow in circular pipes Ri = 32ν/d2

i , where ν is the
fluid’s kinematic viscosity.

(4) The pressure at each node, Pi, which we will gather into a vector
of nodal pressures, P . The dimensions of pressure are force per
unit area.

(5) The fluid flux in each pipe, qi, which we will gather into a vector
of pipe fluxes, q. The dimensions of fluid flux are mass per unit
area per unit time.

(6) The resultant rate of fluid flow in each pipe, Qi, which we will
gather into a vector of pipe flows, Q. The dimensions of fluid flow
in a pipe are mass per unit time.2

2If one chooses µ viscosity, instead of kinematic viscosity, in the definition of the
resistances, then the flux will be in dimensions of fluid velocity and the flow will be
in dimensions of volume per unit time.
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2.2.1 Conservation of mass

In this type of problem the important conserved quantity is mass; i.e.
mass conservation will serve as the counter part to conservation of mo-
mentum (force equilibrium). As a sign convention we will assume that
the fluid flow is positive in the direction of increasing nodal numbering.
The actual direction of the fluid flow will then be determined by the sign
of the solution. If we consider for example node 2 of the network shown
in Fig. 2.16, then the balance of mass tells us

Q1 −Q2 −Q3 = 0 ,

where we have respected our sign convention. Similar balance equa-
tions can be written for all the other nodes in the system to give six
mass/volume balance equations:


−1 0 0 0 0 0 0

1 −1 −1 0 0 0 0
0 1 0 −1 −1 0 0
0 0 1 1 0 −1 0
0 0 0 0 1 1 −1
0 0 0 0 0 0 1


6×7



Q1

Q2

Q3

Q4

Q5

Q6

Q7


7×1

+



Qr1
0
0
0
0
0
Qr6


6×1

=



0
0
0
0
0
0
0


6×1

As before, we will move the vector associated with the imposed and/or
unknown external nodal fluid flows to the right-hand side and then ab-
sorb the minus sign into the matrix. In compact form we can then write

ATQ = Qr ,

where

AT =


1 0 0 0 0 0 0
−1 1 1 0 0 0 0

0 −1 0 1 1 0 0
0 0 −1 −1 0 1 0
0 0 0 0 −1 −1 1
0 0 0 0 0 0 −1

 .

Note that each row of AT corresponds to a node in the network and
each column a pipe. If the pipe carries fluid away from the node the
sign of the entry is positive else it is negative.
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2.2.2 Compatibility

Compatibility in this context is the relation between the nodal pressures
and the pressure gradients in individual pipes. We will define a positive
change in pressure for a given pipe ∆Pi as the difference between the
nodal pressure at the node with higher index from that with lower index.
Thus for our example network

∆P1

∆P2

∆P3

∆P4

∆P5

∆P6

∆P7


=



−1 1 0 0 0 0
0 −1 1 0 0 0
0 −1 0 1 0 0
0 0 −1 1 0 0
0 0 −1 0 1 0
0 0 0 −1 1 0
0 0 0 0 −1 1




P1

P2

P3

P4

P5

P6

 .

In compact form this can be written as

∆P = −AP ,

where we have the same A matrix as in the expression for mass conser-
vation. The gradient of pressure in each pipe is P ′i = ∆Pi/Li. Thus we
have as a final result that

P ′ = −
⌈

1

L

⌋
AP .

This equation is the counter-part to the relation between bar strains and
nodal displacements.

2.2.3 Constitutive relation

The flux of fluid in a pipe is related to the negative pressure gradient as
qi = −(1/Ri)P

′
i . As a result, we can write

q = −
⌈

1

R

⌋
P ′ .

2.2.4 Resultant relation

The total flow in a given pipe is related to the fluid flux by multiplying
by the pipe’s cross-sectional area. This gives

Q = dAc q .

2.2.5 Problem setting

If we now collect our results, we will see that we have a system of equa-
tions that is quite analogous to the case of trusses:

• Mass conservation

ATQ = Qr ,
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• Compatibility/Pressure gradient-pressure relation

P ′ = −
⌈

1

L

⌋
AP ,

• Constitutive relation

q = −
⌈

1

R

⌋
P ′ ,

• Resultant definition

Q = dAcq .

Thus our system of equations has an identical structure to the problems
we are already familiar with. We can proceed as before and create a
single balance equation (conservation of mass) in terms of the nodal
pressures.

Conservation of mass in terms of the nodal pressures

To create the conversation equation in terms of the nodal pressures we
can proceed as before; viz., we can substitute the compatibility relation
into the constitutive relation, then into the resultant definition, and
finally into the equilibrium equation. Thus fluxes in terms of pressures
is given as:

q = −
⌈

1

R

⌋
(−1)

⌈
1

L

⌋
AP =

⌈
1

RL

⌋
AP

and the resultant flows in terms of the pressures are given as:

Q = dAc
⌈

1

RL

⌋
AP =

⌈
A

RL

⌋
AP .

Substitution into the mass conservation equation yields the final result:

AT

⌈
A

RL

⌋
AP = Qr .

This is the mass conservation equation for a pipe network in terms of
the nodal pressure vector P . The process of solution is exactly as with
the truss. Some of the unknowns are in P and some in Qr. As before
one can split the knowns from the unknowns by reordering. Then one
first solves for the unknown pressures in terms of the known pressures
and the known input/output flows. Following that, one can evaluate for
the unknown flows at locations where the nodal pressures are given.

2.3 Results for other networks

The method of analysis we have introduced is quite general and as men-
tioned above can be applied to many other types of systems. Without
derivation, we list the results for a few other systems.
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2.3.1 Electrical resistance networks

In electrical resistance networks/circuits, we have a very similar re-
sult. The conservation of current (charge) can be written in the form
AT I = Is, where I is a vector of branch currents and Is is a vector of
junction current sources. A is as in the piping network case. The voltage
gradients in the branches of the circuit are given by V ′ = −d1/LcAV –
quite similar to the flow network relation for pressure gradients. Ohm’s
law is the constitutive relation and it tells us that the current den-
sity i = −dσcV ′, where σi are the electrical specific conductances of
the branches. The current density is related to the branch currents by
I = dAci. These relations can be combined to give the current conser-
vation relations in terms of the junction voltages:

AT

⌈
1

R

⌋
AV = Is , (2.4)

where Ri = Li/σiAi are the branch resistances. Once the junction volt-
ages have been computed, the branch currents are also easily computed.3

2.3.2 Thermal conduction networks

In thermal conduction networks, one has a network of conductors that
transport thermal energy. In this setting the conservation of energy can
be written in the form ATQ = Qt, where Q is a vector of heat fluxes
and Qt is a vector of nodal heat sources. Again A is as before. The
temperature gradients in the network are given by T ′ = −d1/LcAT
similar to our other examples. The entries Li are the lengths of the
conductors. The constitutive law for heat conduction is Fourier’s Law
q = −dkcT ′, where ki are the conductivities of the conductors and q are
the specific heat fluxes (flux per unit area). These are related to the heat
fluxes via Q = dAcq, where Ai are the conductor areas. Assembling,
these relations yields a system of equations for conservation of energy in
terms of the nodal temperatures:

AT

⌈
Ak

L

⌋
AT = Qt . (2.5)

Once the nodal temperatures have been determined other quantities of
interest are easily determined using the individual relations.4

2.3.3 Other cases

These are only a few of the many possible cases. Other examples gov-
erned by similar systems are porous flow systems, elastic cable networks,

3Common (consistent) units for the electrical quantities are: current in amps, volt-
age in volts, specific conductance in Siemens per meter, and resistance in Ohms
(=1/Siemens).
4A common (consistent) units for the thermal quantities are: temperature in Kelvin
or Celsius, heat flux in Watts, specific heat flux in Watts per meter squared, and
conductivity in Watts per meter per degree Kelvin/Celsius.



38 Trusses and Networks

torsion rod systems, and contaminant diffusion networks – to name just
a few more.
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Exercises

(2.1) For the truss shown construct the AT matrix and
the system’s equilibrium equations.

P

5 m

5 m 5 m

(2.2) For the truss shown construct the AT matrix and
the system’s equilibrium equations.

5 m

5 m

P

(2.3) For the 4-bar truss shown, determine the 4×8 com-
patibility matrix A. Use the provided numbering
scheme.

1

2

3 4

1

3

2

4

L

L

(2.4) For the simple truss shown, determine its degree of
indeterminacy.

(2.5) For the simple truss shown, determine its degree of
indeterminacy.

(2.6) For the truss shown, find:

(a) The 2× 6 compatibility matrix A.

(b) Assuming that the nodal displacements are

u1 = 0, u2 = 2ex+2ey (mm), u3 = 2ey (mm),

what are the bar strains?

1

2 3

1

2

2m

2m 2m

x

y

(2.7) Consider the truss shown below. Write out the gov-
erning equilibrium equations for the truss in the
form ATR = F .
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2 m 2 m

2 m

50 kN

(2.8) Consider the truss shown below. Write out the 6x6
stiffness matrix for this truss. Assume that the
horizontal bar has an AE = 180 MN and that the
other two have an AE = 200 MN. Using the given
displacement conditions, write out the reduced 3x3
system of equations that needs to be solved to find
uf .

2 m 2 m

2 m

50 kN

(2.9) Consider the (Wheatstone) bridge circuit shown
below.

(a) Determine the A matrix.

(b) Determine the matrix K = AT d1/RcA.

(c) Identify the two unknown voltages and two
unknown current “sources”.

(d) Solve the governing equations for the two un-
known voltages.

(e) Now assume that R1 = R3 = R4 and that
R2 = (1 + ε)R4, where |ε| � 1; i.e. the re-
sistance in branch is 2 is almost the same as
the others. Show that under these conditions,
that Vo = V3 − V2 ≈ −Va4 ε.

[Remark: This circuit is a common way of detect-
ing small changes in a given resistor. It has wide
applications, for example in the measurement of
mechanical strain using resistive foil-gauges.]

+

1

3

4

R R

RR

2
Va

43

1 2

(2.10) The governing equations for a 6 degree of freedom
system have been assembled to yield the following
linear system of equations:

1 2 0 1 0 1
2 1 0 1 0 4

0 0 1 0 0 0
1 1 0 1 0 0
0 0 0 0 1 0
1 4 0 0 0 1




c1
c2
c3
c4
c5
c6

 =


F1

F2

F3

F4

F5

F6


From the boundary conditions, it is known that
c3 = c4 = c5 = c6 = 2 and that F1 = F2 = 1.

(a) Find c1 and c2.

(b) Find F3, F4, F5, and F6.

(2.11) Consider the following system of equations and
solve for the unknowns u1, u2, u3, F4, and F5.

1 0 0 1 2
0 1

2
0 1 2

0 0 1
3

1 2
1 1 1 0 1
2 2 2 1 0




u1

u2

u3

1
1
2

 =


1
2
3
F4

F5



MATLAB Exercises

(2.12) Consider the truss shown below. Assume the bars
are steel E = 30 × 106 psi. The vertical bars have
a diameter of 0.5 in, the horizontal 0.75 in, and
the diagonal 1.0 in. Using the numbering scheme
shown:

(a) Find the compatibility matrix for the truss.

(b) Find the diagonal matrix dAE/Lc.
(c) Assuming u2x = 0.1 in, u2y = 0.0 in, u3x =
−0.1 in, u3y = 0.1 in,
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(i) Find the strains in the 5 bars.

(ii) What are the stresses in the 5 bars?

(iii) What are the internal forces in the 5
bars?

(iv) What forces must have been applied to
nodes 2 and 3?

(v) What are the support reactions at nodes
1 and 4?

[Note you should not have any need to use the K
matrix to solve this problem.]

2 ft1

2

3
4

5
1

2 3

4

3 ft

(2.13) Consider the truss shown below. Assume the bars
are steel E = 30 × 106 psi. The vertical bars have
a diameter of 0.5 in, the horizontal 0.75 in, and
the diagonal 1.0 in. Using the numbering scheme
shown:

(a) Find the compatibility matrix for the truss.

(b) Find the diagonal matrix dAE/Lc.

(c) Assuming u1x = −0.1 in, u1y = 0.1 in,
u3x = 0.1 in, u3y = 0.0 in.

(i) Find the strains in the 5 bars.

(ii) What are the stresses in the 5 bars?

(iii) What are the internal forces in the 5
bars?

(iv) What forces must have been applied to
nodes 1 and 3?

(v) What are the support reactions at nodes
2 and 4?

[Note you should not have any need to use the
K matrix to solve this problem.]

2 2

4

3 ft

2 ft3 1

4

1

3

5

(2.14) Consider the truss shown below. Assume that
L = 2 ft, the bars are all solid round stock mild
steel, the upper bars have diameter 0.75 in, the
lower bars have diameter 1.0 in and the diagonal
and vertical bars have diameter 0.5 in. Assume
that F1 = 3.0F2 > 0. Find the smallest value of
F2 for which a bar in the truss reaches the yield
stress σY = 40 ksi. What is the deflection at the
two applied loads at this moment?

L

F1

F2

L

(2.15) Consider the piping system shown below. The sys-
tem is to carry an oil with density ρ = 950 kg/m3

and kinematic viscosity ν = 10−4 m2/s. The pump
provides oil at a constant pressure Ppump. The pres-
sure at the end of each line is taken to be 0 (gauge
pressure). What is the maximum allowed pump
pressure to ensure that the flow remains laminar
(non-turbulent)? In what section will the system
first transition from laminar to turbulent flow. As-
sume turbulence sets in at a Reynold’s number of
2100, where Re = ρvD

µ
= vD

ν
.
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0.5 m

Pump

10 km

5 km

5 km

5 km

5 km

Diameter

1 m

Diameter

(2.16) For the electrical circuit shown below, determine all
the junction voltages and all the branch currents.
Assume Va = 10 V and that the resistances are
given in kΩ.

Ω

a

+

V

10 10
1010

10 10

5 3
5 54

All Resistance in units of k

(2.17) Consider the Pratt roof truss shown below. As-
sume that the members are 2x4 wood sections and
are connected by pin joints.

(a) What is the largest magnitude compressive
force in the truss and where does it occur?

(b) What is the largest magnitude tensile force in
the truss and where does it occur?

(c) If the truss is made statically determinate by
changing the right support to a horizontal
roller, how does your answer change?

[Note: (1) A 2x4 is not 2 inches by 4 inches! (2) You
will need to assume a reasonable value for Young’s
modulus of construction lumber. (3) For Part 2.17c
the values of A and E should play no role – test
your program to verify.]

5’

1000 lbf

500 lbf

250 lbf

500 lbf

250 lbf

10’

5’ 5’ 5’ 5’ 5’

(2.18) Consider the space truss as shown. Assume node
1 is fixed. Assume that nodes 3 and 4 are free
to roll in the x-direction but are otherwise con-
strained and that the load at node 5 is in the
negative z-direction. Let A = 1000 mm2, E =
210×103 N/mm2, and assume Earth’s gravitational
acceleration acts in the negative z-direction. The
coordinates of the nodes are

x1 = 500ey + 500ez (mm)

x2 = 700ex + 700ey + 500ez (mm)

x3 = 500ex + 800ey (mm)

x4 = 500ex + 100ey (mm)

x5 = 1200ex + 100ey (mm) .

Find the x, y, z-displacement of node 5.

1000 kg

x

y
z

1 2

4

3

5
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In Chapters 1 and 2, we have approached the formulation and solution
to various problems by first investigating the conservation/balance equa-
tions that govern the systems. This was then coupled with knowledge of
the variables that describe the state of the system and their connection
to the conserved quantities. The result in all cases was an equation (or
system of equations) that represented the conservation/balance equation
in terms of the variables that described the state of the system. This
process is very effective and the results are quite useful in a wide variety
of contexts. There are however very powerful alternate formulations of
the problems that can in certain circumstance provide better results in
terms of easy of use or efficiency in determining a systems response. The
entry to these alternate formulations is the concept of energy. In this
chapter we will first review some basic concepts of energy in mechanical
systems and then look at how one can exploit the concept of conserva-
tion of energy. This will be our introduction to energy methods. Then
in Chapter 4, we will look at more sophisticated look at energy methods
and in particular the powerful concept of stationary potential energy.

3.1 Work and Power

3.1.1 Power

F
v

L

(Force)
(Velocity)

Fig. 3.1 Force applied to a cantilever
and corresponding velocity.

The power associated with a force (load) is the dot product (inner prod-
uct) of that force with the velocity that it causes. Consider, for example,
the beam shown in Fig. 3.1. The power of the force, F , is defined as the
work is does per unit time; viz.,

F

v

Fx

Fy

Fig. 3.2 Slider in a slot.

P := (F [Force]) · (v [Length/Time])

= F · v [Force · Length/Time]

=
∑
i

Fivi .

The last expression emphasizes the point that work per unit time is non-
zero only when the directions of the force and velocity line up, i.e., are
in the same direction. Consider the case shown in Fig. 3.2. Although
the applied force exerts a load onto the wall, this does not contribute to
the power. The wall ensures a zero velocity in the direction orthogonal
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to the wall and this implies that the force orthogonal to the wall will not
perform any work. It should be emphasized, that the power of the load
is the time rate of change of work performed by the loading system.

t

dA

t dA

Fig. 3.3 Distributed load t (force per
unit area) over the surface of a body.

In the case of a distributed load, t, over a surface as is shown in
Fig. 3.3, we can consider small patches of area as being acted upon by
a force equivalent to the distributed load times the area of the patch.
Thus one can write the power as:

P :=

∫
A

(t dA) · v

=

∫
A

t · v dA .

The quantity t dA gives the amount of force applied on a patch with area
dA. The inner product of the force with the velocity v gives the local
power, which must be summed over the surface where the distributed
load is applied to give the total power of the distributed load.

Example 3.1

Power for beam with a distributed load

q(x)

x

y

z

L

Fig. 3.4 Distributed load over a beam.

Consider a distributed load q(x) defined along a beam as shown in
Fig. 3.4. Assume the velocity v(x) = vyey of the beam is known and
determine a relation for the power of the load.

Solution: In this case, we need to observe that the distributed load is
qey, then

P :=

∫ L

0

(q(x) dx ey) · (vy(x) ey)

=

∫ L

0

q(x) vy(x) dx .

The term (q(x)dx ey) represents the total force on a segment of the beam
of length dx and vy(x)ey is the given velocity.

If loads are given per unit volume, i.e. are distributed body forces b,
then the power is given as:

P :=

∫
V

(b dV ) · v

=

∫
V

b · v dV .

The quantity b dV is the force applied on a small volume dV . The inner
product of this force with the velocity v gives the local power of the load
on dV . Summing over the whole volume, i.e. integration, gives the total
power of the distributed body force.
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3.1.2 Work

Consider a load applied to a point mass over a time interval [t1, t2]. The
power of the load will be a function of time P(t) and the time integral
of the power will represent the work done by the load on the mass; i.e.,
the work done will be given by:

x

y

z

F

F
x   =x(t  )1P 

x   =x(t  )2Q

Γ

Γ
∗

Fig. 3.5 Work along two different
paths from xP to xQ, Γ and Γ∗.

W :=

∫ t2

t1

P dt

Point force case−−−−−−−−−−→
∫ t2

t1

F · v dt

=

∫ t2

t1

F · ∂x
∂t

dt

=

∫ xQ
xP

F · dx .

The last expressions denotes a line integral over a path, say Γ, with
starting and ending points xP = x(t1) and xQ = x(t2). In general, the
work will depend on the path taken. Path dependence can be understood
by considering Fig. 3.5. Shown are two paths Γ and Γ∗ from xP = x(t1)
to xQ = x(t2). If the work is path dependent, then in general,

W 6= W∗,∫
Γ

F · dx 6=
∫

Γ∗
F · dx

and the force system is called non-conservative.

Example 3.2

Moving a mass over a frictional surface

B

A

x

y

Path 1

Path 2

Fig. 3.6 Mass on a frictional surface
with two paths of motion from point A
to point B.

Consider a mass sitting on a table with a frictional surface as shown
in Fig. 3.6. The mass starts at point A and is moved by a force to point
B. If the mass is moved on path 1, the work required will be less than
if the mass is move on path 2, since path 2 is longer and the motion
is resisted by frictional sliding. The (total) force system acting on the
mass is non-conservative. In particular, the frictional forces that act on
the mass are non-conservative; they are path dependent.

3.1.3 Conservative Forces

A very important class of force systems are those where the work done
by the forces is path independent. Such force systems are called conser-
vative.
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In the one-dimensional case, forces F (x) which can be expressed as the
derivative of an another function will be conservative; i.e. forces where
one can write

F (x) =
df(x)

dx
,

for some function f(x). The fact that this property of a force system
gives a force system whose work is path independent can be seen through
the following simple manipulation:

W =

∫ xQ

xP

F (x) dx =

∫ xQ

xP

df

dx
dx

= f(xQ)− f(xP ) .

Thus the work involved only depends on the end-point values and not
on the path taken in going from xP to xQ.

In the multi-dimensional case, forces F (x) which can be expressed in
terms of the gradient of a scalar function:

F (x) = ∇f =

∂f/∂x∂f/∂y
∂f/∂z

 =
∂f

∂x
ex +

∂f

∂y
ey +

∂f

∂z
ez

are conservative forces. When a force has this property,

W =

∫
Γ

F · dx

is path independent.

Remarks:

(1) In the fields of mechanics and physics, the preference of defining
conservative forces is not through the expression

F = ∇f
but rather through the expression

F = −∇V ;

i.e., we arbitrarily relabel f as −V . The function V is called the
potential energy of the load/force. The path independence of the
work is observed through the following manipulation:

W =

∫ xQ
xP

F · dx

=

∫ xQ
xP
−∇V · dx

=

∫ xQ
xP
−∂V
∂x
· dx

W = − [V (xQ)− V (xP )] .

This shows that the work only depends on the end-point values
of the potential energy and not on the path that joins the two
end-points.
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Example 3.3

Gravity
A simple example of a conservative force is a gravitational force. Con-

sider the setup in Fig. 3.7. The potential V for the gravitational loading
system can be defined as

V := z Mg ,

where g is the gravitational acceleration. To check that this potential
gives the correct force, one only has to take the (negative) gradient of
the potential:

z

g

M

Fig. 3.7 Mass under the action of grav-
itational forces.

F = −∇V

= −Mg

0
0
1


= −Mgez ,

which is the desired result, viz. a constant force of magnitude Mg di-
rected in the negative z-direction.

Remarks:

(1) In the expression for the potential V , the addition or subtraction
of a constant value does not make a difference since the force is
defined through its gradient; the taking of derivatives eliminates
the constant. This implies that the absolute value of the potential
energy is irrelevant. The two expressions for V :

V = Mgz,

V = Mgz + C,

are physically identical in meaning. The only physically relevant
item is the difference in the potential energy between two states,
i.e., gradients.

(2) Given a force field F (x, y), one can use a classical result from multi-
variable calculus to determine if the force field emanates from a
potential; viz., F is the gradient of a single-valued scalar potential
function, if and only if ∇× F = 0.

3.1.4 Conservative Mechanical System

A system in which the energy of the system is constant (conserved)
is called a Conservative Mechanical System (i.e. a system without
energy dissipation). It should be emphasized that this is an independent
definition from that of conservative forces. However, systems comprised
of non-conservative forces will not be conservative.
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Example 3.4

Ideal pendulum

g

m

Fig. 3.8 Gravitational pendulum (con-
servative system).

Figure 3.8 shown an ideal pendulum. Ideal implies that it experi-
ences no air resistance and swings on a frictionless pivot. With these
assumptions, one observes that the

Total Energy = Potential Energy + Kinetic Energy

at all times and is a constant. This implies that the system, the pendu-
lum together with the loading system, constitutes a conservative system.

In static mechanical systems:

A Conservative Loading System + An Elastic Body
⇒ A Conservative Mechanical System.

For such systems we can apply two very important and useful concepts:

(1) We can directly exploit the fact that the system’s total energy is
constant.

(2) We can employ the Principle of Stationary Potential Energy, which
is a special way of writing force equilibrium. (This will be the topic
of Chapter 4.)

A basic example of this type of conservative system is an elastic spring
fixed at one end and statically loaded at the other by a mass under
gravitational forces.

3.2 Conservation of Energy

The direct exploitation of the concept of conservation of energy can be
made in systems subject to single loads. In such systems it is often easy
to compute the work performed by the load and likewise the work stored
in the system. This is especially so when the system is composed of
elastic elements. In the next sub-sections, we review the basic relations
for computing work stored and work input for linear elastic systems.

Tension-compression bars
P

AE

(Loading system)(Storage system)

{{

Fig. 3.9 Tension-compression bar
loaded at one end.

Consider the mechanical system of Fig. 3.9, where a linear elastic tension-
compression bar is loaded at x = L by a conservative force P . Since
there is no energy dissipation in the system, one has by conservation of
energy:

Wstored =Win,

whereWstored is the energy stored in the elastic tension-compression bar
andWin is the work performed by the load. Since the mechanical system
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is linear, the deflection ∆ at the tip is a linear function of the end-load
P . Thus the work done by the load is:

Win =
1

2
P∆ .

This relationship is shown in Fig. 3.10 as the area under the force-
deflection curve. The elastic tension-compression bar serves as an energy
storage system, where the energy is stored as elastic energy. The energy
stored can be computed through the integration of the strain energy per
unit volume over the entire body:

P

∆

Win P∆=
1


2


Fig. 3.10 Work input for a linear
system is the area under the force-
deflection curve.

Wstored =

∫
V

1

2
Eε2 dV

=

∫
L

∫
A

1

2
E

(
∆

L

)2

dV

=
1

2

AE

L
∆2

(
=

1

2

P 2L

AE

)
.

The integration here is simple since the strain is constant in the bar.
This is a consequence of the absence of distributed loads.

Equating the stored energy with the work done by the load yields:

Win =Wstored

⇔1

2
P∆ =

1

2

EA

L
∆2

⇔ P =
AE

L
∆,

or

∆ =
PL

AE
.

Remarks:

(1) There is only 1 equation (the conservation of energy). Thus one
can only solve for 1 unknown (the end displacement ∆) using such
a technique. Notwithstanding, this can be a very effective analysis
methodology in many situations.

(2) The system was kinematically determinate, which allowed us to
compute the bar strain and directly Wstored. The same also holds
for statically determinate systems.

(3) The concept of exploiting conservation of energy also extends to
much more complex situations and this is where it becomes most
powerful.

Example 3.5
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Two bar truss
Consider the 2-bar truss in Fig. 3.11. Find ∆ the horizontal motion

at the load point.
Solution: The expression for the work done by the load and the stored

energy in the truss bars are:

Win =
1

2
P∆,

Ws = Ws1 +Ws2

=
1

2

P 2
1L

AE
+

1

2

P 2
2L

AE

=
P 2L

AE
.

Here, we have exploited the statics result that P1 = −P2 = P . Equating
the expressions, Win =Ws, yields:

P

∆

LL

L

Fig. 3.11 2 bar truss system. ∆ =
2PL

AE
.

Remarks:

(1) In coming to this result we have further exploited the fact that
energy is an additive quantity. The work stored is the sum of the
work stored in the individual components of the system.

(2) The system was statically determinate and this allowed us to com-
pute the bar forces directly in order to evaluate Ws.

(3) If the bars were inhomogeneous one would need to use (AE)eff .

Torsion
T

GJ

(Loading system)(Storage system)

{{ θ

Fig. 3.12 Torsion bar with end-torque.

Consider a linear elastic torsion bar as shown in Fig. 3.12. The expres-
sion for the work done by the load is given by

Win =
1

2
Tθ.

This work expression follows by noting that for linear systems the re-
sponse must be linear, as shown in Fig. 3.13, and the work is simply
the area under the torque-rotation curve. The expression for the work
stored in torsion is given by integrating the strain energy density in the
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bar:

Ws =

∫
V

1

2
Gγ2 dV

=

∫
L

∫
A

1

2
G (ϕ′ r)

2
dV

=

∫
L

1

2
GJ (ϕ′)

2
dz

=

∫
L

1

2
GJ

(
θ

L

)2

dz

=
1

2

GJ

L
θ2

(
=

1

2

T 2L

GJ

)
.

T

#

W
in

T θ=
1

2

Fig. 3.13 Work input for a linear sys-
tem in torsion is the area under the
torque-rotation curve.

Example 3.6

Torsion rod
As an example exploitation of these results, we can use them to deter-

mine the torque-rotation relation of the bar shown in Fig. 3.12. Equating
the stored energy with the work done by the load yields:

Win =Wstored

⇔1

2
Tθ =

1

2

GJ

L
θ2

⇔ T =
GJ

L
θ,

or

θ =
TL

GJ
.

Remarks:

(1) In linear elastic problems where the load is a torque, the work done
by the torque will always be Tθ/2, where θ is the rotation at the
load point in the direction of the torque.

(2) The expressions given for the stored work are appropriate for lin-
ear elastic homogeneous systems. For inhomogeneous systems one
would need to use (GJ)eff .

Bending

For systems responding in bending the elastic energy is stored by both
normal strains (bending strains) and shear strains (direct shear). Let us
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consider the two contributions separately. The expression for the energy
stored in the beam by bending strains ε = εxx is:

Ws =

∫
V

1

2
Eε2 dV

=

∫
L

∫
A

1

2
E (−yκ)

2
dV

=

∫
L

1

2
Eκ2

[∫
A

y2 dA

]
dx

=

∫
L

1

2
EIκ2 dx .

To come to a more concrete expression we need to consider particular
examples.

Example 3.7

Cantilever beam

P
∆

x

Fig. 3.14 Cantilever beam with an
end-load.

Consider the system shown in Fig. 3.14 and find the relation between
P and ∆ at the end of the beam.

Solution: For this case, the curvature κ varies linearly. Since the shear
force in the beam (from statics) is a constant V (x) = P , the moment
is linear and given by the expression M(x) = P (L − x). From the
beam constitutive relation M = EIκ, one obtains the expression for the
curvature κ,

κ =
M

EI
=

P

EI
(L− x) .

Substituting this relation into the expression for the stored energy yields,

Ws =

∫
L

1

2
EI

(
P

EI
(L− x)

)2

dx

=
P 2

2EI

∫
L

(L− x)2 dx

=
P 2L3

6EI
.

Equating the stored energy with the work done by the load yields:

Win =Wstored

⇔1

2
P∆ =

P 2L3

6EI

⇔ ∆ =
PL3

3EI
,

or

P =
3EI

L3
∆ .

Remarks:
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(1) This is the result one would obtain by integrating the governing
differential equation EIv′′′′ = q. Thus one can interpret the clas-
sic result as only accounting for bending strains and effectively
ignoring the effects of shear.

Example 3.8

Effect of shear on bending deflections
To account for the effects of shear in Example 3.7, one needs to com-

pute the stored energy associated with shear. This contribution can be
computed as:

Ws,shear =

∫
V

1

2
Gγ2 dV

=

∫
V

1

2

τ2

G
dV

=

∫
V

1

2

1

G

{
P

2I

[(
h

2

)2

− y2

]}2

dV

=
1

2G

(
P

2I

)2 ∫
L


∫
A

[(
h

2

)2

− y2

]2

dA

 dx

=
L

2G

(
P

2I

)2 ∫
A

[(
h

2

)2

− y2

]2

dA

=
L

2G

(
P

2I

)2
bh5

30

=
3

5

P 2L

GA
.

Here we have used the parabolic shear stress distribution under the
assumption of a rectangular cross section with width b and depth h.
The derivation of this equation can be found in any good strength of
materials/engineering mechanics textbooks. Including this term into
the stored energy yields

Ws = Ws,bending +Ws,shear

=
P 2L3

6EI
+

3

5

P 2L

GA
.
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Equating the stored energy with the work done by the load yields

Win =Ws

⇔1

2
P∆ =

1

2

P 2L3

6EI
+

3

5

P 2L

GA

⇔ ∆ =
PL3

3EI
+

6

5

PL

GA

⇔ ∆ =
PL3

3EI

[
1 +

3E

10G

(
h

L

)2
]
.

In the expression for ∆, the term following the 1 is the relative contri-
bution of the shears to the overall deflection. One sees that for slender
beams where the aspect ratio of the beam exceeds 1 : 10, this shear
contribution is of order 0.01 for most metals. This means that neglect-
ing this term only introduces an error of approximately 1%, which is
negligible in most structural applications.

Remarks:

(1) This system is statically determinate. We know a priori, or have
solved for, the expressions for the bending stress σxx = σ and shear
stress τ = σxy.

(2) Note that in structural elements which carry loads in multiple
ways, the stored energy is simply the sum of each contribution.
This holds true for linear elastic systems.

3.3 Summary: Work Relations

The work input expression for a linear system is either P∆/2 or Tθ/2.
The stored work expressions depend on the manner in which the load
is carried. In a general linear elastic setting the strain energy density is
given by

w =
1

2
(σxxεxx + σyyεyy + σzzεzz + σxyγxy + σyzγyz + σzxγzx) .

For the various types of loadings we study, this expression, when inte-
grated over the volume of a load bearing member, reduces to:
Tension-Compression Bars

W =

∫
V

1

2
σxxεxx dV =

∫
L

∫
A

1

2
Eε2 dAdx

=

∫ L

0

1

2
AE

(
du

dx

)2

dx
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Torsion Rods

W =

∫
V

1

2
σzθγzθ dV =

∫
L

∫
A

1

2
Gγ2 dAdz

=

∫ L

0

∫
A

1

2
Gr2

(
dφ

dz

)2

dAdz

=

∫ L

0

1

2
GJ

(
dφ

dz

)2

dz

Beams in Bending

W =

∫
V

1

2
σxxεxx dV =

∫
L

∫
A

1

2
Eε2 dAdx

=

∫ L

0

∫
A

1

2
Ey2

(
d2v

dx2

)2

dAdx

=

∫ L

0

1

2
EI

(
d2v

dx2

)2

dx

These expressions are all given in terms of the relevant kinematic
measures of the motion (du/dx, dφ/dz, d2v/dx2). Equivalent comple-
mentary expressions can also be given in terms of force and moment
resultant quantities.
Tension-Compression Bars

W =

∫
V

1

2
σxxεxx dV =

∫
L

∫
A

1

2E
σ2 dAdx

=

∫ L

0

1

2

R2

AE
dx

Torsion Rods

W =

∫
V

1

2
σzθγzθ dV =

∫
L

∫
A

1

2G
τ2 dAdz

=

∫ L

0

1

2

T 2

GJ
dz

Beams in Bending

W =

∫
V

1

2
σxxεxx dV =

∫
L

∫
A

1

2E
σ2 dAdx

=

∫ L

0

1

2

M2

EI
dx

Direct Shear in Beams

W =

∫
V

1

2
σxyγxy dV =

∫
L

∫
A

1

2G
τ2 dAdx

= α

∫ L

0

1

2

V 2

GA
dx
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In this last expression, α is a factor that accounts for the shape of the
beam’s cross-section and the distribution of the shear stresses over it.

Exercises

(3.1) Consider the force field F (x, y) = fxyex + fey,
where f is a given constant. Demonstrate that this
force field is not conservative.

(3.2) Consider a force field F (x, y) = F1xyex + F1yey,
where F1 is a given constant. Is this force field
conservative?

(3.3) Consider the force field F (x, y) = 10xyex +
5yey (N). Does this force field emanate from a
potential? i.e., is it conservative?

(3.4) Consider a beam of length L with a distributed
load q(x) = qo + q1

x
L

acting in the positive y-
direction. Assume that the velocity along the
loaded face of the beam at a given moment is
v(x) = v1ex + v2

x
L
ey. Find the power of the load

at this moment; assume qo, q1, v1, v2 are given con-
stants.

(3.5) A solid circular bar is bent 90o at two locations and
is built-in at one end. Assume A, I, J, E, and G
are constants.

(a) Using conservation of energy, determine a for-
mula for the vertical deflection at the point of
load application. [α = 10/9 for round bars.]

(b) Let L = 200 mm and the diameter of the bar
be d = 30 mm. What is the percent contribu-
tion to the total deflection from axial loading,
bending, torsion, and direct shear? Assume
E/G = 2.

(c) Repeat with L = 500 mm and d = 10 mm.

L

L

L

P

(3.6) Use the concept of conservation of energy to deter-
mine the relation between the applied force and the
vertical deflection at the load point.

L

L L L L

AE −− constant

P

(3.7) For the stepped torsion bar below determine the ro-
tation at the point of application of the load. Use
the concept of conservation of energy.

M

L L

(GJ)  −− constant (GJ)  −− constant

1

1 2

(3.8) Using conservation of energy, find the tip deflec-
tion of a linear elastic cantilever beam loaded with
a single point force at its end. Account for bending
energy as well as shear energy. Assume EI, GA,
and α as given constants.
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(3.9) Consider a cantilever beam of length L that is
loaded with a constant distributed force q(x) = qo.
Accounting only for bending energy find an expres-
sion for the work done by the load in deflecting the
beam. Assume EI is a given constant and express
your answer in terms of EI, qo, and L.

(3.10) Find an expression for the end-rotation of a circular
bar loaded with a torque, To, at its end. Assume
the bar is built-in at the other end, has a length L,
and a constant torsional rigidity GJ . Use conser-
vation of energy to solve this problem.

(3.11) For the system shown below, find the relation be-
tween the point torque T1 and the corresponding
rotation θ1 = φ(a) using conservation of energy.
Use the kinematic expressions for the stored en-
ergy.

T1

GJ −− constant
a L−a

θ1
z

(3.12) For the truss shown below, use conservation of en-
ergy to find the load component in the direction
of the given displacement at the node where ū is
imposed. Assume L = 24 in, AE = 15 × 106 lb,
and ū = 10−3(ex + ey) in. [Hints: (1) Use the
kinematic form of the stored energy. (2) You can
exploit the compatibility matrix to help you solve
this problem.]

u

L L 3L/4

2L

(3.13) Find the vertical deflection at the tip of the struc-
ture shown below using a conservation of energy
method. Assume all sections are slender. [Hint:
use the force expressions for the stored energy.]

b

PEI −− constant

a

b b

(3.14) Shown is a serpentine spring. The spring is com-
posed of N “hairpin” segments of a round wire with
dimensions as shown. Determine an expression for
the torsional stiffness of the spring. Express your
answer in terms of E, I, J, G, a, L, N . Use
conservation of energy to solve; use the force ex-
pressions for the stored energy.

T

L

aa/2 a/2

1 2 3 4 5 N

(3.15) For the system shown below, use conservation of
energy (force version) to determine the deflection
in the direction of the load at the point where the
load is applied. You may assume that GJ , EI, AE,
and 1

α
AG are all given and constant.

Rigid Disky

x

P
P

y

z

b

L

(3.16) A slender metal band with constant EI, GJ , and
1
α
AG, as shown, is subjected to a force P . Find the

horizontal deflection at the point where the load is
applied using conservation of energy.

b

P

a aLL

b





Potential Energy Methods 4
4.1 The Principle of Stationary

(Minimum) Potential Energy
59

4.2 The Method of Ritz 69

Exercises 84

The energy methods introduced in Chapter 3 are quite powerful and in
many instances of great practical utility. Notwithstanding, they have
certain limitations. Firstly, the concept of conservation of energy only
provides a single scalar equation and thus it only allows for the determi-
nation of a single quantity of interest. If a problem of interest, involves
more than a single scalar unknown the method does not furnish a suffi-
cient number of equations to allow one to solve for a system’s response.
It is also noted that the method is not particularly convenient when
dealing with non-linear conservative systems. In this chapter, we will
take up the topic of potential energy methods. This is a class of meth-
ods, that are energy based, and avoid the limitations associated with
the concept of conservation of energy. One very important advantage
of potential energy methods is that they also permit one to devise ap-
proximate solution methods in situations where exact solutions are not
possible or not needed.

4.1 The Principle of Stationary
(Minimum) Potential Energy

z

W
g

Δ
k

Fig. 4.1 Mass-spring system in gravi-
tational field.

Consider the mechanical system consisting of a spring with stiffness k
and a mass of weight W = Mg as shown in Fig. 4.1. One can relate
the position z of the mass with its displacement ∆ by introducing a
reference z0 defined through the relation z = z0 −∆. Let us define two
potential energies which characterize the forces acting on the mass:

Πgravity := Wz = W (z0 −∆),

Πspring :=
1

2
k∆2 =

1

2
k(z0 − z)2 .

Πgravity is the potential energy of the gravitational force and Πspring

is the potential energy of the spring. The form of theses energies are
constructed so that they generate the corresponding forces on the mass
after differentiation with respect to position, z. The total potential
energy is defined as the sum of these two energies:

Πtotal := Πgravity + Πspring .

The Principle of Stationary Potential Energy states that:

Equilibrium ⇔ Πtotal is stationary, viz. −∂Πtotal

∂z
= 0.
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For our example mechanical system we have

0 = −∂Πtotal

∂z
= − [W − k(z0 − z)]
= −W + k(z0 − z) ⇒W = k(z0 − z) = k∆ .

Remarks:

(1) This principle has nothing to do with conservation of energy. It is
a statement of equilibrium.

(2) For dead loads, a type of loading that does not change direction
or magnitude with the motion of the structure, one always has the
relation:

Dead load

Follower load
P

Fig. 4.2 Cantilever beam subjected to
a dead load and a follower load.

Πdeadload = −P ·∆ ,

or in words, Πdeadload equals minus the load times the deflection in
the direction of the load. See Fig. 4.2 for an example of a dead load
and the difference between it and a follower load, which changes
direction and depends on the motion of the structure.

(3) For elastic elements in a system, the potential energy expressions
happen to coincide with the elastic stored energy expressions:∫

L

1

2
AE(u′)2 dx : Tension− compression bar,∫

L

1

2
EI(v′′)2 dx : Beam,∫

L

1

2
GJ(φ′)2 dx : Torsion bar .

springΠ

loadΠ

totalΠ

Δ

Fig. 4.3 Potential energy for a one de-
gree of freedom variable system.

Stable

Unstable

Neutral

Fig. 4.4 Pictorial aide for understand-
ing the stability condition on the sec-
ond derivative of the potential energy.

(4) The potential energy is a minimum at equilibrium for stable me-
chanical systems. As a simple example, consider a mechanical
system composed of a spring with spring constant k and a dead
load P . The system’s total potential energy is given as

Πtotal(∆) =
1

2
k∆2 − P∆ ,

where ∆ is the system motion. Stationarity of Πload implies that
−dΠload/d∆ = 0 ⇒ k∆ − P = 0. The second derivative of the
total potential energy (evaluated at an equilibrium state) allows
one to assess the stability of any equilibrium state. In the present
setting, assuming a positive spring constant, one sees that

∂2Πtotal

∂∆2
= k > 0 ,

which implies that Πtotal is a minimum at the equilibrium position
∆ = P

k ; see Fig. 4.3. The concept of stability can be understood
through the analogy of a ball set on a surface; see Fig. 4.4. The
shape of the surface corresponds to the shape of the potential
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energy function. For a convex Πtotal, the ball stays in the valley
and is in a stable equilibirum state at the bottom of the valley;
if one perturbs the position of the ball, it rolls back towards the
equilibrium position. For a concave Πtotal, the ball can roll off the
apex and is in an unstable equilibrium state at the top of the hill;
if one perturbs the position of the ball, it will roll away from the
equilibrium position. For a flat Πtotal, the ball does not have a
preferred position and is in a neutral equilibrium for all possible
placements; if one perturbs the position of the ball, there are no
forces moving towards or away from its previous equilibrium.

4.1.1 Application to a two degree of freedom
problem

P2 P1

∆2 ∆1

a L-a 

Fig. 4.5 Tension-compression bar with two point loads.

Consider the mechanical system of a tension-compression bar with
uniform Young’s modulus E and cross-section A shown in Fig. 4.5. A
(dead) load of P1 is applied at x = L and a (dead) load of P2 at x =
a. The displacements at these two points are defined as ∆1 and ∆2

respectively. The principle of stationary potential energy can be used
to determine the relation between applied loads P1, P2 and ∆1,∆2. The
potential energy due to the load is the sum of the potentials associated
with each load:

Πload = −P1∆1 − P2∆2 .

To obtain the potential energy of the elastic bar, one must employ some
knowledge of the problem. It is known that in the absence of distributed
loads and with a constant AE the displacement field is piecewise linear.
Applying this fact to the current problem, one has the following expres-
sions for the displacement field u(x) in terms of ∆1 and ∆2,

u =

{
∆2

(
x
a

)
if 0 ≤ x ≤ a

(∆1 −∆2)
(
x−a
L−a

)
+ ∆2 if a ≤ x ≤ L .
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Thus, the expression for the potential energy of the elastic bar is

Πbar =

∫ L

0

1

2
AE(u′)2 dx

=

∫ a

0

1

2
AE

(
∆2

a

)2

dx+

∫ L

a

1

2
AE

(
∆1 −∆2

L− a

)2

dx

=
1

2

AE

a
(∆2)

2
+

1

2

AE

L− a (∆1 −∆2)
2
.

The total potential energy is given as

Πtotal = Πbar + Πload

Πtotal(∆1,∆2) =
1

2

AE

a
(∆2)

2
+

1

2

AE

L− a (∆1 −∆2)
2 − P1∆1 − P2∆2 .

One observes that Πtotal is now a function of two variables ∆1 and ∆2.
For this case, the Principle of Stationary Potential Energy states that:

Equilibrium ⇔ Πtotal is stationary, −∂Πtotal

∂∆i
= 0 for i = 1, 2.

For the given mechanical system one obtains,

0 =
∂Πtotal

∂∆1
= AE

∆1 −∆2

L− a − P1,

0 =
∂Πtotal

∂∆2
= AE

∆2

a
−AE∆1 −∆2

L− a − P2 .

Each of these can be interpreted as the equation representing the equi-
librium of forces at each load point. This shows that the statement of
stationarity of the potential energy is just a restatement of equilibrium.
One has two equations in two unknowns, which can be written in the
following matrix form:[

AE
L−a − AE

L−a

− AE
L−a

AE
L−a + AE

a

][
∆1

∆2

]
=

[
P1

P2

]
.

It is important to note that the coefficient matrix is symmetric positive
definite – a feature of stable conservative mechanical systems.

4.1.2 Application to a single degree of freedom
torsion problem

Consider a mechanical system consisting of a torsion bar with uniform
shear modulus G and polar moment of inertia J , shown in Fig. 4.6, along
with an applied (dead) torque of Ta at z = a. The rotation at the point
of loading in the positive direction of the load is denoted as θa. Let us
use the principle of stationary potential energy to determine the relation
between the applied torque Ta and the induced motion θa.
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Ta

θa

a L-a 

Fig. 4.6 Torsion bar with a point torque and boundary conditions making the prob-
lem statically indeterminate.

The potential energy of the torsional load is

Πload = −Taθa .

To obtain the potential energy of the elastic bar, one must employ some
knowledge of the problem. It is known that in the absence of distributed
torques, the internal torque is constant. This implies that the twist rate
φ′ is constant and thus φ is linear:

dT

dz
+ t = 0 and t = 0 ⇒ T (= GJφ′) constant

⇒ φ′ constant

⇒ φ linear .

Applying this fact to the current problem, one has the following expres-
sion for the rotation field φ(z) in terms of θa,

φ =

{
θa−0
a x if 0 ≤ x ≤ a

0−θa
L−a (x− a) + θa if a ≤ x ≤ L .

The expression for the potential energy of the elastic bar is:

Πbar =

∫
V

1

2
Gγ2 dV

=

∫ L

0

1

2
GJ(φ′)2 dz

=

∫ a

0

1

2
GJ

(
θa
a

)2

dz +

∫ L

a

1

2
GJ

( −θa
L− a

)2

dz

=
1

2

GJ

a
(θa)

2
+

1

2

GJ

L− a (−θa)
2
.

The total potential energy is given as

Πtotal = Πbar + Πload

Πtotal(θa) =
1

2

GJ

a
(θa)

2
+

1

2

GJ

L− a (−θa)
2 − Taθa .

One observes that Πtotal is now a function of θa. For this case, the
Principle of Stationary Potential Energy states that,
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Equilibrium ⇔ Πtotal is stationary, −∂Πtotal

∂θa
= 0.

For the given mechanical system one obtains:

0 =
∂Πtotal

∂θa
=

GJ

a
θa +

GJ

L− aθa − Ta .

This equation can be interpreted as the equation representing the equi-
librium of torques at the load point. This shows, again, that the state-
ment of stationarity of the potential energy is just a restatement of the
governing equilibrium equations. Rearranging gives

Ta =

(
GJ

a
+

GJ

L− a

)
θa .

4.1.3 Castigliano’s 1st Theorem
T
1

T
M

F
1

F
2

F
N

θ
1

θ
M

Δ
1

Δ
N

Fig. 4.7 Construction for Castigliano’s
1st theorem.

The principle of stationary potential energy has a close relationship with
Castigliano’s 1st Theorem. The theorem states the following: Con-
sider an elastic system with N point forces Fi (i = 1, . . . , N) and M
point torques Tj (j = 1, . . . ,M) with load-point displacements ∆i (i =
1, . . . , N) and rotations θj (j = 1, . . . ,M) defined in the positive direc-
tions of the respective loadings; see Fig. 4.7. If Πelastic is the elastic
potential energy, then

Fi =
∂Πelastic

∂∆i
i = 1, . . . , N

Tj =
∂Πelastic

∂θj
i = 1, . . . ,M .

One can prove this theorem using the principle of stationary potential
energy. The total potential energy of the system is

Πtotal = Πelastic −
N∑
i=1

Fi∆i −
M∑
j=1

Tjθj .

At equilibrium, the total potential energy,

Πtotal(∆1, . . . ,∆N , θ1, . . . , θM ) ,

must be stationary. This implies the following two conditions,

0 =
∂Πtotal

∂∆i
=
∂Πelastic

∂∆i
− Fi (i = 1, . . . , N) ,

0 =
∂Πtotal

∂θj
=
∂Πelastic

∂θj
− Tj (j = 1, . . . ,M) .

A simple rearrangement gives Castigliano’s 1st Theorem.
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4.1.4 Application to an N-node truss F4

3
1 5

42

2

1 3

4

5

6

7

Fig. 4.8 7 bar truss system.

Consider the truss structure shown in Fig. 4.8. One can determine the
equilibrium equations for the truss using the principle of stationary po-
tential energy. The potential energy due to the loads is given as

Πload = −F 4 · u4 − F 1,r · u1 − F 5,r · u5

= −


F 1,r

0
0
F 4

F 5,r

 ·

u1

u2

u3

u4

u5

 = −F · u ,

where we have defined F and u as in Chapter 2. The subscripted forces
F i,r denote the unknown reaction forces at the supports. We include
these terms in the same spirit as before even though we know a priori
that the respective displacements are zero.

To obtain the elastic potential energy of the truss, one can add to-
gether the potential energy contribution from each bar. This additive
structure is one of the characteristics which makes the use of potential
energy a powerful concept in analysis.

Πelastic =

7∑
i=1

Πbar,i

=

7∑
i=1

∫ L

0

1

2
(AE)i(εi)

2 dx

=

7∑
i=1

1

2
(AEL)i(εi)

2

=
1

2
[ε1(AEL)1ε1 + · · ·+ ε7(AEL)7ε7]

=
1

2
εT dAELcε .

Here we have defined ε as a vector whose scalar entries are the strains of
each bar, and dAELc is the diagonal matrix with entries AEL of each
bar on the diagonal. Recall the kinematic relation between the vector
of nodal displacements u and the strains in the bars ε from Chapter 2:

ε = d1/LcAu .

If we note that for two matricies C and D, that (CD)T = DTCT , then
we have

εT = (d1/LcAu)
T

= uTAT d1/Lc .

Substituting this relationship into the expression for the elastic potential
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energy yields:

Πelastic =
1

2
εT dAELcε

=
1

2

(
uTAT d1/Lc

)
dAELc (d1/LcAu)

=
1

2
uTAT dAE/LcAu

=
1

2
uTKu .

Here, the definition of the stiffness matrix for the truss,K := AT dAE/LcA,
has been used. The total potential energy is now given as

Πtotal = Πelastic + Πload

Πtotal(u) =
1

2
uTKu− F 4 · u4 − F 1,r · u1 − F 5,r · u5

=
1

2
uTKu− F · u .

One observes that Πtotal is now a function of the vector of nodal dis-
placements u.

For this case, the Principle of Stationary Potential Energy states that:

Equilibrium ⇔ Πtotal is stationary,

−∂Πtotal

∂uI
= 0 for I = 1, . . . , 10.

Here we have used the fact that the displacement vector u has a total
of 10 degrees of freedom for our particular 2-dimensional truss structure
with 5 nodes. Depending on the context the vector of nodal displace-
ments will be expressed in various ways:

u =

u1

...
u5

 =


u1

u2

...
u10

 .
The second expression above emphasizes the grouping into the displace-
ments at each node, ui, where

ui :=

[
ui,x
ui,y

]
.

The third expression emphasizes that there are actually a total of 10
scalar degrees of freedom. Similar notation is employed for the vector of
applied forces F such that one has

F =

F 1

...
F 5

 =


F1

F2

...
F10

 .
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The second expression above emphasizes the grouping of the forces at
each node:

F i :=

[
Fi,x
Fi,y

]
.

The third expression emphasizes that there are actually a total of 10
scalar forces corresponding to the degrees-of-freedom.

Since

∂Πtotal

∂uI
=
∂Πelastic

∂uI
+
∂Πload

∂uI
,

we can separately compute the two contributions to the equilibrium
equations. Let us first compute ∂Πload/∂uI . The expression for Πload

can be written as:

Πload = −F · u

= −
10∑
I=1

FIuI .

Thus,

∂Πload

∂uL
= − ∂

∂uL

(
10∑
I=1

FIuI

)

= −
10∑
I=1

FI
∂uI
∂uL

.

The expression ∂uI/∂uL is nonzero only when I = L. One can use the
Kronecker-delta δIJ to express this relationship, since

δIJ =

{
1 I = J

0 I 6= J .

Using the Kronecker-delta,

∂Πload

∂uL
= −

10∑
I=1

FIδIL

= −FL .

The summation above has been removed since only the term where I = L
remains. The resulting expression can be written as:

∂Πload

∂u1
...

∂Πload

∂u10

 =

−F1

...
−F10

 .
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This motivates the use of the compact notation

∂Πload

∂u
= −F .

Since one also has the relation
∂Πload

∂ui,x
∂Πload

∂ui,y

 =

[
−Fi,x
−Fi,y

]
,

one can equivalently write

∂Πload

∂ui
= −F i .

For our example truss, we have more specifically that

∂Πload

∂u
= −


F 1,r

0
0
F 4

F 5,r

 , ∂Πload

∂ui
=


−F 1,r i = 1

0 i = 2, 3

−F 4 i = 4

−F 5,r i = 5 .

Let us next compute ∂Πelastic/∂uI . The expression for Πelastic can be
written as:

Πelastic =
1

2
uTKu

=
1

2

10∑
I=1

10∑
J=1

uIKIJuJ .

Thus,

2
∂Πelastic

∂uL
=

∂

∂uL

(
10∑
I=1

10∑
J=1

uIKIJuJ

)

=

10∑
I=1

10∑
J=1

∂

∂uL
(uIKIJuJ)

=

10∑
I=1

10∑
J=1

(
∂uI
∂uL

KIJuJ + uIKIJ
∂uJ
∂uL

)

=

10∑
I=1

10∑
J=1

(δILKIJuJ + uIKIJδJL)

=

10∑
J=1

(
10∑
I=1

δILKIJ

)
uJ +

10∑
I=1

uI

(
10∑
J=1

KIJδJL

)

=

10∑
J=1

KLJuJ +

10∑
I=1

uIKIL .
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Here the Kronecker-delta has again been employed. Next we use the
fact that K is symmetric, i.e. KT = K or equivalently KIJ = KJI :

2
∂Πelastic

∂uL
=

10∑
J=1

KLJuJ +

10∑
I=1

uIKLI

= 2

10∑
J=1

KLJuJ

= 2 (Ku)L .

The expression (Ku)L denotes the Lth component of the vector Ku.
The resulting expression can be written as:

∂Πelastic

∂u1
...

∂Πelastic

∂u10

 =

 (Ku)1

...
(Ku)10

 .
This motivates the use of the compact notation

∂Πelastic

∂u
= Ku

and so we see that the principle of stationary potential energy yields the
expected equilibrium equations: Ku = F .

4.2 The Method of Ritz

In the developments so far, the critical step in exploiting the principle of
stationary potential has been to obtain a finite set of parameters that is
able to fully characterize the motion of our system and thus the potential
energy. Consider the tension-compression bar example with two applied
point loads. Though there are displacements defined at any point along
the bar, in other words the displacements are a field u(x), the entire
field can be fully characterized by two parameters, the displacement at
the locations of the applied loads; see Fig. 4.9.

u(x)

2

∆
2

1∆

1∆

PP
12

x

∆

Fig. 4.9 Tension-compression bar with
2 point loads.

It is not generally true that this kind of fortunate case will occur. Also,
even in the cases that one can find such a characterization, the procedure
to obtain the characterization may be tedious and require as much effort
as solving the problem directly from the governing differential equations.
Consider, for example, the cantilever beam shown in Fig. 4.10 where one
would like to find the tip displacement ∆ and rotation θ in terms of the
load P . The elastic potential energy and the energy due to the load are
defined as:

P

Δ

x

θ

L

EI

Fig. 4.10 Cantilever beam with and
end-load.

Πload = −P∆,

Πelastic =

∫ L

0

1

2
EIκ2 dx ,
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with the total potential energy Πtotal being their sum. Through the use
of the principal of stationary potential energy, one would like to obtain
the desired relationships via the equilibrium relations

0 =
∂Πtotal

∂∆
=
∂Πelastic

∂∆
− P,

0 =
∂Πtotal

∂θ
=
∂Πelastic

∂θ
.

To compute the derivatives of the potential energy with respect to ∆
and θ, one requires a representation of the curvature κ(x) in terms of ∆
and θ. This relationship is non-trivially given as

κ(x) = 6

(
θ

L2
− 2∆

L2

)
x+

(
3∆

L2
− θ

L

)
, (4.1)

which cannot be simply determined without more than a basic knowl-
edge of the physics at hand.

If we still want to use the principle of stationary potential energy but
do not know eqn (4.1), there is still the option of finding an approximate
solution. This approximate methodology exploits the special character
that we have for the total potential energy of the mechanical systems
that we investigate:

For stable systems, the potential energy,

Πtotal = Πelastic + Πload ,

is not only stationary for equilibrium states, but also a minimum.

Exploiting this fact for the beam, we look for the equilibrium deflection
v(x), such that

Πtotal(v(x)) =

∫ L

0

1

2
EI(v′′)2 dx− Pv(L) (4.2)

is a minimum. Here we observe that the scalar value of the total po-
tential energy depends on the function v(x) defining the shape of the
deflected beam. To compute its minimum one is tempted to try to take
the derivative of Πtotal with respect to v(x). However as defined in eqn
(4.2), Πtotal is a function of a function and it is not obvious how to
take its derivative with respect to its argument v(x) which itself is a
function. Notwithstanding, we still have the knowledge that the mini-
mizing deflection of the beam v(x) is the function, out of all functions,
that renders the total potential energy a minimum. So another method
we could follow is to search amongst the set of all functions for the one
that minimizes the total potential energy. This unfortunately is a rather
daunting task since there are an infinite number of functions we could
choose from. The search is in an infinite dimensional space.

The key to rendering this problem tractable is the method of Ritz.
The method of Ritz, tells us to forego looking for an exact solution and
to look instead for an approximate solution from within a (well selected)
finite set of functions.



4.2 The Method of Ritz 71

The Method of Ritz:
Search only over a finite collection of functions and find
the one that minimizes Πtotal. This minimizer will yield
an approximate solution.

Formally one must guess a general form of the solution:

v(x) =

N∑
i=1

cifi(x) .

Here:

• The functions fi(s) (i = 1, . . . , N) are known (Ritz) functions
that satisfy the kinematic boundary conditions. In beam prob-
lems, for example, specified values on the deflection v and rota-
tion θ are kinematic boundary conditions. If one does not employ
this requirement, the expression for the potential energy needs
to be modified for the potential energy associated with the sup-
port forces. For simple hand computations, this leads to a more
awkward set-up of the problem. Thus we opt for the kinematic
requirements on the Ritz functions for hand solutions. In this case
of automated solutions, it often is more convenient to forego the
kinematic requirements and to include the extra terms associated
with the boundary forces.

• The coefficients ci (i = 1, . . . , N) are unknown parameters that are
to be determined.

In this setting, we reduce the potential energy from a function of a
function to one in terms of the finite number of parameters ci:

Πtotal(v(x)) ⇒ Πtotal(c1, . . . , cN ) .

Let us look at the simple cantilever shown in Fig. 4.10 again. To find
the equilibrium shape of the beam, we need to minimize

Πtotal(v(x)) =

∫ L

0

1

2
EI(v′′)2 dx− Pv(L)

over all functions in the (trial solution space) S = {v(x) | v(0) = v′(0) =
0}. As an approximation let us consider minimizing Πtotal over the
subset

S̃ =
{
f(x)

∣∣ f(x) = Cx2 ; C ∈ R
}
⊂ S .

For all functions v ∈ S̃, we have v′′ = 2C and thus

Πtotal(v(x)) ⇒ Πtotal(C) =

∫ L

0

1

2
EI(2C)2 dx− PCL2 .
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Looking for the stationary point with respect to C, the only degree of
freedom, yields

0 =
∂Πtotal

∂C
=

∫ L

0

4EIC dx− PL2

= 4EICL− PL2 ,

⇒ C =
PL

4EI
.

Thus the approximation we obtain for the solution is:

vapprox(x) =
PL

4EI
x2 ∈ S̃ .

To assess how good the solution is, let us compare the tip deflection to
the exact answer:

vapprox(L) =
PL3

4EI
,

vexact(L) =
PL3

3EI
.

The relative error of the approximation is defined as

relative error =
|vapprox(L)− vexact(L)|

|vexact(L)|
= 0.25 .

Thus there is a relative error of 25% at the tip. If we had selected to
minimize the potential energy over all the functions v(x) in the set,

S̃ =
{
f(x)

∣∣ f(x) = Cx2 +Dx3 ; C,D ∈ R
}
⊂ S ,

the potential energy would have the form

Πtotal(v(x)) ⇒ Πtotal(C,D) .

The stationary point for this case yields the exact solution since the
exact solution has the form:

vexact(x) = − P

6EI
x3 +

PL

2EI
x2 ,

which is included in the set S̃. Graphically, the situation is as depicted
in Fig. 4.11. The set of all possible functions that satisfy the kinematic
boundary conditions, S, is infinite dimensional. Our first selection for
S̃ was a one-dimensional subset of S and it did not contain the exact
solution. Our second selection for S̃ was a two-dimensional subset of the
infinite set S and it contained our first set as well as the exact solution.
The basic property of the method of Ritz is that it gives you the best
answer within the set of functions you have picked. Thus one sees one
will recover the exact solution if it is contained within one’s guess.

v
exact

Set of all 

solutions (infinite)

2nd set (finite, 2 parameters)

1st set (finite, 1 parameter)

Fig. 4.11 Topology of the method of
Ritz for different selections for the set
of solutions (approximations).
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Example 4.1

Cantilever with general loading
Consider the case of a multiply loaded cantilever as shown in Fig. 4.12.

The cantilever is loaded with Np point loads Pi (i = 1, . . . , Np) at points
xpi (i = 1, . . . , Np) and Nm point moments Mk (k = 1, . . . , Nm) at points
xmk (k = 1, . . . , Nm). Find a general approximate solution for the beam’s
deflection.

x L

PNP1 P2 M1 M2 MNM
P

EI

Fig. 4.12 A pin-clamped beam with
multiple point moments and point
forces.

Solution: The total potential energy is

Πtotal(v(x)) =

∫ L

0

1

2
EI(v′′)2 dx−

Np∑
j=1

Pjv(xpj )−
Nm∑
k=1

Mkv
′(xmk ) .

We will minimize the energy over all functions v(x) in the set

S̃ =

{
f(x)

∣∣ f(x) =

N∑
i=1

cifi(x) ; {ci}Ni=1 ∈ R

}
,

where the functions fi(x) have the property that fi(0) = f ′i(0) = fi(L) =
0. Thus S̃ ⊂ S = {v(x) | v(0) = v′(0) = v(L) = 0}. Then,

Πtotal(v(x))⇒ Πtotal(c1, . . . , cN ) =

∫ L

0

1

2
EI

(
N∑
i=1

cif
′′
i (x)

)2

dx

−
Np∑
j=1

Pj

(
N∑
i=1

cifi(x
p
j )

)

−
Nm∑
k=1

Mk

(
N∑
i=1

cif
′
i(x

m
k )

)
.

Looking for the stationary point with respect to the parameters {ci}Ni=1

requires

0 =
∂Πtotal

∂cl
, (l = 1, . . . , N) .

This yields

0 =

∫ L

0

1

2
EI2

(
N∑
i=1

cif
′′
i (x)

)
· f ′′l (x) dx−

Np∑
j=1

Pjfl(x
p
j )−

Nm∑
k=1

Mkf
′
l (x

m
k )

⇒
N∑
i=1

(∫ L

0

EIf ′′i (x) · f ′′l (x) dx

)
ci =

Np∑
j=1

Pjfl(x
p
j ) +

Nm∑
k=1

Mkf
′
l (x

m
k )

⇒
N∑
i=1

Klici = Fl

⇒ Kc = F .
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Here we have defined

Kli :=

∫ L

0

EIf ′′i (x) · f ′′l (x) dx

and

Fl :=

Np∑
j=1

Pjfl(x
p
j ) +

Nm∑
k=1

Mkf
′
l (x

m
k ) ,

where the matrix K has components Kli and the vector F has com-
ponents Fl. By solving the linear system of equations Kc = F for
the vector of generalized displacements c, one obtains the approximate
solution

v(x) =

N∑
i=1

cifi(x) .

By defining the vector of functions

f(x) :=

 f1(x)
...

fN (x)

 ,
one can also write the final result as

v(x) = cTf(x) .

Remarks:

(1) The final result is an N -dimensional approximation to the true
solution.

(2) A judicious choice for the Ritz functions fi(x) can lead to a very
good answer with only a few functions.

(3) The accuracy of the method always increases with increasing N .

Example 4.2

Tension-compression bar with general loading
Consider a multiply loaded tension-compression bar that is builit-in

at x = 0 and x = L. The bar is loaded with Np point loads Pi (i =
1, . . . , Np) at points xpi (i = 1, . . . , Np). Find a general approximate
solution for the bar’s motion using the principle of stationary potential
energy.
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Solution: The total potential energy is

Πtotal(u(x)) =

∫ L

0

1

2
AE(u′)2 dx−

Np∑
j=1

Pju(xpj ) .

We will minimize the energy over all functions u(x) in the set

S̃ =

{
f(x)

∣∣ f(x) =

N∑
i=1

cifi(x) ; {ci}Ni=1 ∈ R

}
,

where fi(0) = fi(L) = 0. Thus, S̃ ⊂ S = {u(x) | u(0) = u(L) = 0}.
This implies that

Πtotal(u(x))⇒ Πtotal(c1, . . . , cN ) =

∫ L

0

1

2
AE

(
N∑
i=1

cif
′
i(x)

)2

dx

−
Np∑
j=1

Pj

(
N∑
i=1

cifi(x
p
j )

)
.

Looking for the stationary point with respect to {ci}Ni=1 requires

0 =
∂Πtotal

∂cl
, (l = 1, . . . , N) .

This yields

0 =

∫ L

0

1

2
AE2

(
N∑
i=1

cif
′
i(x)

)
· f ′l (x) dx−

Np∑
j=1

Pjfl(x
p
j )

⇒
N∑
i=1

(∫ L

0

AEf ′i(x) · f ′l (x) dx

)
ci =

Np∑
j=1

Pjfl(x
p
j )

⇒
N∑
i=1

Klici = Fl

⇒ Kc = F .

The components of the matrix K and the vector F are given as

Kli :=

∫ L

0

AEf ′i(x) · f ′l (x) dx , (4.3)

Fl :=

NP∑
j=1

Pjfl(x
P
j ) . (4.4)

By solving the linear system of equations Kc = F for the vector of
generalized displacements c, one obtains the approximate Ritz solution

u(x) =

N∑
i=1

cifi(x) .
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By defining the vector of functions

f(x) :=

 f1(x)
...

fN (x)

 ,
one can also write this as

u(x) = cTf(x) .

Example 4.3

Tension-compression bar with 3 point loads

P 1 P 2

L

1 1 1 1

P 3

AE

=3 =4 =5

Fig. 4.13 Tension-compression bar
with three point loads.

Consider the bar shown in Fig. 4.13. The bar is loaded with 3 point
forces at locations x1, x2, and x3:

P1 = 3, x1 = 1
P2 = 4, x2 = 2
P3 = 5, x3 = 3 .

Find an approximate solution for the bar’s motion.
Solution: We are interested in an approximate solution of the form

u(x) =

N∑
i=1

cifi(x) ∈ S̃ ⊂ S ,

where the unknown coefficients, ci, are to be determined by minimizing
the potential energy for the system:

Πtotal(u(x)) =

∫ L

0

1

2
AE(u′)2 dx−

3∑
j=1

Pju(xj) .

To do so, one must select the functions fi(x) so that they satisfy the
kinematic (displacement) boundary condition, viz.,

fi(0) = 0 .

This ensures that S̃ ⊂ S = {u(x) | u(0) = 0}. Some possible choices for
these functions are the polynomial and sine functions:

fi(x) =
( x
L

)i
(i > 0) ,

fi(x) = sin
(
iπ
x

L

)
.
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Here, let us select the polynomials for the approximation and use the
results of Example 4.2. The forcing vector F , according to eqn (4.4),
has components

Fi =

3∑
i=1

Pjfi(xj)

= 3fi(1) + 4fi(2) + 5fi(3)

= 3

(
1

4

)i
+ 4

(
2

4

)i
+ 5

(
3

4

)i
.

The stiffness matrix K, according to eqn (4.3), has components

Kij =

∫ 4

0

AEf ′if
′
j dx

=

∫ 4

0

AEi
( x
L

)i−1
(

1

L

)
j
( x
L

)j−1
(

1

L

)
dx

=

∫ 4

0

AE
ij

Li+j
xi+j−2 dx

=
ij

Li+j
AE

i+ j − 1

[
xi+j−1

]L
0

=
ij

i+ j − 1

AE

L
.

Remarks:

(1) By solving the equations

Kc = F ,

one obtains the approximate solution.

(2) For small values for N this is a tractable hand solution. For larger
values, this leads to a reasonable numerical methodology which
is the basis of much of modern computational engineering and
science.
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Fig. 4.14 Exact and approximate so-
lution to Example 4.3 using N =
10, polynomial terms.

(3) The exact solution for the displacement field is shown in Fig. 4.14.
Figure 4.14 also shows the approximate solution for the case of
N = 10. The agreement is seen to be quite good.

(4) If we had chosen not to respect the kinematic boundary conditions
at x = 0 in our formulation, then we would need to add the po-
tential energy of the reaction forces R(0) into our total potential
energy:

Πtotal(u(x)) =

∫ L

0

1

2
AE(u′)2 dx−

3∑
j=1

Pju(xj)−R0u(0) . (4.5)

Here, R0 is defined to be the force the support applies to the bar
taken as positive in the positive x-direction. If one chooses to use
eqn (4.5), then one can utilize the fact that u(0) = 0 to help solve
the equations.
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In particular, consider

u(x) =

2∑
i=0

cifi(x) ∈ S̃ ,

where fi(x) = (x/L)i. In this case we will have 3 equilibrium
equations ∂Πtotal/∂ci = 0 with a total of 4 unknowns c0, c1, c2,
and R0. As 4th equation we can use the fact that we must have

u(0) = c0f0(0) + c1f1(0) + c2f2(0) = 0 .

With some rearrangement, the full set of linear equations to be
solved can be written as

0 0 0 −f0(0)
0 AE

L
AE
L −f1(0)

0 AE
L

4AE
3L −f2(0)

−f0(0) −f1(0) −f2(0) 0




c0
c1
c2
R0

 =


12

26/4
4
0

 .

Given the properties of our chosen fi(x), it is easy to see that
R0 = −12 (as it should) and c0 = 0 (as it should).

4.2.1 Analogy between vectors and functions

In the process of selecting functions for approximating solutions in the
Ritz method, one desires to select them as linearly independent as pos-
sible. This notion can be motivated through an example from linear
algebra. Consider a vector a that we would like to write as a linear
combination of two other vectors v1 and v2; i.e., we would like to deter-
mine the coefficients c1 and c2 in the expression

a = c1v1 + c2v2 .

These coefficients can be determined by taking the dot product of a
with the two vectors resulting in two conditions or equations that can
be solved for c1 and c2. Let us define the notation for the dot product
as

(v,w) := v ·w = vTw .

With this notation, the norm or size of a vector can be expressed as

‖v‖ =
√

(v,v) =
√
vTv .

The angle θ between two vectors can be defined via

(v,w) := ‖v‖‖w‖ cos θ .

This is graphically depicted in Fig. 4.15. Using this notation,1
v

2
v

θ

Fig. 4.15 Angle between two vectors.
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(v1,a) = c1(v1,v1) + c2(v1,v2) ,

(v2,a) = c1(v2,v1) + c2(v2,v2) .

In matrix form this becomes:[
(v1,a)
(v2,a)

]
=

[
(v1,v1) (v1,v2)
(v2,v1) (v2,v2)

] [
c1
c2

]
.

This linear system of equations will have a unique solution as long as
the determinant of the coefficient matrix is non-zero.

det

([
(v1,v1) (v1,v2)
(v2,v1) (v2,v2)

])
= (v1,v1)(v2,v2)− (v1,v2)2

= ‖v1‖2‖v2‖2 − ‖v1‖2‖v2‖2 cos2 θ

= ‖v1‖2‖v2‖2(1− cos2 θ)

= ‖v1‖2‖v2‖2 sin2 θ .

The value of the determinant will be zero when θ = 0, i.e. when the
two vectors are parallel to each other. In the case where θ is nearly
zero, the equations can technically be solved; however, in finite precision
arithmetic, the situation (numerically) is not well behaved. The farthest
one can get from this problematic case is when the two vectors v1 and
v2 are orthogonal to each other. This is the most desired situation.

One can make similar arguments about functions (in place of vectors).
For example, in the Ritz method, consider the case where one is trying
to express a function g(x) as a linear combination of two functions f1(x)
and f2(x) on the interval [a, b]:

g(x) = c1f1(x) + c2f2(x) .

To be able to determine the coefficients c1 and c2, one wants the func-
tions f1(x) and f2(x) to be as orthogonal as possible on the interval [a, b].
To define orthogonality one must define the notion of a dot product for
functions. The standard dot product (or inner product) for functions is
defined as

(f, g) :=

∫ b

a

f(x)g(x) dx .

This is sometimes called the L2 inner product. Using this notation one
can also define the size (or norm) of a function in a manner similar to
norms of vectors in Rn:

‖f‖ :=
√

(f, f) =

√∫ b

a

f(x)f(x) dx .

This is known as the L2 norm of a function. The angle θ between two
functions f(x) and g(x) on the interval [a, b] can also be defined via the
relation

(f, g) = ‖f‖ ‖g‖ cos θ .
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Thus to check whether two functions are orthogonal, one must check the
quantity

cos θ =
(f, g)

‖f‖ ‖g‖ .

It is important to note that one cannot just check (f, g).
To make this notion more concrete, let us check whether the polyno-

mial functions

fi(x) =
( x
L

)i
are orthogonal on the interval [0, L] for i > 1. The quantities needed to
compute the angle θ between functions fi and fj are as follows:

‖fi‖ =

√
1

2i+ 1
L ,

(fi, fj) =
1

i+ j + 1
L .

Thus,

cos θij =

√
(2i+ 1)(2j + 1)

(i+ j + 1)
.

The functions are seen to not be parallel since the angle between any
two is never zero – the cosine of the angle is never equal to unity for
i 6= j. The functions are also seen to not be orthogonal as cos θij 6= 0 for
any i 6= j. However, as the number of functions N increases, the number
of combinations of functions which have cos θij ≈ 1 increases, implying
that more and more functions are becoming nearly linearly dependent
(parallel). Thus increasing N while using these simple polynomials will
not lead to a good situation. Small values of N are fine and useful for
hand computation but large values are ill-advised.

On the other hand, the functions

fi(x) = sin
(
iπ
x

L

)
are orthogonal on the interval [0, L], since

(fi, fj) = 0 ,

for any combination of i 6= j. Using this concept of orthogonality of
functions, one can also create an orthogonal set of functions from a non-
orthogonal set of functions. This method is based on Gram-Schmidt
orthogonalization. For example, orthogonalizing the polynomials on the
interval [−1, 1] produces the Lagrange polynomials. The first three of
which are

P0(x) = 1,

P1(x) = x,

P2(x) =
1

2
(3x2 − 1) .
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One can easily confirm that these are orthogonal by computing

(Pi, Pj) =

∫ 1

−1

Pi(x)Pj(x) dx

which is equal to zero for i 6= j.

4.2.2 Evaluating the quality of a given
approximation

Once an approximation ua(x) is obtained through the Ritz method, one
would like to estimate the quality of the approximation. In the case that
one has the exact solution ue(x) to the problem, one can check:

• Pointwise error: the error at each point.

• L2 error : the error over the whole domain.

Each type of error comes in two flavors:

• Absolute error.

• Relative error.

These are computed as presented in Table 4.1. Note that the pointwise

Table 4.1 Various error types and their
definitions.

Type Pointwise L2

Abs. |ua(x)− ue(x)| ‖ua − ue‖

Rel.
|ua(x)−ue(x)|
|ue(x)|

‖ua−ue‖
‖ue‖

error is a function of x as opposed to the L2 error which is a scalar
valued quantity. The L2 error is often preferred due to its scalar nature
and its ability to represent the average error over the whole domain in
a single number. The relative error is also often preferred since it gives
information on how many digits of accuracy the solution has been able
to attain. However, care must be exercised when looking at relative
pointwise error since the denominator may be zero at certain locations.

4.2.3 Estimating error in Ritz’s method

The objective of Ritz’s method is to reduce the error in the approxima-
tion. With respect to our definitions, this means that what we would
like to happen is that error goes to zero as (the number of approximating
functions) N →∞. Knowing how the error depends upon N (once the
approximation functions have been chosen) is crucial to being able to
estimate the error that one has made. This is an advanced topic which
we will not treat in extensive detail. But it should be observed that the
general characteristic of Ritz’s method applied to elastic systems is that
convergence to zero error occurs starting with the most significant digit
in the approximation and continuing to the least significant digit. Thus
one can perform computations with increasing values of N and compare
solutions from one value to another. As the digits of the approximate
solution take on the values of the exact solution they will stop changing
as N increases. In this way one can estimate how may digits of accu-
racy one has in the approximation and thus one can also estimate the
percent error one has made. This can be done on a pointwise basis or
on an average basis.
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Example 4.4

Convergence of the method of Ritz for a double built-in beam with a point
load.

Consider a beam that is built in at both ends and subjected to a point
force P at mid-span. Approximately solve for the beam’s deflection and
estimate the number of correct digits.

Solution: As an approximate space of solutions, we will use the set

S̃ =

{
v(x)

∣∣∣ v(x) =
∑
i∈odd

Ci[cos(2πix/L)− 1]

}
.

Note that we restrict our sum to functions which are symmetric about
the center of the span and each function individually satisfies the kine-
matic boundary conditions. Employing the principle of stationary po-
tential energy one can solve for the Ci by hand to give

Ci = − 4PL3

EI(2πi)4
.

In order to estimate the error in the approximate solution, we compute
the L2 norm of the approximate deflection as a function of the number
of terms in the approximation. Doing so gives

‖v(x)‖ =
|P |L7/2

4EIπ4

√√√√1

2

∑
i∈odd

1

i8
+

( ∑
i∈odd

1

i4

)2

.

Table 4.2 shows the result of this computation, where the first column
indicates how many terms we have used in our approximation and the
second column gives values of the L2 norm divided by |P |L7/2/4EIπ4.
The underline indicates the digits which remain unchanged as we added
new terms to our approximation. It is reasonable to assume these digits
are converged.

Table 4.2 Convergence behav-
ior of approximate solution.

No. Terms Norm

1 1.22474487139
2 1.23487650463
3 1.23618903404
4 1.23653070762
5 1.23665574650
6 1.23671178040
7 1.23674050485
8 1.23675671035
9 1.23676653310
10 1.23677282839

Exact 1.23678983555

Remarks:

(1) From the result we can conclude with some confidence, for exam-
ple, that with only three terms our result is accurate to three digits
or has error less than 0.1%. Also shown in Table 4.2 is the exact
solution computed by solving the governing differential equation.
This verifies our conclusion.

(2) This type analysis is not an exact error analysis but suffices in
most situations.

(3) If we had not restricted i to be odd, we would have had essentially
the same result. The main difference would have been that half
of the generalized displacements would have been zero. Exploiting
symmetry merely simplified the details of the analysis.
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4.2.4 Summary of the Method of Ritz

The method of Ritz can be summarized in the following three steps.

(1) Form the total potential energy Πtotal which is a sum of the poten-
tial energy of the elastic elements of the system and the potential
energy due to the load:

Πtotal = Πelastic + Πload .

The total potential energy is:

• stationary at equilibrium and

• minimum at a stable equilibrium.

(2) Select an approximate form of the solution

u(x) ≈
N∑
i=1

cifi(x),

where ci are the unknown coefficients which must be determined
and fi(x) are known functions which generally satisfy the kine-
matic boundary conditions.

(3) Find the stationary points of Πtotal:

∂Πtotal

∂ci
= 0, for i = 1, . . . , N .

This yields a linear system of N equations in N unknowns. Its
solution provides the values for the parameters ci.

Remarks:

(1) Each function fi(x) should satisfy the kinematic boundary condi-
tions. If they do not satisfy the kinematic boundary conditions,
then one must include extra terms in Πload to account for the un-
known reactions.

(2) One desires that the functions fi(x) be as orthogonal as possible:∫ L

0

fifj dx = δij .

(a) For polynomials, the Legendre polynomials are orthogonal on
the interval [−1, 1]. One can scale and translate these func-
tions, so they are orthogonal on any desired interval [a, b].
Given the nth-order Legendre polynomial Pn(ξ) defined on
[−1, 1] it can be translated to be defined on the interval
[xl, xu] by the mapping

ξ(x) =
2

xu − xl
(x− xl)− 1 .
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Note that ξ|x=xl = −1 and ξ|x=xu = 1. The translated ver-
sion of Pn(ξ) is

fn(x) = Pn(ξ(x)) .

The first 3 Legendre polynomials are as shown in Fig. 4.16:

P0(ξ) = 1,

P1(ξ) = ξ,

P2(ξ) =
1

2
(3ξ2 − 1) .

0P

1-1

1

-1
2P

1P

=1

=ξ

ξ

=   (3ξ   − 1)2
1 2

Fig. 4.16 The first three Legendre
Polynomials.

(b) One can also pick sine and cosine functions such as:

fn(ξ) = sin (nπξ) , ξ ∈ [0, 1] .

(3) If

uexact =

N∑
i=1

cifi(x)

for some cis, then the Ritz method will give you the exact solution.

(4) For distributed (dead) loads, the potential energy of the load is
derived as follows. Consider, for example, the tension-compression
bar with a distributed load of b(x). The force acting on an element
of thickness dx is b(x)dx, and the potential energy of this load is
−u(x)b(x)dx. One must sum this along the length of the whole
bar, resulting in the expression:

Πload = −
∫ L

0

u(x)b(x)dx .

One has the following expressions for torsional distributed loads
t(z) and transverse distributed loads q(x):

Πload =

{
−
∫ L

0
t(z)φ(z) dz Torsional distributed load

−
∫ L

0
q(x)v(x) dx Transverse distributed load .

Exercises

(4.1) Rework Exercise 3.6 using the concept of stationary
potential energy. You should get the same answer.

(4.2) Rework Exercise 3.7 using the concept of stationary

potential energy. You should get the same answer.

(4.3) Consider a stepped bar subjected to two axial
forces P1 and P2. Find the exact displacement field
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for this system using a potential energy method.

L L 

P
P



AE AE 

(4.4) Consider a stepped torsion rod with torsional rigid-
ity (GJ)1 for 0 ≤ z ≤ L and (GJ)2 for L ≤ z ≤ 2L.
The rod is built-in at z = 0 and z = 2L; it is subject
to a point torque of magnitude Ta at z = L.

(a) Find the rotation at z = L using conservation
of energy.

(b) Find the rotation at z = L using the principle
of stationary potential energy. Assume that
the rotation field is piecewise linear.

You should get the same answer for both parts!

(4.5) Use the principle of stationary potential energy to
find the rotations at the two load points for the
stepped rod shown below.

M
M

L L

(GJ)  −− constant (GJ)  −− constant

z

1
2

1 2

(4.6) Consider the elastic rod shown below.

P

L/2 L/4L/4

AE −− constant

P

(a) Using an approximate potential energy
method find the displacement field of the
rod; use the space of approximate solutions
S̃ = {u(x) | u(x) = C sin(2πx/L)}.

(b) Determine the strain at the center of the rod.

(4.7) Consider a stepped to torsion bar of length L =
L1 + L2 subjected to a single torques T1.

L L 

T

GJ GJ 

z

(a) Write an expression for the space of trial so-
lutions, S, for this problem.

(b) Approximate the space of solutions as

S̃ = {φ(z) | φ(z) = Az(z − L), A ∈ R}

and find an approximation to the rotation
field. In your final answer you may define
symbols to represent integrals of polynomials.
For example, if you find the integral

∫ L
0

(3z2 +
4)2 dz in your answer, you do not need to
compute it. Merely define I =

∫ L
0

(3z2+4)2 dz
and use I in your answer.

(4.8) Consider a cantilever beam with a uniform dis-
tributed load q(x) = qo. Assume a deflection so-
lution of the form v(x) = Cx2 and determine an
approximate solution by minimizing the potential
energy. Compare the tip deflection to the exact
solution.

(4.9) Consider a cantilever beam with a uniform dis-
tributed load q(x) = qo. Assume a deflection so-
lution of the form v(x) = C(x/L)2 +D(x/L)3 and
determine an approximate solution by minimizing
the potential energy. Compare the tip deflection to
the exact solution.

(4.10) Consider a round elastic bar of length L with con-
stant shear modulus, G, and polar moment of iner-
tia, J . The bar is built-in at both ends and subject
to a spatially varying distributed torsional load

t(z) = p sin(
2π

L
z) ,

where p is a constant with units of torque per unit
length. Find an approximate expression for the ro-
tation field using the principle of stationary poten-
tial energy using a one term approximation. Com-
pare your result to the exact solution.

z

t(z)

L

(4.11) Consider a pin-pin beam of length L with equal
transverse loads of magnitude P in the positive and
negative directions at x = L/4 and x = 3L/4, re-
spectively. By approximately minimizing the po-
tential energy of the system find the displacement
field for the beam. Use a one term approximation.
Compare your approximation to the exact answer.
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(4.12) Carefully derive the matrix equations that would
result from using the method of Ritz on an elas-
tic tension-compression bar that is built-in at both
ends in the presence of point forces and distributed
loads.

(4.13) Carefully derive the matrix equations that would
result from using the method of Ritz on an elastic
tension-compression bar problem fixed at its right
end and subject to a distributed force b(x).

(4.14) Consider a round elastic bar of length L with con-
stant shear modulus, G, and polar moment of iner-
tia, J . The bar is built-in at both ends and subject
to a spatially varying distributed torsional load

t(z) = p
z

L
,

where p is a constant with units of torque per unit
length. Find an approximate expression for the the
rotation field using the principle of stationary po-
tential energy. Compare your result to the exact
solution.

(4.15) Consider a doublely built-in beam of length L with
a transverse load of magnitude P in the positive
direction at x = L/2.

(a) By approximately minimizing the potential
energy of the system find the displacement
field for the beam: use a subspace with one
degree of freedom.

(b) Compare your approximation to the exact
answer with an accurate plot of normal-
ized non-dimensional deflection versus non-
dimensional position. Make sure that you
clearly label your axes, have a proper aspect
ratio, legend, etc.

(c) Further assess the accuracy of your approxi-
mate solution by computing the relative dis-
placement error at the middle of the beam (as
a percentage).

(4.16) The system shown consists of a beam with constant
bending rigidity EI and a Winkler foundation with
foundation stiffness k whose dimensions are force
per unit length per unit length (equivalently force
per unit area). The beam is subjected to a dead
load at mid-span. Write an expression for the to-
tal potential energy of the system in terms of the
beam deflection v(x) and any other needed system
parameters.

L/2L/2

P

k

(4.17) Consider a tension-compression bar with constant
AE that is built in at both ends, subjected to a
point force as shown, and connected to two linear
springs via a rigid bar. Using a potential energy
method, (1) determine the motion at the location
of the load and at the location where the rigid bar
is attached and (2) determine the strain in the bar
near the right-hand support.

a b - a c - b

k/

k/

P

MATLAB Exercises

(4.18) Consider a linear elastic bar with cross-sectional
properties AE = 450×106 lbf and length 5 ft which
is built-in at both ends. The bar is loaded with an
axial point-force in its center of magnitude 450 kips.
Solve for the displacement and strain fields in the
bar using the method of Ritz and the basis func-
tions fn(x) = sin(nπx/L) for n = 1, 2, 3, . . .. How
many terms in the expansion are required to re-
duce the relative L2 error in the displacements to
1%? Use the exact answer for the error computa-
tion. Numerical quadrature is acceptable. [Extra:
How many terms are needed to do the same for the
strains? Why is it so hard to converge the strains?]

(4.19) Consider a cantilever beam (built-in at x = 0) of
length L = 2 m carrying a uniform distributed load
of 5000 N/m. The flexural rigidity of the beam is
EI(x) = (EI)1 +(EI)2(1− x

L
), where (EI)1 = 30×

106 MN ·mm2 and (EI)2 = 60 × 106 MN ·mm2.
Solve for the displacement field in the beam using
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the method of Ritz and the basis functions

fn(x) = (x/L)n+1 for n = 1, 2, 3, . . .

Make a plot of the converged shape of the beam.
Make sure to properly label your graph.

(4.20) Consider a linear elastic bar with cross-sectional
properties AE = 330 × 106 lbf and length 4 ft
which is built-in at both ends. The bar is loaded
with a distributed force b(x) = 100 kips/ft. Solve

for the displacement and strain fields in the bar
using the method of Ritz and the basis functions
fn(x) = sin(nπx/L) for n = 1, 2, 3, . . .. How many
terms in the expansion are required to reduce the
relative L2 error in the displacements to 1%? To
compute the errors you can use an approximate
quadrature, say something simple like Riemann
sums. How many terms are needed to achieve the
same with respect to the strains?
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In this chapter notes we will consider the problem of buckling instability.
In particular, we will apply the concept of potential energy to examine
this class of problems. We will start with some simple systems composed
of rigid bars and springs and then will turn our attention to continuously
deformable systems and approximate solutions.1 It is of importance to

1For a refresher on basic concepts of
buckling see Sections 12.1 – 12.3 in
S. Govindjee Engineering Mechanics of
Deformable Solids, Oxford University
Press, Oxford (2013).

recall:

(1) Both buckled and unbuckled solutions correspond to equilibrium
states of a system.

(2) As the load is increased one approaches the critical point. At
the critical point one has the emergence of multiple equilibrium
solutions.

(3) An equilibrium solution that is stable has a positive second deriva-
tive of the potential energy.

(4) If one only wishes to determine the buckling load and perhaps
some general information about the buckled shape, then one can
simplify the analysis by using small deflection and rotation as-
sumptions. This results in an eigenvalue type problem, where the
eigenvalues correspond to the buckling loads and the eigenvectors
to the buckled shapes.

5.1 Instability of discrete systems

Rigid barL

k

P

θ

L (1-cosθ)

P

Fig. 5.1 Rigid bar supported by a to-
sionsal spring.

Let us consider a simple mechanical system consisting of a rigid bar and
a rotational spring as shown in Fig. 5.1. The bar is pinned at its base
and further supported by a rotational spring with spring constant k. At
the other end of the bar, it is subject to an axial (compressive) load P .
Here we are interested in the equilibrium solutions of the system. Since
these correspond to stationary points of the total potential energy, let
us take the approach which employs the principle of stationary potential
energy. The total potential energy for this system consists of the elastic
potential energy and the potential energy of the load:

Πelastic =
1

2
kθ2,

Πload = −PL(1− cos θ) .

Thus the total potential energy

Πtotal(θ) =
1

2
kθ2 − PL(1− cos θ) .
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The stationary points of the potential energy are obtained from

dΠtotal

dθ
= kθ − PL sin θ = 0 .

The θ’s which satisfy this equation for a given P are the equilibrium
solutions. Note the use of the plural solutions, as here as in opposition
to all other problems we have treated up to now, the problem does
not necessarily have a unique solution. In fact, there are two possible
solutions:

(1) The trivial solution (where the bar remains straight-up-and-down)

θ = 0 , (5.1)

true for any given load P .

(2) The non-trivial solution

P =
k

L

θ

sin θ
. (5.2)
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Tensile Loads 

Compressive Loads 

Solution 1 

Solution 2 

Fig. 5.2 Solutions θ for varying loads P . For loads P > k/L there are multiple
solutions.

A plot of the loci of points (θ, P ) which satisfy either equilibrium solu-
tion is given in Fig. 5.2. The plot exhibits an interesting transition in
behavior as the load approaches

Pcr =
k

L

from below. This load is called the critical load and denotes the load
past which the trivial solution θ = 0 is no longer stable and no longer
unique. For loads below Pcr, there is only the trivial solution. Above
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this load there are three solutions: θ = 0 and two solutions implicitly
given by eqn (5.2).

To actually ascertain the stability of the different equilibrium solu-
tions, we need to look at the second derivatives of the potential energy
as these tell us if the forces acting on the system serve to restore equi-
librium after a perturbation or serve to move the system even further
from the equilibrium state. For our example:

d2Πtotal

dθ2
= k − PL cos θ .

The stability of the solution is:

• On solution path 1:

d2Πtotal

dθ2
=

{
k − PL > 0 for P < k

L

k − PL < 0 for P > k
L

• On solution path 2:

dΠtotal

dθ2
= k −

(
k

L

θ

sin θ

)
L cos θ

= k (1− θ cot θ) > 0 ∀θ.

Thus we see that solution (5.1) is the stable solution for all loads P < Pcr

but for loads P > Pcr it is unstable (negative second derivative of the
potential energy). We also see that for this case that solution (5.2) is
stable.

Remarks:

(1) If one is only interested in determining the critical load and per-
haps linearized information about the buckled state of the system,
then one can make a small angle approximation. If we assume
small values of θ, |θ| � 1, then

1− cos θ ≈ 1−
[
1− θ2

2

]
=
θ2

2
,

such that,

Πload = −PLθ
2

2
.

Therefore,

Πtotal ≈
1

2
kθ2 − PLθ

2

2
.

Using this expression to compute the equilibrium equations gives:

dΠtotal

dθ
≈ kθ − PLθ = 0

⇒ θ(k − PL) = 0

⇒ θ = 0 or P =
k

L
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The analysis reveals the critical load of the system Pcr = k/L but
does not reveal too much about the buckled state. It says θ = 0
and P arbitrary is an equilibrium solution and that P = k/L and
θ arbitrary is another solution. If we take a second derivative, we
find

d2Πtotal

dθ2
≈ k − PL .

This shows that the trivial (unbuckled) configuration θ = 0 is
stable for P < Pcr and unstable above this load. It tells us that
the second solution is neutrally stable near θ ≈ 0.

Example 5.1

Buckling of two rigid links connected by torsional springs

2

k

k

P

L

L

P

θ

θ
1

2

1

Fig. 5.3 2 rigid element and 2 rota-
tional spring (2 DOF) system

As an example of this type of analysis for a multi-degree of freedom
system, consider the two degree-of-freedom system in Fig. 5.3. The
system consists of two rigid bars connected by torsional springs. Each
bar has length L and the springs have stiffness k1 and k2. We will use
the angle from the vertical to parameterize the possible configurations
of the system; see Fig. 5.3. The total potential energy of the system can
be expressed as:

Π(θ1, θ2) =
1

2
k1θ

2
1 +

1

2
k2(θ2 − θ1)2 − P

[
L
θ2

1

2
+ L

θ2
2

2

]
.

Here we have already employed the assumption of |θ1| � 1 and |θ2| � 1
to simplify the expression for the potential energy of the load. Note that
this will restrict the information which we can extract from the analysis.
Notwithstanding, we will be able to determine the critical load and we
will be able to make some assessment of the buckled state of the system.

For equilibrium, the potential energy must be stationary and this
implies

∂Π

∂θ1
= 0,

∂Π

∂θ2
= 0 .

This leads to a linear system of equations consisting of two equations in
two unknowns:[

k1 + k2 − PL −k2

−k2 k2 − PL

] [
θ1

θ2

]
=

[
0
0

]
.

This equation is similar to the equation (k−PL)θ = 0 in the one degree
of freedom case. The combinations of (θ1, θ2) which satisfy this (homo-
geneous) linear system of equations for a given load P are the solutions
which satisfy equilibrium. One has two different cases of solutions:
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Fig. 5.4 Solution branches for varying loads P in a two degree of freedom system.
Numerical values are for the full non-linear case with k1 = k2. The trivial solution
is stable below the first critical load.

(1) θ = 0, which gives the trivial (straight-up-and-down) solution.
This solution is valid for all loads P – even if it is possibly an
unstable equilibrium.

(2) A non-trivial solution, θ, is only possible when det[�] = 0. This
will only occur for specific values of P assuming that the bar
lengths and the springs are fixed. These values are the eigenvalues
associated with the generalized eigenvalue problem:

([
k1 + k2 −k2

−k2 k2

]
− P

[
L 0
0 L

])[
θ1

θ2

]
=

[
0
0

]
.

For our two degree of freedom problem there are two such load
values P = P1, P2 for which non-trivial solutions exist, θ1 and θ2.
These loads are called the buckling loads and the smallest buckling
load is called the critical load :

Pcr := min(P1, P2) .
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Figure 5.4 displays the (full non-linear) solutions using the norm
of θ as the abscissa. For loads P < Pcr, the trivial (straight) solu-
tion is stable. Above this load the trivial solution will be unstable.
The two buckling solutions are depicted by the two sets of pitch-
fork arms, the lowest of which is typically a stable equilibrium
branch of the solution. Note that our linearized solution does not
provide equations for the solution away from the small angle ap-
proximation. To obtain the details of the curves shown, one needs
to perform a full non-linear analysis. What one can determine
from the linear solutions is the general configuration into which
the system buckles on each branch. This information is contained
in the eigenvectors corresponding to the two buckling loads P1, P2.
Figure 5.5 shows the eigenvectors and the ratios of the eigenvector
components.First Eigenvector

1

Second Eigenvector

0.62

1

1.62

Fig. 5.5 Mode shapes (eigenvectors)
for the two degree of freedom system.
Numerical vaules are for the case of
k1 = k2. 5.2 Instability of continuous systems

Before investigating the stability of continuous mechanical systems via
potential energy let us review some classical results for beam buckling
that are typically derived using ordinary differential equation methods.
The classic results are associated with four basic sets of beam boundary
conditions. These are:

• Clamped-Free,

• Pin-Pin,

• Clamped-Pin, and

• Clamped-Clamped

under the action of a compressive axial load as shown in Fig. 5.6.

P
EI

Clamped-Free
L

P

Pin-Pin

P

Clamped-Pin

P

Clamped-Clamped

Fig. 5.6 The four classical buckling
configurations. The pin-pin case gives
rise to the so-called Euler buckling load.

For all cases, the governing differential equation of equilibrium is:

EIv′′′′ + Pv′′ = 0 . (5.3)

This equation has two classes of solutions:

(1) v(x) = 0, which is the trivial (unbuckled) solution which exists for
any load P .

(2) v(x) 6= 0, which is the non-trivial solution which exists only for
certain loads P .

One is faced with following questions:

• When can one have a non-trivial solution v(x)?

• What are the loads P for a non-trivial solution?

The loads P corresponding to non-trivial solutions can be found by solv-
ing eqn (5.3) subject to the given boundary conditions of the problem.
An outline of the solution method is as follows:
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(1) Assume v(x) = Cesx, and insert this into eqn (5.3) to yield the
characteristic equation

C(EIs2 + P )s2 = 0 .

The four roots of this equation are s = 0, 0,±i
√

P

EI
, where i =

√
−1. This yields the following (homogeneous) solution:

v(x) = c1 sin

(√
P

EI
x

)
+ c2 cos

(√
P

EI
x

)
+ c3x+ c4 .

(2) Applying the boundary conditions (there are four) generates four
equations for the four unknowns c1, c2, c3, and c4. These equations
have the form

M(P )c = 0 ,

c :=


c1
c2
c3
c4

 ,
where M(P ) is a 4-by-4 matrix depending on P .

(3) A non-trivial solution, c 6= 0, is only possible when det[M(P )] = 0.
This condition yields a transcendental equation in P . By solving
for the roots of this relation, one obtains the buckling loads. In this
setting there are an infinite number of buckling loads; the smallest
of these is the critical load for the system.

For the four representative cases the results are:

• Pin-Pin (Euler load):

Pcr = π2EI

L2

• Clamped-Pin:

Pcr = (4.497)2EI

L2

• Clamped-Clamped:

Pcr = (2π)2EI

L2

• Clamped-Free:

Pcr = (π/2)2EI

L2
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5.2.1 Beam buckling using potential energy

The instability of continuous mechanical systems, e.g., beams, can be
treated in a manner similar to the discrete mechanical systems consisting
of rigid bars and springs. One must determine the elastic potential
energy and the potential energy of the load. The elastic potential energy
is as before:

Πelastic :=

∫ L

0

1

2
EI(v′′)2 dx .

For the potential of the load, we have

Πload := −P · displacement at load point

= −P
∫ L

0

1

2
θ2 dx,

= −P
∫ L

0

1

2
(v′)2 dx .

The way that the displacement at the load point is derived is through
the following argument. Consider an infinitesimal segment of the beam
of length dx. This segment rotates (during buckling) by an angle θ =
v′. The resulting vertical drop associated with the segment is equal to
− 1

2θ
2 dx; see Fig. 5.7. For the total contribution from each segment of

the beam, one must add up the contributions from each segment; i.e.,
one must integrate the expression over the interval [0, L].

Rigid bardx

P

θ

 dxθ

P

21
2

Fig. 5.7 Displacement drop of an in-
finitesimal element.

The total potential energy is defined as the sum of these two contri-
butions:

Πtotal(v(x)) = Πelastic + Πload

=

∫ L

0

1

2
EI(v′′)2 dx− P

∫ L

0

1

2
(v′)2 dx .

To approximately find the loads at which instability occur (buckling
loads) and to estimate the buckling modes, one can apply the method
of Ritz. As was done previously, we will assume an approximate form
for the solution v(x) which satisfies the kinematic boundary conditions
and contains free parameters. These will then be determined by finding
the stationary conditions for the potential energy.

Example 5.2

One parameter approximation for clamped-free beam buckling
Consider the clamped-free beam subjected to an axial compression as

shown in Fig. 5.6. Find an approximation to the buckling load.
Solution: Consider as a simple approximation for v(x) the form

v(x) ≈ Cx2,



5.2 Instability of continuous systems 97

where C is an undetermined coefficient. To insert into the potential
energy expression, we need the derivatives

v′(x) = 2Cx,

v′′(x) = 2C .

Inserting these into the expression for the total potential energy gives

Πtotal(v(x))
v(x)=Cx2

−−−−−−→ Πtotal(C) =

∫ L

0

1

2
EI4C2 dx− P

∫ L

0

1

2
4C2x2 dx

dΠtotal

dC
= 4EICL− P4C · 1

3
L3

= C

[
4EIL− P 4

3
L3

]
= 0 .

This yields two solutions:

(1) C = 0, which is the trivial solution with v(x) = 0 corresponding
to any load P .

(2) C 6= 0, which is the non-trivial solution corresponding to a load of
P = 3EI

L2 . This value for the load is the critical buckling load Pcr

and is the load at which instability occurs.

The exact critical buckling load for this configuration is, P exact
cr =

π2

4

EI

L2
.

The relative error in the approximation is:

relerr =

∣∣∣∣π2/4− 3

π2/4

∣∣∣∣ =

∣∣∣∣1− 12

π2

∣∣∣∣ = 21% .

Remarks:

(1) The approximation here is not too good. This is a reflection of
an overly simplistic guess to the buckling shape. Notwithstand-
ing, the analysis certainly gives a reasonable order of magnitude
approximation to the buckling load.

Example 5.3

Two parameter approximation for clamped-free buckling
An advantage of the Ritz method is the ability to improve the ap-

proximate solution by expanding the possible solutions in a systematic
fashion. Consider the two parameter approximation

v(x) ≈ C
( x
L

)2

+D
( x
L

)3

.
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It is advantageous numerically and in terms of understanding the phe-
nomenon to consider non-dimensionalized forms for the functions in the
Ritz method, e.g., in this case the selection of

(
x
L

)2
instead of x2. Doing

this, the coefficients C,D have units of length and are often called the
generalized displacements. The needed derivatives of the approximation
are

v′(x) =
2C

L

( x
L

)
+

3D

L

( x
L

)2

,

v′′(x) =
2C

L2
+

6D

L2

( x
L

)
.

The total potential energy yields:

Πtotal(v(x))→ Πtotal(C,D) =

∫ L

0

1

2
EI

[
2C

L2
+

6D

L2

( x
L

)]2

dx

− P

∫ L

0

1

2

[
2C

L

( x
L

)
+

3D

L

( x
L

)2
]2

dx .

The stationary conditions for Πtotal give the equilibrium equations for
the system:

∂Πtotal

∂C
= 0

∂Πtotal

∂D
= 0

⇒
 4EI
L3 − P

L
4
3

6EI
L3 − P

L
3
2

6EI
L3 − P

L
3
2

12EI
L3 − P

L
9
5

 C

D

 =

 0

0

 .(5.4)

There are two possible ways to satisfy these homogeneous equations:

(1) Take C = D = 0, which is the straight trivial solution with v(x) =
0 and is valid for any load P .

(2) If however det[�] = 0, then C,D can take on non-trivial values
and still satisfy eqn (5.4). This condition will hold true only for
certain values of P . The minimum of these values is the critical
load.

The buckling loads and the corresponding non-trivial solutions [C,D]T

can be found by rewriting eqn (5.4) in the form:([
4 6
6 12

]
− PL2

EI

[
4/3 3/2
3/2 9/5

])[
C
D

]
= 0 .

By defining

A :=

[
4 6
6 12

]
,

B :=

[
4/3 3/2
3/2 9/5

]
,

λ :=
PL2

EI
,

x :=

[
C
D

]
,
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these equations have the form:

(A− λB)x = 0,

which is known as a Generalized Eigenvalue Problem. Note that in the
case that B is the identity matrix, one has Ax = λx which is the
standard eigenvalue problem.2 The eigenvalues are computed by setting 2This generalized eigenvalue problem

can be efficiently solved in MATLAB
by the function call eig(A,B).

the determinant of A−λB zero which results in a quadratic polynomial
for λ. The two solutions are:

λ =
PL2

EI
= 2.486 and 32.1807 .

Since the smallest buckling load is the critical load:

Pcr = 2.486
EI

L2
.

Remarks:

(1) With respect to the exact solution, this has a relative error of
0.75%.

(2) If one computes the associated eigenvector [C,D]T , then one can
plot the basic shape of the buckling mode as v(x) = C(x/L)2 +
D(x/L)3. Doing so results in [C,D]T = [−1.3, 0.4]T , and the cor-
responding buckling mode(shape) is shown in Fig. 5.8.

x

Fig. 5.8 Approximate two parameter
buckling mode solution to the clamped-
free bucking problem.

Example 5.4

Buckling of a cantilever supported at mid-span by a spring support
Consider computing the buckling load of a cantilever with a lateral

spring support placed at mid-span as shown in Fig. 5.9. The calculation
involves only a slight modification to the solution of Example 5.3. One
only has to account for the additional contribution of the elastic potential
energy associated with the spring. This is simply added to the total
potential energy as shown in the following formulation:

P
EI

L/2

k

L/2

x
y

Fig. 5.9 Cantilever supported by a
spring at mid-span.

Πtotal = Πelastic,beam + Πelastic,spring + Πload ,

Πelastic,spring :=
1

2
k

[
v

(
L

2

)]2

.

Using the approximation

v(x) = C
( x
L

)2

+D
( x
L

)3

,

one has

Πelastic,spring =
1

2
k

[
C

(
1

2

)2

+D

(
1

2

)3
]2

.
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Partial derivatives with respect to C and D of this added term yield new
contributions to the equilibrium equations in terms of k.(

kL3

64EI

[
4 2
2 1

]
+

[
4 6
6 12

]
− PL2

EI

[
4/3 3/2
3/2 9/5

])[
C
D

]
= 0 .

Taking the determinant of the coefficient matrix and setting it equal to
zero yields a polynomial for the eigenvalues – the smallest of which is
the critical load. The corresponding eigenvector then defines the general
buckled shape of the system.

5.2.2 Buckling with distributed loads

b(x)

EI

L xb(x)dx

Cut cantilever
at height x

x

Fig. 5.10 Cantilever beam with a distributed axial load.

Consider a cantilever beam subjected to a distributed load as shown
in Fig. 5.10. The total potential energy for this system is given as,

Πtotal :=

∫ L

0

1

2
EI(v′′)2 dx−

∫ L

0

[
{b(x)dx}

{∫ x

0

1

2
(v′(x̄))2 dx̄

}]
,

where the first integral is the elastic potential energy and the second
integral is the potential of the load. The expression for the potential of
the load appears rather complex but can be justified if examined closely.
The first component under the outer integral represents the load for a
small segment of material near x and the second component represents
the displacement drop at point x. The expression for this displacement
drop is necessarily an integral as was required in the earlier examples.
Its limits are 0 to x to account for all rotation effects below the point in
question. Recall that for a cantilever of length L with end load P , the
contribution to the potential energy due to the load is

−P
∫ L

0

1

2
(v′)2 dx .

What has been done is a simple replacement of L with x and P with
b(x)dx and the summation of this contribution from 0 to L.
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Example 5.5

Buckling behavior under a uniform distributed load

EI

L

x

A, ρ

Fig. 5.11 Collapse of a column under
self-weight – the tree problem.

Let us consider the problem of a tall tree and determine how tall it
can grow before it will collapse due to buckling. For this situation the
loading is a distributed load which is constant b(x) = Aρg = γ, where A
is the cross-sectional area of the tree (assumed constant), ρ is the mass
density, and g is the gravitational constant. Thus γ is simply the weight
per unit length of the tree. To solve, let us determine the buckling
condition for the system in terms of γ. We will then invert this relation
at the end to find a restriction of the height of the tree in terms of γ.

For this case the potential energy takes the form,

Πtotal =

∫ L

0

1

2
EI(v′′)2 dx− γ

∫ L

0

{∫ x

0

1

2
(v′(x̄))2 dx̄

}
dx.

To approximately solve this problem, consider a one-parameter approx-
imation for the solution:

v(x) ≈ Cf(x) ,

where f(x) is a known function (we will specify it later) and C is the
undetermined coefficient. Under this assumed form,

Πtotal(v)⇒ Πtotal(C) =

∫ L

0

1

2
EI(Cf ′′)2 dx

− γ
∫ L

0

{∫ x

0

1

2
(Cf ′(x̄))2 dx̄

}
dx .

The stationary condition implies

dΠtotal(C)

dC
= C

[∫ L

0

EI(f ′′)2 dx− γ
∫ L

0

{∫ x

0

(f ′(x̄))2 dx̄

}
dx

]
= 0.

For a non-trivial solution C 6= 0 one must have

γ =

∫ L
0
EI(f ′′)2 dx∫ L

0

{∫ x
0

(f ′(x̄))2 dx̄
}
dx

.

Let us now select the specific Ritz function f(x) = x2. With this ap-
proximation,

γ =

∫ L
0
EI(2)2 dx∫ L

0

{∫ x
0

(2x̄)2 dx̄
}
dx

=
4EIL∫ L

0

{
4
3x

3
}
dx

=
4EIL

1
3L

4

=
12EI

L3
.



102 Buckling

For γ < 12EI/L3 there will be no buckling and thus the height restric-
tion is

L3 <
12EI

γ
=

12EI

ρgA
=

12Er2

ρg
,

where for the last equality we have introduced the radius of gyration
r2 = I/A of the cross-section.

Remarks:

(1) From the result, we see that denser trees are necessarily shorter.
Likewise a tree can grow taller, if it increases its radius of gyration.
The dependency of height to radius is a power law relation with
exponent 2/3.

(2) We can assess the accuracy of our computation since there is a
known reference solution. Up to 4 digits this is33This solution can be computed from

the governing ordinary differential
equation. However, it requires knowl-
edge of Bessel functions of fractional or-
der.

γexact = 7.837
EI

L3
.

Comparing, we find that the relative error for our simple approx-

imation is

∣∣∣∣12− 7.837

7.837

∣∣∣∣ ≈ 53%, which is not too good. Adding

additional polynomial terms would greatly improve the accuracy.

(3) As an alternative choice one can pick f(x) = 1 − cos
(
π
2
x
L

)
. This

yields

γ = 8.2979
EI

L3
,

which gives a relative error of approximately only 6%.

(4) Every tree you see must know this relation!

5.2.3 Deflection behavior for beams with
compressive axial loads and transverse loads

f

EI

L/2

P

L/2
x

Fig. 5.12 Simply supported beam with
an intermediate transverse load and a
compressive axial force.

Consider a simply supported beam with a fixed load f applied at mid-
span as shown in Fig. 5.12. Additionally, the beam is subjected to a
compressive axial load P . In such situations, the compressive load sets
up a situation where the beam deflection has a buckling-like behavior.
We can gain an appreciation for the situation by looking at an approx-
imate solution to the system’s response. The total potential energy for
this mechanical system is

Πtotal =

∫ L

0

1

2
EI(v′′)2 dx− P

∫ L

0

1

2
(v′)2 dx− fv

(
L

2

)
.

If f = 0, we are looking at a classical buckling problem; viz., the beam
remains straight until a critical load is reached after which the beam
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bends suddenly. The critical load for the configuration shown is Pcr =
π2EI/L2. Let us investigate the behavior for f 6= 0.

As we have had previously, the stationary conditions of the poten-
tial energy produce the equilibrium equations for the system. Let us
compute an approximate solution using the form

v(x) ≈ C sin
(
π
x

L

)
.

The derivatives of this function are

v′(x) = C
π

L
cos
(
π
x

L

)
,

v′′(x) = −C
(π
L

)2

sin
(
π
x

L

)
.

Inserting these into the potential energy yields

Πtotal =

∫ L

0

1

2
EI
(π
L

)4

C2 sin2
(
π
x

L

)
dx

−P
∫ L

0

1

2

(π
L

)2

C2 cos2
(
π
x

L

)
dx− fC sin

(
π
L/2

L

)
=

∫ L

0

1

2
EI
(π
L

)4

C2

{
1

2
− 1

2
cos

(
2πx

L

)}
dx

−P
∫ L

0

1

2

(π
L

)2

C2

{
1

2
+

1

2
cos

(
2πx

L

)}
dx− fC

=
1

4
EI
(π
L

)4

C2L− P 1

4

(π
L

)2

C2L− fC .

The stationary condition yields

0 =
dΠtotal

dC
=

1

2
EI
(π
L

)4

CL− P 1

2

(π
L

)2

CL− f

= C

{
1

2
EI
(π
L

)4

L− P 1

2

(π
L

)2

L

}
− f = 0

and thus

C =
f

EIπ4

2L3
− P π

2

2L

=
f 2L/π2

EIπ2

L2
− P

=
2L

π2

f

Pcr − P
.

The approximate solution has the form

v(x) ≈ 2L

π2

f

Pcr − P
sin
(
π
x

L

)
.
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Pcr

P

f=0

f increasing

v(L/2)

f=0

Fig. 5.13 Relationship between mid-span displacement v(L/2) and the compressive
load P .

The relationship between P and v(L/2) for a fixed f is shown in Fig. 5.13.
The relationship between f and v(L/2) for a fixed P is shown in Fig. 5.14.

Remarks:

(1) Observe how the response curve in the v(L/2)−P plane converges
to the case for f = 0 as f decreases; see Fig. 5.13. The behavior
is buckling-like for this system.

(2) Note that for small axial loads, the system behaves like a standard
beam in bending. However, as the axial load approaches the Euler
load, the deflection is greatly amplified by the factor 1/(Pcr − P );
see Fig. 5.14.

P increasing

f

v(L/2)

Fig. 5.14 Relationship between mid-
span displacement v(L/2) and the
transverse load f . The slope of the re-

sponse curve π2

2L
(Pcr−P )→ 0 (the sys-

tem becomes softer) as P → Pcr.

Exercises

(5.1) For the two-degree-of-freedom system made up of
rigid bars and torsional springs, as shown,

(a) Find the total potential energy Π without
making a small angle approximation.

(b) Reduce your expression in part (a) to one ap-
propriate for small angles.

θ

θ

P

L

L

k

k1

2

1

2

1

2
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(5.2) The linkage shown below is made of three rigid
bars, three torsional springs, and one extensional
spring.

(a) Set up the potential energy expression for the
system assuming small motions.

(b) Find the governing system of equilibrium
equations that one would have to solve in or-
der to determine the critical load; write your
answer in matrix form and indicate in words
the remaining steps that would be needed to
solve the problem. Do not solve the equa-
tions.

a a

P

k k k
k
�

1 2 3
�

4

a/2 a/2�

(5.3) As the load P is increased on the structure shown,
the rigid inverted-T will displace uniformly down-
wards. At a certain load P the structure will expe-
rience a rotational instability.

(a) Assuming small motions, write an expressions
for the system’s potential energy. (Assume
that horizontal translation of the point where
the bars meet is not permitted.)

(b) Find the equilibrium equations and determine
the critical load.

k k

P

Δ

Rotational Instability

θ

P

k k

Rigid welded barsa

b/2 b/2

(5.4) Shown is an inverted-T made of rigid welded bars.
It is supported by two vertical springs (which can
only provide vertical forces) and a horizontal spring
(which can only provide a horizontal force). When
a load P is applied to the inverted-T, it displaces
uniformly downwards without rotation. However,
as the load in increased, a critical value is reached
and the inverted-T displays a sudden rotational in-
stability (as shown). Determine this critical load.

k

k

P

∆

θ
P

k

Rotational InstabilityRigid welded bars

b

h

b

(5.5) Shown below is a structure that may be idealized as
being composed of two rigid links of length L = 2
(m) that are joined by a torsional spring with spring
constant c = 2 (kN-m/rad). The top of the struc-
ture is supported by a flexible support with spring
constant k = 1 (kN/m). Determine the critical load
of the structure and sketch the deflected shape just
after collapse.

P

L

L

k

c

(5.6) Shown below is a structure that may be idealized
as being composed of two rigid links of length L
that are joined by a torsional spring with spring
constant c. The top of the structure is supported
by a flexible support with spring constant k.

P

L

L

k

c

(a) Find the total potential energy Π without
making a small angle approximation.

(b) Reduce your expression in part (a) to one ap-
propriate for small angles.
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(c) Determine the critical load using your expres-
sion from part (b) and accurately sketch/plot
the deflected shape just after collapse. As de-
grees of freedom, choose the rotations of the
bars with respect to the vertical.

(5.7) Consider the three (rigid) bar system shown below
where k = 100 kN/m and L = 0.3 m.

(a) Find the three buckling loads and their as-
sociated buckling modes/shapes. Accurately
sketch/plot the buckling modes. [Hint: Do
not do this entirely by hand.]

(b) Which of the three is the critical mode shape?

(c) If the spring constant nearest the support is
quadrupled in value, what is the new critical
load and mode shape? Accurately sketch/plot
the critical mode.

L

P

kkk

L L

(5.8) Shown below is a linear elastic beam with constant
bending rigidity EI. Assume an approximate solu-
tion space of the form

S̃ = {v(x) | v(x) = A(x3 − x2L)} ,

where A is a parameter and find an expression for
the buckling load.

P

k

3L/4

L/4

x

(5.9) The determine the buckling load for the pin-pin
beam shown below with lateral spring support of
stiffness k. Approximate the space of solutions as

S̃ = {v(x) | v(x) = A sin(πx/L), A ∈ R}

P

k
L/

L/

EI constant
x

(5.10) Consider a column with length L = 1 m and a
1 × 1 cm2 square cross-section. The column has
pin and pin-roller supports at x = 0 and x = L,
respectively. Further, it is supported at its mid-
span by a linear spring with spring constant k =
0.5 N/mm. The column is subjected to an ax-
ial compressive force P at the pin-roller support.
Find the critical load using an approximate poten-
tial energy method with a single parameter. As-
sume E = 200 kN/mm2.

(5.11) Consider the system in Exercise 5.10 except that
the axial compressive load is now applied at x =
0.75 m instead of at x = 1 m. Find the critical
load using an approximate potential energy method
with a single parameter.

(5.12) Consider a column with length L = 1.5 m and a
1.2 × 1.2 cm2 square cross-section. The column is
pinned at x = 0 and is supported by a pin-roller
at x = L – i.e. it is simply supported. Further, it
is supported at x = L/4 by a linear spring with
spring constant k = 0.5 N/mm. The column is
subjected to an axial compressive force P at the
pin-roller support. Estimate the critical load us-
ing an approximate potential energy method with
a single parameter. Assume E = 200 kN/mm2.

(5.13) Consider the system in Exercise 5.12 except that
the axial compressive load is now applied at x =
3L/4 instead of at x = L. Find the critical load us-
ing an approximate potential energy method with
a single parameter.

(5.14) Find the paper http://dx.doi.org/10.1098/

rspa.2010.0505 and go to the ‘Data Supplement’
under the ‘Figures & Data’ tab. Watch the video
provided. Then, set up the equations for the tensile
buckling problem with rigid bars that is described
and solve for the critical ‘buckling’ load.

(5.15) Consider a beam supported by a Winkler foun-
dation. The beam is 100 ft long with a Young’s
modulus of E = 30 × 106 psi and a cross-sectional
area moment of inertia I = 77.4 in4. Assume
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a (continuously distributed) foundation stiffness
k = 100 lb/in2 and find the axial buckling load
(with small deformation assumptions) and buck-
ling mode. To solve this problem assume an ap-
proximation of the form v(x) =

∑n
i=1 cifi(x) where

fi = sin(πi
L
x).

x

L

P
Winkler Foundation

(5.16) The spring shown below is ∆s longer that the gap
above the beam. It is compressed and then slid into
place above the beam.

(a) Explain why the potential energy of the
spring is given by

Πspring = +
1

2
k

[
∆s −

∫ L

0

1

2
(v′)2 dx

]2

.

(b) Assume an approximate beam deflection of
the form v(x) ≈ A sin(πx/L) and determine
the response of the system. In particular, find
the combination of system parameters that
will lead to buckling of the beam.

Assume the beam has bending stiffness EI and
length L.

s

k

∆

(5.17) Consider an Aluminum, vertical, tapered circular
column of height L, radius r(x) = ro− rox/L, den-
sity ρ, clamped at the base and free at the top.
How tall can the column be before it buckles due
to self-weight? For properties, let E = 11 GPa,
ro = 0.3 m, ρ = 2700 kg/m3, and g = 9.81 m/s2.
Assume S̃ = {v(x) | v(x) = c1x

2 + c2x
3 , c1, c2 ∈

R}. [Hint: Compute the necessary integrals numer-
ically or with a symbolic manipulation program.

The determinant equation will result in a high de-
gree polynomial; solve for its roots numerically and
then select the physically meaningful root.]

L

2ro

x

g

(5.18) Consider a deep cantilever beam h � b of length
L. If such a beam is loaded with a tip-load P , it
will bend (very slightly) in the y, z-plane, giving
bending about the x-axis. However, if the load P
exceeds a critical value Pcr, the beam will undergo
a so-called lateral-torsional instability – a form of
buckling in which the beam twists about the z-axis
while it simultaneously bends about the y-axis.

L

z

y

P

h

b

The potential energy for the system (with respect
to twisting) is given by the relation:

Π[φ(z)] =

∫ L

0

1

2
(GJ)eff(φ′(z))2 dz

−
∫ L

0

1

2

P 2

EIy
(L− z)2φ2(z) dz ,

where (GJ)eff = 1
3
hb3G is the torsional rigidity

and Iy = hb3/12 is the area moment of inertia
about the y-axis. Assume S̃ = {φ(z) | φ(z) =
C(z2 − 2Lz), C ∈ R} and find an approximation
for Pcr.

[Remark: The exact buckling mode is given by
φ(z) =

√
L− zJ−1/4

(
2.0063(L− z)2/L2

)
with

Pcr = 4.013
L2

√
EIy(GJ)eff – see e.g. §6.3 in S.P. Tim-

oschenko and J.M Gere, Theory of Elastic Stabil-
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ity, McGraw-Hill (1961). The function J−1/4 is the
Bessel function of the first kind of order − 1

4
.]

MATLAB Exercises

(5.19) Consider, as shown, a beam supported by a dis-
tributed spring foundation. Assume the beam
is 100 ft long with a Young’s modulus of E =
30 × 106 psi and a cross-sectional area moment of
inertia I = 77.4 in4. Assume a foundation stiff-
ness of k = 100 lb/in2 and find the axial buckling

load (with small deformation assumptions). To
solve this problem you should write a program
that implements the following general approxima-
tion v(x) =

∑n
i=1 cifi(x) where fi = (x/L)i+1.

[Warning: The fi(x) are not orthogonal. At some
point, increasing n will actually lead to a worse re-
sult due to round-off errors.]

x

L

P
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6.1 Principle of Virtual Work

When using the Principle of Stationary Potential Energy to find the
equilibrium states for a mechanical system we are forced to make the
assumption that the system involved is conservative. This restricts the
type of problems that can be analyzed. In this section we will present a
special case of the Principle of Virtual Work. The Principle of Virtual
Work is a more general way of stating equilibrium and is not restricted to
the conservative setting. The special case we will present is also known
as the Method of Virtual Displacements and we will use these terms
interchangeably. For the most part, we will discuss systems that happen
to be conservative. This is done to keep the presentation familiar. How-
ever, it should not be forgotten that the methodology developed also
applies to non-conservative systems.

6.1.1 Motivating example: Tension-compression
bar

b(x)

L

x 

F

AE

u(x)

Trial solutions

Fig. 6.1 Tension-compression bar
(top) and examples of trial solutions

(bottom).

Consider the tension-compression bar shown in Fig. 6.1. The bar is
subjected to an end-force F and a distributed load b(x); the loads may
or may not be conservative. The governing equilibrium equation for the
problem is:

Differential equation of equilibrium (strong form):

dR

dx
+ b = 0 .

The kinematic boundary conditions for the problem tell us that the
solution u(x) must satisfy the condition u(0) = 0. Let us define the
set (space) of admissible displacements S as the set of all functions
which satisfy the kinematic boundary conditions. The true displacement
solution must be in this set of functions:
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Set (space) of admissible displacements:

S = {u(x) | u(0) = 0}

Every functions u ∈ S satisfies the displacement (kinematic)
boundary conditions.

Let us also define a second set of functions called the set (space) of
test functions (virtual displacements) V.

Set (space) of test solutions (virtual displacements):

V = {δu(x) | δu = 0 at all points where u is known.}

The requirements on the functions δu ∈ V turn out to be a very
convenient choice.

To proceed further, we will now convert the strong form of the equi-
librium equation to the so-called weak form. The weak form of the
equilibrium equation can be derived from the strong form strictly by al-
gebraic and calculus manipulations – i.e. without the use of any further
physical information about the problem.

(1) Start with the differential equation of equilibrium

dR

dx
+ b = 0 .

(2) Multiply the differential equation by an arbitrary function δu ∈ V

δu
dR

dx
+ δu b = 0 .

(3) Integrate the over the length of the bar (i.e., [0, L])∫ L

0

δu
dR

dx
dx+

∫ L

0

δu b dx = 0 .

(4) Exploit the product rule of differentiation∫ L

0

d

dx
[δuR]− dδu

dx
R dx+

∫ L

0

δu b dx = 0 .

(5) Integrate out the exact differential d
dx [δuR].

δuR|L0 −
∫ L

0

dδu

dx
R dx+

∫ L

0

δub dx = 0

⇒ δu(L)R(L)− δu(0)R(0)−
∫ L

0

dδu

dx
R dx+

∫ L

0

δu b dx = 0 .
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(6) Note that δu(0) = 0 (since δu ∈ V) and that R(L) = F (according
to the force boundary condition)

δu(L)F −
∫ L

0

dδu

dx
R dx+

∫ L

0

δu b dx = 0 .

(7) Group terms and define δε := dδu
dx∫ L

0

δεR dx =

∫ L

0

δu b dx+ δu(L)F .

This last equation is known as the weak form, the weak statement of
equilibrium, or the virtual work equation:

Weak statement of equilibrium (weak form):∫ L

0

δεR dx =

∫ L

0

δu b dx+ δu(L)F .

Remarks:

(1) The Principle of Virtual Work states that a system is in equilib-
rium if and only if the weak equilibrium statement holds ∀ δu ∈ V.
As presented here, we have derived this result. Thus in this context
it is sometimes also known as the virtual work theorem.

(2) Note that we can follow the steps outlined above in the reverse
order (going from Step 7 to Step 1). This implies that the differ-
ential equation of equilibrium and weak statement of equilibrium
are equivalent, stating exactly the same condition:

Differential equation of equilibrium
(strong form)

⇔

Principle of Virtual Work (weak form)

Thus the Principle of Virtual Work is a restatement of the differ-
ential equation of equilibrium, such that they imply one and the
same thing.

Example 6.1

Weak form content

x 

δu(x)

a b L

1

x 

δ"(x)

a b L

b(x)

L
R(b)R(a)

b(x)

F

Fig. 6.2 Specific choice of a test func-
tion δu and the resulting equilibrium
condition.

To partially illustrate the equivalence of the weak and strong forms
let us select a test function δu ∈ V of the form

δu(x) = H(x− a)−H(x− b) .
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This function and its derivative (δε = (d/dx)δu)

δε = δ(x− a)− δ(x− b)

are depicted in Fig. 6.2. Clearly this function satisfies the conditions
required for δu to be a member of V. Substituting this into the weak
form yields ∫ L

0

[δ(x− a)− δ(x− b)]R(x) dx

=

∫ L

0

[H(x− a)−H(x− b)] b dx+ Fδu(L)

⇒ R(a)−R(b) =

∫ b

a

b dx ,

which is just a statement of equilibrium for the segment [a, b] of the
bar. The difference between the internal forces R(a) and R(b) is equal
to the integral of the distributed load b over [a, b]; see Fig. 6.2. Thus,
our chosen test function tests global force equilibrium over the segment
[a, b].

Remarks:

(1) Hueristically one can think for choosing many similar test functions
δu such that one finds that every segment of the bar must be in
equilibrium and hence the whole bar must be in equilibrium.

Remarks:

(1) The space of admissible displacements S is sometimes called the
space of trial solutions.

(2) The quantity δε = (d/dx)δu is often called the virtual strain in
analogy to real strains ε = (d/dx)u.

(3) The quantity ∫ L

0

δεR dx =

∫ L

0

∫
A

δε σ dA dx

is known as the internal virtual work. Observe that if we assume δu
has dimensions of length, then this term has dimensions of work.
In general, the internal virtual work is the integral over the body
of the virtual strains times the real stresses.

(4) The quantity ∫ L

0

δu b dx+ δu(L)F

is called the external virtual work. In general the external virtual
work is equal to the product of the virtual displacements times the
real forces (integrated if given as distributions).
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(5) The Principle of Virtual Work can be stated as:

Internal Virtual Work = External Virtual Work

(6) Applying the Principle of Virtual Work, with our particular form
of the virtual work equation, is often called the method of virtual
displacements.

(7) In deriving the weak statement of equilibrium, note that the force
boundary conditions were incorporated (Step 6.). Thus one has
the following more precise equivalence:

Differential equation of equilibrium⊕ Force B.C.s

⇔
Weak statement of equilibrium

(8) The displacement (kinematic) boundary conditions are also called
the essential boundary conditions.

(9) The force boundary conditions are sometimes referred to as the
natural boundary conditions, because they are “naturally” pre-
embedded in the weak statement of equilibrium.

(10) Every choice of a test function in the virtual work equation yields
a generalized equilibrium equation for the system.

6.1.2 Summary of the steps leading to the virtual
work equations

In order to derive a weak statement of equilibrium (in the context of
virtual displacements), one has to execute the following basic steps:

(1) Specify the governing differential equation of equilibrium.

(2) Determine the trial solution space S and test function space V for
the given problem.

(3) Multiply the differential equation by a test function δu ∈ V and
integrate over the whole domain.

(4) Integrate by parts (product rule of differentiation followed by in-
tegration of an exact differential) to obtain the weak statement of
equilibrium.

6.1.3 Solutions

The Principle of Virtual Work (Method of Virtual Displacements) can
be used as a tool for finding exact as well as approximate solutions to
the equations of equilibrium. The methodology is summarized as:

Find u ∈ S such that∫ L

0

δεR dx =

∫ L

0

δu b dx+ Fδu(L)

for all δu ∈ V where δε = δu′ and R = R(u′).
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For the special case of a linear elastic material, R(u′) = AEu′, one has∫ L

0

δu′AEu′ dx =

∫ L

0

δu b dx+ Fδu(L).

This can be considered an infinite dimensional search problem where one
iterates through the following steps:

(1) Pick a function u ∈ S.

(2) Test this function against all possible δu ∈ V; i.e., make sure the
virtual work equation holds true for all δu ∈ V.

(3) If the equation does not hold for some δu, then go back to Step 1
and repeat the process.

b(x)

L

F

δu(x)

u(x)

2V

2S

Fig. 6.3 The search problem for a
tension-compression bar; possible trial
solutions u and test functions δu.

For the case of a tension-compression bar fixed at one end, some possible
trial solutions and test functions are shown in Fig. 6.3. This is the case,
if one desires to find the “exact” solution. If one desires only an approx-
imate solution, the method becomes simpler and more tractable. The
steps are quite similar to the method of Ritz applied to the Principle of
Stationary Potential Energy, in that one selects an approximate form for
the functions involved and then solves a finite dimensional problem. In
the case of the Principle of Virtual Work, one selects, an approximation
for the trial solution space S and test function space V. To make this
more concrete, let us consider an example.

Example 6.2

Bar with a constant distributed load

b(x)=b

L

0

x
uapprox

uexact (quadratic)

Fig. 6.4 Tension-compression bar with
distributed load, the exact solution and
approximate solution obtained from a 1
parameter approximation.

Consider the linear elastic tension-compression bar with one end fixed
as shown in Fig. 6.4. The bar is subjected to a constant distributed
load. The exact solution for this problem is a quadratic function. Find
a one term approximate linear solution.

Solution: The virtual work equation for this problem is:

∫ L

0

δεR dx =

∫ L

0

δu b0 dx .

Let us select the following one parameter approximations for S and V,

S̃ = {u(x) | u(x) = Cx} ⊂ S,
Ṽ = {δu(x) | δu(x) = δCx} ⊂ V.
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Note that we have chosen the functions in S̃ and Ṽ to have the same
form. This is called a Bubnov-Galerkin approximation. Inserting the
selected approximate forms for u and δu into the virtual work equation
yields: ∫ L

0

(δC)AEC dx =

∫ L

0

(δCx)b0 dx

⇒ δC

[∫ L

0

AEC dx−
∫ L

0

xb0 dx

]
= 0 ,

where we have used the fact that the bar is linear elastic and thus
R(u′) = AEu′ = AEC. Since the last statement must hold for any
δC (the Principle of Virtual Work), one must have:∫ L

0

AEC dx−
∫ L

0

xb0 dx = 0 ,

which represents a single scalar equation for the one unknown, C. Solv-
ing for C gives:

C =
b0L

2

2

AEL
=

b0L

2AE
.

Thus the approximate solution is,

uapprox(x) =
b0L

2AE
x .

Remarks:

(1) Figure 6.4 compares the approximate solution with the exact so-
lution. The approximation is seen to be reasonable for a single
parameter approximation.

(2) It should be emphasized that should one have treated this problem
with the Principle of Stationary Potential Energy assuming an ap-
proximation u = Cx, one would have obtained the same equation
as above for C. (This of course is only true when one assumes an
elastic material.)

The key to a good approximation using the Principle of Virtual Work,
lies in selecting good approximations for the solution space S and test
function space V. For the example problem, we had

S = {u(x) | u(0) = 0} ,
V = {δu(x) | δu(0) = 0} .

One must select the approximate trial solution space S̃ and approximate
test function space Ṽ so that they are subspaces of S and V,

S̃ ⊂ S,
Ṽ ⊂ V .
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Observe how our selection in the example,

S̃ = Ṽ = {f(x) | f(x) = Cx} ,

satisfied this property. To extend the method to obtain better approxi-
mations, just as in the Method of Ritz, one can consider an approxima-
tion constructed from a linear combination of many functions. S̃ and Ṽ
can be extended to the form:

Ŝ =

{
u(x)

∣∣∣∣ u =

Nu∑
n=1

unfn(x); Chosen to satisfy kinematic BCs

}
,

V̂ =

{
δu(x)

∣∣∣∣ δu =

Nδu∑
m=1

δumgm(x); Chosen to be zero where

the kinematic BCs are specified

}
,

where we have used the notation of un and δum for the parameters.
Inserting these forms into the virtual work equation for the example
gives:∫ L

0

Nδu∑
m=1

δumg
′
m(x)R

(
Nu∑
n=1

unf
′
n(x)

)
dx =

∫ L

0

b0

Nδu∑
m=1

δumgm(x) dx.

For the linear elastic material case, R = AEu′, one has:∫ L

0

Nδu∑
m=1

δumg
′
m(x)AE

Nu∑
n=1

unf
′
n(x) dx =

∫ L

0

b0

Nδu∑
m=1

δumgm(x) dx

⇒
Nδu∑
m=1

δum

[∫ L

0

g′m(x)AE

Nu∑
n=1

unf
′
n(x) dx−

∫ L

0

b0gm(x) dx

]
︸ ︷︷ ︸

Hm

= 0

⇒
Nδu∑
m=1

δumHm .

This last equation must hold ∀δum which implies that Hm = 0 for all
m. Thus

Nu∑
n=1

∫ L

0

g′m(x)AEf ′n(x) dx un =

∫ L

0

b0gm(x) dx

⇒
Nu∑
n=1

Kmnun = Fm

⇒ Ku = F .

Here K is a Nδu-by-Nu matrix whose mn-th entry is defined by

Kmn =

∫ L

0

g′m(x)AEf ′n(x) dx ,
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F is a Nδu-by-1 vector whose m-th entry is defined by

Fm =

∫ L

0

gm(x) b0 dx ,

and u is a Nu-by-1 vector whose n-th entry is un.

Remarks:

(1) If gm = fm and Nu = Nδu (the usual choice), then K is square
and symmetric. This is the (Bubnov)-Galerkin method.

(2) The choices for fn and gm are essentially arbitrary after the basic
conditions have been satisfied (viz., the final expression for u(x)
satisfies the essential boundary conditions and δu(x) is equal to
zero at these points).

6.1.4 Equivalence between the Principle of Virtual
Work and the Principle of Stationary
Potential Energy

Through the previous examples, one may have observed a notable sim-
ilarity between the Principle of Virtual Work and the Principle of Sta-
tionary Potential Energy. This is not merely a coincidence. One can
show that they are formally equivalent for conservative systems. Here,
let us derive their equivalence for the simple case of an elastic tension-
compression bar subject to a conservative constant distributed load as
shown in Fig. 6.5.

b(x)=b

L

0

Fig. 6.5 Tension-compression bar with
distributed load.

The total potential energy for this system is

Π(u) =

∫ L

0

1

2
AE(u′)2 dx−

∫ L

0

b0u dx .

Let us search for the stationary point of Π over,

S = {u | u(0) = 0} .

Assume that u∗(x) is the function(point) which gives the minimum value
of Π. Then if one adds any multiple α ∈ R of any function δu to u∗, the
value of Π should increase:

⇒ Π(u∗) ≤ Π(u∗ + αδu) .

Here δu is selected such that

δu ∈ V = {δu | δu(0) = 0} .

Define now

h(α) := Π(u∗ + αδu)

=

∫ L

0

1

2
AE

[
(u∗ + αδu)

′]2
dx−

∫ L

0

b0 (u∗ + αδu) dx .
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By construction, h(α) has a minimum (stationary) point at α = 0; thus,

dh

dα

∣∣∣∣
α=0

= 0 .

This situation is depicted in Fig. 6.6. The derivative can be evaluated
as:

Π(u  ) 

h(α)

*
α=0

minimum at 

α

Fig. 6.6 The h(α) function and its min-
imum (stationary) value at α = 0.

dh

dα

∣∣∣∣
α=0

=

∫ L

0

1

2
AE2

[
u∗′ + αδu′

]
δu′ dx−

∫ L

0

b0δu dx

∣∣∣∣∣
α=0

=

∫ L

0

AE(u∗)′δu′ dx−
∫ L

0

b0δu dx

=

∫ L

0

Rδu′ dx−
∫ L

0

b0δu dx .

In the last line we have made use of the linear elastic relation R = AEu∗′.
Noting that the derivative of h(α) with respect to α at α = 0 is zero by
construction, we can rewrite this as∫ L

0

Rδu′ dx =

∫ L

0

b0δu dx ,

which must hold ∀δu ∈ V. Note that this is exactly the statement of the
Principle of Virtual Work.

Remarks:

(1) It should be emphasized that the method used to show the equiv-
alence is modestly general and can be applied to other mechanical
systems as well.

(2) In this type of analysis, one often defines the symbol δΠ which
is known as the variation (or variational derivative) of Π. It is
defined as

δΠ :=
dh

dα

∣∣∣∣
α=0

.

For the given example problem, one has

δΠ =

∫ L

0

Rδu′ dx−
∫ L

0

b0δu dx .

(3) The variational derivative is equivalent to the directional deriva-
tive introduced in vector calculus. Given a scalar-valued function
f(x) which depends on the position x ∈ Rn in n-dimensions, the
directional derivative of f is defined as:

d

dα
f (x+ αv)

∣∣∣∣
α=0

.

This quantity is also denoted Df(x)[v]. In the case of the potential
energy Π, replace f by Π, x by u, and v by δu. Thus we have the
equivalence

Df(x)[v] v δΠ(u)[δu] = δΠ(u; δu) .
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6.2 Torsion t(z)

L

ϕ(0)=ϕ
0

T

z

Fig. 6.7 Torsion bar with distributed
torque t(z), and end-torque T̄ and end-
rotation φ̄o.

Let us now consider the Principle of Virtual work for the problem of
torsion of a bar. Consider a bar where the left end has an imposed
rotation, an applied distributed torque, and an end-torque as shown in
Fig. 6.7. The kinematic boundary condition for the problem is

φ(0) = φ̄0

and the torque boundary condition is

T (L) = T̄ .

The differential equation governing equilibrium (strong form) is given
by

dT

dz
+ t = 0 .

The kinematic boundary conditions of the problem define the form for
the trial solution space

S =
{
φ(z) | φ(0) = φ̄0

}
and the test function space

V = {δφ(z) | δφ(0) = 0} .
To derive the virtual work equation (weak statement of equilibrium), one
takes the strong form of equilibrium and multiplies it by a test function
δφ ∈ V and integrates over the whole domain [0, L]:∫ L

0

δφ
dT

dz
+ δφt dz = 0

⇒
∫ L

0

(δφT )′ − δφ′T + δφt dz = 0

⇒ [δφT ]
L
0 −

∫ L

0

δφ′T dz +

∫ L

0

δφt dz = 0

⇒
∫ L

0

δφ′T dz = [δφT ]
L
0 +

∫ L

0

δφt dz

⇒
∫ L

0

δφ′T dz = δφ(L)T (L)− δφ(0)T (0) +

∫ L

0

δφt dz

⇒
∫ L

0

δφ′T dz =

∫ L

0

δφt dz + δφ(L)T̄ .

By defining the virtual twist rate δα := δφ′ and twist rate α := φ′, one
obtains the virtual work equation for this system:∫ L

0

δαT (α) dz︸ ︷︷ ︸
Internal V.W.

=

∫ L

0

δφt dz + δφ(L)T̄︸ ︷︷ ︸
External V.W. from distributed torque⊕
External V.W. from point torque at z = L
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The problem statement for finding the solution φ to the problem be-
comes:

Find φ ∈ S such that,∫ L

0

δαT dz =

∫ L

0

δφ t dz + T̄ δφ(L),

for all δφ ∈ V where δα = δφ′ and T = T (α).

For the special case of a linear elastic material, T (α) = GJα = GJφ′,
one has ∫ L

0

δφ′GJφ′ dz =

∫ L

0

δφ t dz + T̄ δφ(L).

It should be emphasized that S and V change with changing kinematic
boundary conditions.

Example 6.3

Fixed end-rotations
Consider a torsion rod with a linear distributed load where rotations

are also imposed at both ends, φ(0) = φ̄0 and φ(L) = φ̄L; see Fig. 6.8.
State the virtual work equation along with the required function spaces.

t(z)=t

L

'(0)='0 '(L)='L

0
z
L

Fig. 6.8 Torsion bar with rotation
specifed at both ends.

Solution: From the given boundary conditions, we have that S and V
are:

S =
{
φ(z) | φ(0) = φ̄0 and φ(L) = φ̄L

}
,

V = {δφ(z) | δφ(0) = 0 and δφ(L) = 0} .

In this case the only contribution to the external virtual work is from
the distributed load. Thus, the expression for the weak statement of
equilibrium (the virtual work equation) is∫ L

0

δαT dz =

∫ L

0

δφ t0
z

L
dz .

Example 6.4

No kinematic boundary conditions
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Consider a torsion rod where torques are imposed at both ends, T (0) =
T̄0 and T (L) = T̄L; see Fig. 6.9. State the virtual work equation along
with the required function spaces.

Solution: From the given boundary conditions, we have that S and V
are

S = {φ(z) | no conditions} ,
V = {δφ(z) | no conditions} .

In this case there is no contribution to the external virtual work from a
distributed load but there are contribution from the two applied loads.
Thus, the expression for the virtual work equation reads:

t(z)=0

L

TLT0

Fig. 6.9 Torsion bar with torques
specifed at both ends.

∫ L

0

δαT dz = δφ(L)T̄L − δφ(0)T̄0 .

Remarks:

(1) As an example of how the virtual work equation embeds different
concepts of equilibrium, consider the test function δφ = δC, any
constant. Then δα = 0, which implies,

0 = δCT̄L − δCT̄0 ∀δC
⇒ δC

[
T̄L − T̄0

]
= 0 ∀δC

⇒ T̄L − T̄0 = 0

⇒ T̄L = T̄0 .

Thus one sees that choosing an arbitrary constant test function
implies global (moment) equilibrium of the bar about the z-axis.

Remarks:

(1) As with the tension-compression bar, the Principle of Virtual Work
applied to torsion problems can be used as a tool for computing
approximate solutions. One simply selects a set of finitely param-
eterized trial solutions and test functions; see Fig. 6.10. These are
then substituted into the virtual work equation which provides the
necessary relations for determining the parameters in the approx-
imation. Selections similar to what we used with the Principle of
Stationary Potential Energy are appropriate here.

6.3 Bending

The use of virtual work to express the equilibrium equations for beam
bending follows the same pattern that we have developed for tension-
compression bars and torsion rods. Consider a beam fixed at one end
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Can be parameterized
by a finite set of parameters

VS
S V∼ ∼

Fig. 6.10 Trial solution space S and test function space V approximated by subspaces

S̃ and Ṽ parameterized by a finite set of parameters.

and subjected to a distributed load, an end-shear, and an end-moment
as is shown in Fig. 6.11. The kinematic boundary conditions for this
problem are:

v(0) = 0 , θ(0) = v′(0) = 0 ,

and the force boundary conditions are:

V (L) = −EIv′′′(L) = V̄ , M(L) = EIv′′(L) = M̄ .

The differential equations governing equilibrium are:

q(x)

x

V

L

M

Fig. 6.11 Cantilever beam with dis-
tributed load q(x), end-shear V̄ , and
end-moment M̄ .

dM

dx
+ V = 0 ,

dV

dx
+ q = 0 .

The kinematic boundary conditions for the problem define the form for
the trial solution space

S = {v(x) | v(0) = 0 and v′(0) = 0}

and the test function space

V = {δv(x) | δv(0) = 0 and δv′(0) = 0} .
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Before formally deriving the virtual work expression, let us reason out
its form. The internal virtual work is in general the real stresses times
the virtual strains integrated over the volume. For a beam in bending
this gives ∫

V

σδε+ τδγ dV ,

where σ is the bending stress, τ the shear stress, and δε and δγ the cor-
responding virtual normal and shear strains. In Bernoulli-Euler beams,
the kinematic assumptions require the shear strains to be zero and thus
we also have δγ = 0. The virtual normal strains are also restricted
by the kinematic assumptions, which tells us that ε = −yκ = −yv′′.

In particular, this restricts the virtual normal strains to the form
δε = −yδκ = −yδv′′. Substituting these observations into the general
virtual work expression yields for the internal virtual work:

∫
V

σδε =

∫
L

∫
A

−yδκσ dAdx =

∫ L

0

δκM dx

The external virtual work is the product of the real external load with
the virtual motions. In our case there is a distributed load and two point
loads. Multiplying each by the corresponding motion where it acts gives
for the external virtual work:∫ L

0

δv q dx+ δv(L)V̄ + δθ(L)M̄ ,

where we have defined δθ = δv′. The final result is then:∫ L

0

δκM(κ) dx︸ ︷︷ ︸
Internal V.W.

=

∫ L

0

δv q dx+ δv(L)V̄ + δθ(L)M̄ .︸ ︷︷ ︸
External V.W. from distributed load⊕
External V.W. from point force at x = L⊕
External V.W. from point moment at x = L

To formally derive the weak statement of equilibrium from the govern-
ing differential equations, let us first combine the two equations defining
equilibrium into one by eliminating the shear force between them. This
yields:

d2M

dx2
− q = 0 .

Now multiply by a test function δv ∈ V and integrate over the whole
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domain [0, L]:∫ L

0

δvM ′′ − δv q dx = 0

⇒
∫ L

0

[(δvM ′)′ − δv′M ′]− δv q dx = 0

⇒
∫ L

0

[(δvM ′)′ − {(δv′M)′ − δv′′M}]− δv q dx = 0

⇒
∫ L

0

(−δvV )′ − (δv′M)′ + δv′′M − δv q dx = 0

⇒
∫ L

0

δv′′M dx =

∫ L

0

δv q dx+

∫ L

0

(δv′M)′ dx+

∫ L

0

(δvV )′ dx

⇒
∫ L

0

δv′′M dx =

∫ L

0

δv q dx+ [δv′M ]
L
0 + [δvV ]

L
0

⇒
∫ L

0

δv′′M dx =

∫ L

0

δv q dx+ δv′(L)M(L)− δv′(0)M(0)

+δv(L)V (L)− δv(0)V (0)

⇒
∫ L

0

δv′′M dx =

∫ L

0

δv q dx+ δv′(L)M̄ + δv(L)V̄ .

Using the notation for virtual rotations and curvature one alternatively
has ∫ L

0

δκM dx =

∫ L

0

δv q dx+ δθ(L)M̄ + δv(L)V̄ .

One observes that this is identical to the form which we reasoned out
above.

The problem statement for finding the solution v(x) to the problem
becomes:

Find v ∈ S such that,∫ L

0

δκM dx =

∫ L

0

δv q dx+ M̄δθ(L) + V̄ δv(L),

for all δv ∈ V where δθ = δv′, δκ = δv′′ and M = M(v′′).

For the special case of a linear elastic material, M = EIv′′, one has∫ L

0

δv′′EIv′′ dx =

∫ L

0

δv q dx+ M̄δθ(L) + V̄ δv(L) .

Remarks:

(1) As with the tension-compression bar and the torsion rod, the Prin-
ciple of Virtual Work can be used as a tool for computing exact
as well as approximate solutions to beam problems.



6.3 Bending 125

Example 6.5

Indeterminate beam with end-moment

M

x L

Fig. 6.12 Beam with end moment.

Consider the beam shown in Fig. 6.12, which is simply supported at
one end and fixed at the other. A moment M̄ is applied at the left end.
Define the function spaces S and V and use a subset of them to find an
approximate solution to the given problem.

Solution: The kinematic boundary conditions provide the form for the
solution space and the test space as:

S = {v(x) | v(0) = v(L) = v′(L) = 0} ,
V = {δv(x) | δv(0) = δv(L) = δv′(L) = 0} .

Let us consider the following one parameter approximations for S and
V

S̃ =
{
v(x) | v(x) = Ax(x− L)2

}
,

Ṽ =
{
δv(x) | δv(x) = δAx(x− L)2

}
.

The set S̃ is parameterized by A and the set Ṽ is parameterized by δA.
Both approximation spaces are proper subsets of their respective full
spaces.

For the given problem the relevant virtual work equation is:∫ L

0

δκM dx = M̄δθ(0) .

From our approximation spaces, we have

κ = A [6x− 4L] ,

δθ = δA
[
3x2 − 4xL+ L2

]
,

δκ = δA [6x− 4L] .

If we assume the beam to be linear elastic, then the Principle of Virtual
Work states:∫ L

0

δA [6x− 4L] EI A [6x− 4L] dx = M̄δAL2 ∀δA

⇒ A =
M̄L2∫ L

0
EI [6x− 4L]

2
dx

=
M̄

4EIL
.

Thus the final approximate solution is given by:

v(x) =
M̄

4EIL
x(x− L)2 .
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Example 6.6

Non-conservative load. The beam shown in Fig. 6.13 is subjected to a
force that remains perpendicular to the beam even as it rotates. Such
a force is known as a follower force and it is a type of non-conservative
load. Use the principle of virtual displacements to find an approximate
expression for the beam’s deflection.

Solution: The definitions for the internal virtual work do not change
due to the presence of the follower load. The only issue that requires
attention is the fact that the vertical component of the force will be
P cos(v′(L)). Thus the virtual work theorem will read

L

EI −− constant

x

P

Fig. 6.13 Cantilever beam subjected
to a follower force.

P cos (v′(L)) δv(L) =

∫ L

0

v′′EIδv′′ dx .

In what follows we will approximate cos((v′(L)) as 1 − (v′(L))2/2 and
for approximate function spaces we will pick the forms v = Cx2 and
δv = δCx2. Inserting the approximations into the virtual work theorem
and requiring it to hold true for all δC, yields

(2PL4)C2 + (4EIL)C − PL2 = 0 .

Solving for C then gives:

C =
−4EIL±

√
(4EIL)2 + 8P 2L6

4PL4
.

There are two solutions. However, the solution associated with the neg-
ative sign in front of the radical leads to the non-physical result that the
beam moves in the opposite direction of the load. Thus we discard that
possibility and find that

C =
−4EIL+

√
(4EIL)2 + 8P 2L6

4PL4

=
EI

PL3

−1 +

√
1 +

1

2

(
PL2

EI

)2
 .

Remarks:

(1) This problem illustrates two important features of the principle of
virtual work: (a) it applies to non-linear problems (as does station-
ary potential enegy) and (b) that it applies to non-conservative
problems (to which stationary potential energy does not). The
load in this case was not conservative and thus the use of Ritz’s
method is precluded.

(2) Note that if the load is very small, then the radical can be expanded
in a Taylor series to show that C ≈ PL/4EI which is the result
we had for this level of approximation when we treated the case
of a dead-loaded cantilever. So for small forces, follower loads and
dead-loads give the same response as one would intuitively expect.



6.3 Bending 127

6.3.1 Generalizations

So far we have used the Principle of Virtual Work to look at simple
problems so that we can better understand what it means and what
its properties are. The principle can also be applied far more generally
without much added effort. One needs to observe that the internal vir-
tual work is always given by the real stresses times the virtual strains
integrated over the volume of the system. In particular, if there are
multiple types of stress (say bending and torsional), then we need to
account for both of them. This occurs by simply adding their contribu-
tions together. Likewise, since internal virtual work is an integral, if the
system has complex shape, we can simply break down the computation
of the internal virtual work into the sum of the integrals over sub-parts
of the system. The same holds for external virtual work. It too is an
additive quantity. Each type of load, additively contributes to the total
external virtual work.

Example 6.7

Bending and torsion Consider a cantilevered rod that is subjected to
both an end-shear and an end-torque. Write down the appropriate vir-
tual work expression.

Solution: For the internal virtual work we need to sum the contribu-
tions from bending and torsion this gives:∫ L

0

δv′′M dx+

∫ L

0

δφ′T dx .

For the external virtual work we need to sum the contributions from
each load acting on the system. Here this gives

V̄ δv(L) + T̄ δφ(L).

The virtual work equation is thus∫ L

0

δv′′M dx+

∫ L

0

δφ′T dx = V̄ δv(L) + T̄ δφ(L)

and the Principle of Virtual Work tells us that for equilibrium this equa-
tion must hold for all virtual deflections and virtual rotations (in the
appropriate test spaces).

Example 6.8

Angle frame
Consider the angle frame in Fig. 6.14. Element 2 is in a state of axial

stress as well as bending and Element 1 is in a state of bending. Find
expressions for the internal virtual work and the external virtual work.
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V

2

1 L1

L2

y

x

Fig. 6.14 Angle frame.

Solution: Let us define the following internal resultants and virtual
fields:

δv1(y) : Virtual transverse deflection of element 1

δu2(x) : Virtual axial displacement of element 2

δv2(x) : Virtual transverse deflection of element 2

M1(y) : Bending moment in element 1

M2(x) : Bending moment in element 2

R2(x) : Axial force in element 2 .

It should be noted that there are no kinematic conditions on δv1(y) but
δu2(x) and δv2(x) need to respect the kinematic conditions provided
by the built-in support. With these definitions, we can construct the
relevant expressions

External V.W. = V̄ δv1(L)

Internal V.W. =

∫ L1

0

δv′′1M1 dy +

∫ L2

0

δv′′2M2 dx+

∫ L2

0

δu′2R2 dx.
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Exercises

(6.1) Write the virtual work statement for the following
system. Make sure to define the solution space S;
use no restrictions on the test function space V.

P2

a L−a

P1

(6.2) Write the virtual work statement for the linear elas-
tic bar shown below; assume b(x) is given. Make
sure to define a suitable solution space S and a
suitable space of test functions V.

P P

L

b(x)
1 2

x

(6.3) Write the virtual work statement for the following
system. Make sure to define the solution space S;
use no restrictions on the test function space V.

T2

a L−a

T1

(6.4) Write the virtual work statement for the following
system. Make sure to define the solution space S;
use no restrictions on the test function space V.

qo

a L−a

P1

P2

M2

(6.5) Write the virtual work statement for the following
system. Make sure to define the solution space S;
use a test function space V that eliminates support
reactions. (Hint: virtual work expressions are ad-
ditive like real work.)

P3

a L−a

P1

P2

qo

M2

(6.6) For the configuration shown, derive the virtual
work equation starting from (d2/dx2)M = q.

M

a L−a

qo

V

(6.7) Derive, starting from dT/dz+t = 0, the weak equi-
librium equation for a bar of length L in torsion
that is subjected to a constant distributed torque
t(z) = to, an applied end-rotation φ(0) = φ̄, and
an applied torque TL at z = L.

(6.8) Consider the elastic rod shown below. Starting
from the relevant governing ordinary differential
equation, derive the relevant statement of virtual
work (weak form expression). Be sure to explicitly
define your space of trial solutions and test func-
tions.

u(0) = 0.25 in

L = 24 in

b(x) = 2 lbf/in

AE = 8000 lbf

(6.9) Consider a tension-compression bar with N applied
forces Fi at x = iL/N for i = 1, 2, . . . , N . Formu-
late the principle of virtual work for this system
assuming that R(0) = 0.

(6.10) Consider a tension-compression bar where u(0) =
0. The bar is subject to 3 forces Fi = iF̄ (i =
1, 2, 3) for F̄ = 1 N at xi = iL/3, where L = 3 mm.
Find an approximate solution to the weak form by
using a sub-space of functions that includes linear
and quadratic terms. Assume that A = 1 mm2 and
E = 10 MPa.

(6.11) Consider the potential energy for the system de-
scribed in Exercise 6.7. Compute the variational
derivative of the energy. Your answer should match
the result you got in Exercise 6.7.

(6.12) Consider a (Bernoulli-Euler) beam of length L and
bending stiffness EI subject to a transverse loading
q(x) and boundary conditions θ(0) = θo, V (0) =
Vo, V (L) = VL, and θ(L) = θL. Starting from the
strong form, derive the weak equilibrium equation
for the beam. Use a space of test functions that
eliminates any end reactions.

(6.13) Consider a problem with unknown w(x), where
w(x) can be found by minimizing the following po-
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tential energy expression:

Π[w(x)] =

∫ L

0

1

2

(
dw

dx

)2

+
1

2

(
d2w

dx2

)2

dx

−
∫ L

0

b(x)w(x) dx ,

where b(x) is a given loading and the domain of
interest is [0, L]. Assume that w(x) and its first
derivative are known at x = 0 and x = L, such
that the space of solutions can be expressed as

S =
{
w(x) | w(0), w′(0), w(L), w′(L) known

}
.

(a) Define an appropriate space of test functions,
V.

(b) Find the weak form expression (virtual work
equation) for this problem by taking the vari-
ational derivative of Π.

(6.14) The torsion bar shown is subjected to a posi-
tive end-torque of the form T1 − T2φ

2(L), where
T1, T2 ∈ R+ (positive scalars).

GJ

L

T  –  T  φ (L) 


z

(a) Write the virtual work expression for this
problem.

(b) Express the space of solutions as

S = {φ(z) | φ(z) = Az}

and the space of test functions as

V = {δφ(z) | δφ(z) = δAz}

and find the rotation field for this problem.
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7.1 The Method of Ritz: Application to
two dimensional problems

The systems to which one can apply the Method of Ritz and/or the
Virtual Work Theorem is in no way restricted to the one-dimensional
systems we have considered up to this point (tension-compression bars,
torsion rods, beams). In fact, the application of these methods to multi-
dimensional systems is quite similar to what we have already learned.
This holds for multi-dimensional problems with scalar-valued unknowns
as well as vector-valued unknowns. These multi-dimensional applica-
tions are in fact one of the main reasons that these concepts are so
important. In this chapter, we will look at the extension of our methods
to a few model two-dimensional problems where the primary unknowns
are scalar-valued as well as vector-valued. Examples will be both struc-
tural as well as from other areas of engineering. In what follows, we will
describe some important multi-dimensional problems and then examine
the application of our methods to them.

7.1.1 Anti-plane shear

y

x

b(x,y)

Force per unit volume
in z-direction

Fig. 7.1 Anti-plane strain body with
distributed load.

Anti-plane shear is a special case of three-dimensional elasticity. In
three-dimensional elasticity there are 3 primary unknowns, the displace-
ments u(x, y, z), v(x, y, z), w(x, y, z) in the three coordinate directions
x, y, z. In problems where anti-plane shear applies, u ≈ v ≈ 0 and
w = w(x, y) is not a function of z. This kinematic assumption reduces
a three-dimensional elasticity problem to a single scalar-valued problem
in two dimensions. For these assumptions to make reasonable sense the
only allowed loadings must occur in the z-direction; see Fig. 7.1.

The kinematic assumption for anti-plane shear gives rise to only two
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non-zero strains:

εxx =
∂u

∂x
= 0,

εyy =
∂v

∂y
= 0,

εzz =
∂w

∂z
= 0,

εxy =
1

2

(
∂u

∂y
+
∂v

∂x

)
= 0,

εyz =
1

2

(
∂v

∂z
+
∂w

∂y

)
=

1

2

∂w

∂y
=

1

2
γyz

εzx =
1

2

(
∂w

∂x
+
∂u

∂z

)
=

1

2

∂w

∂x
=

1

2
γzx .

The components of the strain can be arranged in a matrix as

Strains : ε =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 =

 0 0 1
2
∂w
∂x

0 0 1
2
∂w
∂y

1
2
∂w
∂x

1
2
∂w
∂y 0

 .

If we wish to apply the Principle of Stationary Potential Energy, we
need an expression for the stored elastic energy in a state of anti-plane
shear. In anti-plane shear there are only two non-zero shear strains and
the strain energy (density) associated with these two strains is given by

1

2
Gγ2

xz +
1

2
Gγ2

yz [Energy/Volume] .

The elastic energy over the whole domain is the integral of this quantity:

Πelastic =

∫
volume

1

2
G
[
γ2
xz + γ2

yz

]
dV .

In order to form the total potential energy, one also needs an expression
for the potential of the load. If we consider a distributed load per unit
volume in the z-direction, b(x, y), then

Πload = −
∫

volume

b w dV .

The sum of the two quantities yields the total potential energy:

Πtotal = Πelastic + Πload

=

∫
A

1

2
Gt
[
γ2
xz + γ2

yz

]
dA−

∫
A

bt w dA .

In the above we have assumed that the thickness t of the body is con-
stant. This has allowed us to to explicitly integrate out the z direction,
since all the other quantities are assumed to be independent of z.

Note that the expression for Πtotal(w) depends on the function w(x, y)
which in turn depends on the coordinates x, y. For w to satisfy equilib-
rium, it must be a stationary point of Πtotal – the Principle of Stationary
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Potential Energy. Compared with the 1-dimensional case which depends
only on x, w here depends on two variables x, y. As before, let us con-
sider the determination of approximate solutions. In that case we need
to construct an approximate form for w(x, y) and like before we will
require the approximations to satisfy the the kinematic boundary con-
ditions. In fact we can proceed in an identical manner as we did with
one-dimensional problems and write

w(x, y) ≈
N∑
A=1

wAfA(x, y),

where fA(x, y) are known functions and wA are coefficients which must
be determined. The only difference with the 1-dimensional case is that
the functions fA depend not just on the x coordinate but also on the y
coordinate.

For compactness, we use the following notation:

∇w =


∂w

∂x
∂w

∂y


∇w · ∇w =

(
∂w

∂x

)2

+

(
∂w

∂y

)2

.

Substituting the approximation into the potential energy yields,

Πtotal(w)⇒ Πtotal(w) =

∫
A

1

2
Gt∇w · ∇w dA−

∫
A

btw dA

=

∫
A

1

2
Gt

(
N∑
A=1

wA∇fA
)
·
(

N∑
A=1

wA∇fA
)
dA

−
∫
A

bt

(
N∑
A=1

wAfA(x, y)

)
dA .

The stationary condition on Πtotal implies

0 =
∂Πtotal

∂wD
=

∫
A

1

2
Gt

[
∇fD ·

(
N∑
A=1

wA∇fA
)

+

(
N∑
A=1

wA∇fA
)
· ∇fD

]
dA

−
∫
A

btfD dA

=

N∑
A=1

[∫
A

Gt∇fD · ∇fA dA

]
wA −

∫
A

btfD dA

=

N∑
A=1

KDAwA − FD

⇒ Kw − F .

Here w denotes a vector with entries wA (A = 1, . . . , N). We have
also defined the matrix K (N -by-N) and vector F (N -by-1) which have
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entries

KDA :=

∫
A

Gt∇fD · ∇fA dA,

FD :=

∫
A

btfD dA .

By solving the linear system Kw = F for the undetermined coefficients
w, one obtains the approximate solution as

wapprox =

N∑
A=1

wAfA(x, y) .

Example 7.1

Anti-plane shear rectangular domain Consider an anti-plane shear prob-
lem defined on a rectangular domain of side lengths 2a and 2d with fixed
boundary conditions on the perimeter. The coordinate system is set up
as is shown in Fig. 7.2. Assume further that the body force is constant;
i.e., b(x, y) = b0. Find an approximate solution to this problem.

d

x

y

−a a

−d

Fig. 7.2 Anti-plane shear problem
setup: loading b(x, y) = bo, through
thickness dimension t, and shear mod-
ulus G. Edges are all restrained.

Solution: In order to apply the Method of Ritz, one must select an ap-
proximate form for the solution which satisfies the kinematic boundary
condition. This approximate form can be constructed by multiplying
two functions which satisfy the boundary conditions in x and y sepa-
rately. Possible choices for a function which is equal to zero at x = −a, a
are,

cos
(π

2

x

a

)
or

(
1−

(x
a

)2
)
.

Possible choices for a function which is equal to zero at y = −d, d are,

cos
(π

2

y

d

)
or

(
1−

(y
d

)2
)
.

Multiplying these choices together generates approximation functions
which satisfy all the boundary conditions:

f(x, y) = cos
(π

2

x

a

)
cos
(π

2

y

d

)
,

g(x, y) =

(
1−

(x
a

)2
)(

1−
(y
d

)2
)
.

Let us pick,

w(x, y) ≈ Cg(x, y) ,

as the approximate solution, where C is the undetermined coefficient.
The total potential energy for this problem is,

Πtotal(w)⇒ Πtotal(C) =

∫
A

1

2
Gt∇w · ∇w dA−

∫
A

b0tw dA .
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The gradient of our approximate form is

∇w = C

 2x
a2

(
−1 +

(
y
d

)2)
2y
d2

(
−1 +

(
x
a

)2)
 ,

and

∇w · ∇w = C2

{
2x

a2

[
−1 +

(y
d

)2
]}2

+ C2

{
2y

d2

[
−1 +

(x
a

)2
]}2

,

which leads to the expression for Πtotal:

Πtotal(C) = C2

∫
A

1

2
Gt

{
2x

a2

[
−1 +

(y
d

)2
]}2

+

{
2y

d2

[
−1 +

(x
a

)2
]}2

dA

−C
∫
A

b0t

(
1− x

a

2
)(

1− y

d

2
)
dA

= C2A− CB .

Here we have denoted the definite integrals as A and B for compactness.
The stationary condition on the potential energy yields:

∂Πtotal

∂C
= 2CA− B = 0,

from which C is determined as:

C =
B
2A

=
5

8

b0
G

a2d2

a2 + d2
.

Thus the approximate solution is:

w(x, y) ≈ 5

8

b0
G

a2d2

a2 + d2

(
1−

(x
a

)2
)(

1−
(y
d

)2
)
.

Remarks:

(1) As a simple check one can verify the dimensions of the solution.
In this case

b0
G

a2d2

a2 + d2
=

[F/L3]

[F/L2]

[L2][L2]

[L2]
= [L]

and the dimensions are seen to correctly be length.

(2) If we had used the cosine guess, f(x, y), then the result would have
been:

w(x, y) ≈ 64

π4

b0
G

a2d2

a2 + d2
cos
(π

2

x

a

)
cos
(π

2

y

d

)
,

which also has the correct units.
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7.1.2 Thin Membrane

The problem of solving for the deflection w(x, y) of a thin membrane
acted upon by a transverse pressure p(x, y) and under constant tension
S [F/L] has a total potential energy with a form identical to the anti-
plane shear case. The setup of this problem is shown in Fig. 7.3. The
total potential energy for such a system is

S
p

Fig. 7.3 Thin membrane problem un-
der the action of a distributed trans-
verse pressure p(x, y) and a constant
edge tension S.

Πtotal(w) =

∫
A

1

2
S∇w · ∇w dA−

∫
A

p w dA ,

where p(x, y) is a pressure applied in the direction orthogonal to the
plane of the membrane. An identical procedure to the one described for
anti-plane shear applies to thin membrane problems.

7.1.3 Non-circular solid cross section bars in
torsion

In the torsion of bars with non-circular solid cross sections, one cannot
use the assumptions made in the treatment of bars with circular cross-
sections. In particular when the cross-section of the bar is non-circular,
the cross-sections do not remain planar upon twisting; they warp out
of plane. To solve such problems, one requires the equations of three-
dimensional elasticity. The general theory associated with such problems
is known as St.-Venant’s theory of torsion. A central result of this
theory is that the torsional stiffness of a non-circular torsion rod

kT :=
T

φ′
,

where T is the applied torque and φ′ is the twist rate. The torque is
given by a simple integral:

T

T

T

T
k GJ=T k GJ=T

x

y

z

Fig. 7.4 Torsional stiffness problem for
non-circular cross-sections.

T := 2

∫
A

ϕ dA .

The function ϕ in this expression is known as Prandtl’s stress function.
The governing potential for ϕ happens to be identical in form to the one
for anti-plane shear; viz.,

Πtotal(w) =

∫
A

1

2
∇ϕ · ∇ϕ dA−

∫
A

2Gφ′ ϕ dA ,

where G is the shear modulus. The boundary condition on ϕ is ϕ = 0
on the boundary of the domain A. Once ϕ is known, one can also obtain
quantities other than T and kT such as the torsional shear stresses σxz
and σyz via

σxz =
∂ϕ

∂y
,

σyz = −∂ϕ
∂x

.

The procedure for solving such problems is identical to that described
above.
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7.1.4 Underlying equilibrium equations

Recall that in the application of the Principle of Stationary Potential
Energy for one-dimensional problems, there is always an equilibrium
equation whose solutions correspond to stationary points of the total
potential energy. For example, with the tension-compression bar the
governing differential equation for equilibrium is

(AEu′)′ + b = 0

and the corresponding potential energy is

Πtotal =

∫ L

0

1

2
AE(u′)2 dx−

∫ L

0

bu dx .

For the two dimensional problems that have been introduced, the under-
lying governing differential equation for equilibrium has not been men-
tioned up to now. For completeness we remark that these equilibrium
equations all have the same form:

�∇2w + N = 0 ,

where � and N represent different constants depending on the mechan-
ical problem at hand:

• Anti-plane shear: � = Gt and N = bt ⇒ Gt∇2w + bt = 0.

• Thin membrane: � = S and N = p ⇒ S∇2w + p = 0.

• Non-circular torsion: � = 1 and N = 2Gφ′ ⇒ ∇2w + 2Gφ′ =
0.

This form of equation is known as Poisson’s equation and in certain cases
can be solved directly through the method of separation of variables.
However for general domains and in cases where the coefficients are not
constants, approximate solutions are the norm as hand solutions are
virtually impossible.

Example 7.2

Anti-Plane Shear
We illustrate here the proof that our multidimensional potential en-

ergy formulation is equivalent to the partial differential equations given
above. We will do this for the anti-plane shear case. Consider a do-
main A with boundary ∂A, where w is stated to be zero on ∂A. In this
case, S = {w(x, y) | w = 0 for (x, y) ∈ ∂A} and V = {δw(x, y) | δw =
0 for (x, y) ∈ ∂A}. The minimization problem is

min
w∈S

Π[w(x, y)] = min
w∈S

[∫
A

1

2
Gt∇w · ∇w dxdy −

∫
A

btw dxdy

]
.
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Note that if we know the true solution w then Π[w] ≤ Π[w+αδw] for any
α ∈ R. This implies that the function h(α) ≡ Π[w + αδw] is minimized
at α = 0 for any δw ∈ V when w is the true solution. Thus we know
that

dh

dα

∣∣∣∣
α=0

= 0 .

Expanding this gives

0 =
d

dα

∣∣∣∣
α=0

[∫
A

1

2
Gt∇(w + αδw) · ∇(w + αδw) dxdy

−
∫
A

bt(w + αδw) dxdy

]
=

∫
A

1

2
Gt (∇w · ∇δw +∇δw · ∇w) dxdy −

∫
A

btδw dxdy

=

∫
A

Gt∇δw · ∇w dxdy −
∫
A

btδw dxdy

=

∫
A

Gt
(
∇ · (δw∇w)− δw∇2w

)
dxdy −

∫
A

btδw dxdy

=

∫
∂A

Gt δw︸︷︷︸
0 on ∂A

∇w · n ds−
∫
A

δw
(
Gt∇2w + bt

)
dxdy

= −
∫
A

δw
(
Gt∇2w + bt

)
dxdy .

This last expression must hold true for all virtual displacements δw and
thus one must necessarily have

Gt∇2w + bt = 0

at equilibrium. This proves that our potential energy formulation neces-
sarily implies the partial differential equation form. One can also show
the converse by simply reversing the steps shown. Thus the potential
energy formulation is fully equivalent to the partial differential form.

7.1.5 Plate bending

As a last mechanical example of a system that can be described by a
scalar-valued function of two variables one can consider the bending of
a thin plate. In such problems, the transverse deflection of the plate is
governed by a potential energy composed of the loads and the elastic
strain energy of the plate. For isotropic linear elastic materials, the
latter is given by:

Πelastic =

∫
Ω

D

2

[(
∂2w

∂x2

)2

+

(
∂2w

∂y2

)2

+ 2ν

(
∂2w

∂x2

)(
∂2w

∂y2

)
+ 2(1− ν)

(
∂2w

∂x∂y

)2]
dA ,
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where D = Eh3/[12(1 − ν2)] is the flexural rigidity of a plate with
thickness h. If the loading is given by a pressure field, then the potential
of the load is given by

Πload = −
∫

Ω

p(x, y)w(x, y) dA .

The total potential energy is more complex than our previous examples
but its underlying features are the same. It is a scalar-valued functional1 1A functional is a function of a func-

tion.and its stationary points give rise to the equilibrium solutions. Given
a domain Ω, loading p(x, y), and boundary conditions on w(x, y) one
can proceed as above to find approximate solutions to the equilibrium
equations.

Remarks:

(1) The underlying differential equation for w is the so-called bi-harmonic
equation: D∇4w = p, where ∇4(·) = ∇2(∇2(·)). It is the two-
dimensional counter part to the Bernoulli-Euler beam equation
and is sometimes known as the Kirchhoff-Love plate equation.

7.2 Piezometrically driven transport of
ground water

In this section, we look briefly at a non-structural mechanics problem to
illustrate the generality of the methods we have developed. In particu-
lar we briefly examine the equations governing the transport of ground
water due to piezometric forces. To keep matters simple, we will restrict
our attention to strictly two-dimensional domains. A basic problem in
geotechnical engineering is that of ground water transport or seepage.
Water, water content, and water flow play an important role in both
natural and engineered soil systems. The basic variables that describe
the relevant physics are the water content c(x, y) (the ratio of local wa-
ter mass to local soil mass) and the flux of water q(x, y) measured in
dimensions of water volume per unit time per unit area. Flux is a vec-
torial quantity since flow has direction. For steady incompressible flow
along a streamline in regions where there is no heat or work transfer to
the fluid Bernoulli’s equation tells us that:

v2

2g
+

p

ρg
+ z = h (a constant) .

This is a statement of conservation of energy along a lossless streamline.
The first term is known as the velocity head, the second the pressure
head, and the third the elevation head. If there are frictional losses in
the system then the right hand side can be augmented with a head loss
term. In standard geotechnical settings it is safe to neglect the velocity
head.

In seepage problems, the head is a function of position in the soil
h(x, y) and the flux of water is proportional to the gradient of the head
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– water flows from high head to low head. The simplest model of this
states that the relation is linear. This is known as Darcy’s law:

q = −k∇h ,

where k is the permeability of the soil and it has dimensions of length
per unit time. Typical values of k range from 1 cm/s for well drained
conditions (say sands) to 10−4 cm/s for poor drainage (say very fine
sands) to lower values for clays.

In order to determine the head, h(x, y), we need a governing equation.
This comes to us via conservation of mass. If we consider an arbitrary
volume of soil, then any water that flows into the volume must also flow
out under steady-state conditions. In equations, this says:∫

A

q · n dA = 0 ,

where A is the surface of the volume and n is the outward normal to the
volume. Using the divergence theorem, this tells us that for any volume:∫

V

∇ · q dV = 0 .

Since this must hold for any volume V , the integrand must be zero:

∇ · q = 0 .

This is a differential expression of conservation of mass. The same result
can also be derived using a differential element construction. If we now
combine this with Darcy’s Law, then we obtain the governing equation
for the head:

∇ · (k∇h) = 0 ,

which written out in two-dimensions (for constant k) says,

k
∂2h

∂x2
+ k

∂2h

∂y2
= 0 .

We recognize this to have the same functional form as we discussed for
anti-plane shear, torsional warping, and membrane deflection. Thus by
analogy, we can directly write a stationary (minimum) potential “en-
ergy” version of the seepage problem as

min Π[h(x, y)] =

∫
Ω

1

2
k

[(
∂h

∂x

)2

+

(
∂h

∂y

)2
]
dxdy .

To solve the minimization problem we can construct an expansion

h(x, y) =
∑
A

hAfA(x, y) ,
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Impervious layer

40 m

12 m

30 m

10 m

2 m

water

k = 1e−3 m/s k = 1e−3 m/s

k = 5e−4 m/s

k = 2e−3 m/s

Fig. 7.5 Geometry of dam example.

where fA(x, y) are known functions as before and hA are unknown pa-
rameters that need to be determined by minimizing the potential energy.
The resulting matrix equations are simply:

Kh = 0 ,

where h is the vector of head parameters and

KAB =

∫
Ω

k∇fA · ∇fB dxdy =

∫
Ω

k
∂fA
∂x

∂fB
∂x

+ k
∂fA
∂y

∂fB
∂y

dxdy .

By identifying boundary conditions and separating free from driven de-
grees of freedom, one can then solve these equations. For simple settings
products of polynomials and trigonometric functions are suitable. For
more general settings the use of local hat-like functions, i.e. those with
compact support, are more feasible. From such a computation one ob-
tains the head h(x, y). This can then be used to find quantities like
the pressure head (hpressure = h − helevation) at various points and thus
compute uplift forces; further, the magnitude of the gradient of the head
can be computed ‖∇h‖ to check for the relative magnitude of the forces
on the soil particles.

Example 7.3
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Seepage under a dam
As an application example, let us consider computing the seepage un-

der a concrete dam with sheet piles. The geometry is shown in Fig. 7.5
with the water level of 12 m and varying soil permeabilities above an
impervious layer. The boundary condition associated with the impervi-
ous layer is that there is no transport of water through it; i.e. q · n = 0
on the surface z = −32 m. This boundary condition is also appropriate
at the sheet piles and on the surfaces of the dam itself. Under the water
at the soil interface, the total head is computed to be h = 10 m from
Bernoulli’s equation where the elevation head datum has been taken at
the tailwater elevation (which makes the total head at the top surface
of the water equal to 10 m. At the tailwater elevation the total head
h = 0 m. To the right and the left we need to cut-off the domain to
make it finite. For convenience we will assume that the flux is zero on
these boundaries.

To compute the solution, we will break up the domain into triangular
finite elements as shown in Fig. 7.6. This triangulation defines a set
of natural hat-like functions which we can then use to minimize the
system’s potential energy. The results for the total head are shown
in Fig. 7.7 and the streamlines due to ∇h with isocontours of head
are shown in Fig. 7.8. The flux vectors are given in Fig. 7.9. All of
these results are post-processed from the head field h(x, y). A plot of
the pressure head under the dam is shown in Fig. 7.10. The pressure
head in this case is computed as hpressure = h − (−2). The integral
of this quantity gives the uplift force on the dam. Figure 7.11 shows
the magnitude of the piezometric gradient near the bottom of the sheet
piles. The magnitude in this region is seen to higher than elsewhere
in the domain and reflects the fact that the soil particles in this region
are experiencing higher levels of shear due to water flow, than in other
regions.

7.3 Virtual Work (Weak Form):
Application to two dimensional
problems

All of the problems treated in the previous section can also be addressed
using virtual work (or weak equilibrium). In fact, if one uses the same
approximation spaces for the primary unknown and the test functions,
then one will recover the exact same discrete expressions. In cases,
however, where there is no potential, then one needs to address the
problem using virtual work/weak equilibrium.
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Fig. 7.6 Triangular mesh for computation.

Fig. 7.7 Head distribution.
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Fig. 7.8 Flow lines (dashed black lines) and isocontours of head (solid colored lines).

Fig. 7.9 Water flux.
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Fig. 7.10 Pressure head under dam.

Fig. 7.11 Magnitude of piezometric gradient near the bottom of the sheet piles.
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7.3.1 Advection diffusion for pollutant transport

As a concrete example, let us consider the problem of pollutant transport
in a fluid (air for example). In such problems, we are interested in
tracking the concentration of chemical species in space and time. The
concentration, c(x, t), is measured as mass per unit volume, e.g. mg/m3.
It is transported through the domain in two ways: (1) diffusion and (2)
advection/convection. The two effects give rise to the total flux of the
chemical species being tracked:

J = Jdiffusion + Jconvection .

The dimensions of flux are mass per unit area per unit time. Random
motion gives rise to diffusive fluxes and to first order they can be de-
scribed by

Jdiffusion = −ε∇c ,
where ε is a matrix whose entries are known as the turbulent diffusiv-

ities; these are in a way material parameters of the whole system and
can often depend upon position. The dimensions of a diffusivity is area
per unit time. The advective flux is the material flux due to a moving
fluid carrying along the chemical species. It is expressed as

Jconvection = cv ,

where v is the velocity of the fluid and can be a function of position (and
time). The governing conservation law is the balance of mass. This is
the same relation we considered in the seepage problem. In the steady
state, this yields the conservation law:

−∇ · J = 0 .

Combining the flux law with the mass balance equation gives the final
(two-dimensional) advection-diffusion equation:

v · ∇c =
∂

∂x

[
εx
∂c

∂x

]
+

∂

∂y

[
εy
∂c

∂y

]
,

where it has been assumed for simplicity that the off-diagonal terms in
ε are zero and that v is a constant.

In order to focus on the essence of the problem, let us examine it in
one-dimension where it reads:

v
dc

dx
=

d

dx

[
ε
dc

dx

]
.

Unlike the seepage problem, a potential formulation for this equation is
not possible. In terms of the methodologies which we have developed to
this point, our main option is to convert this equation into a virtual work
or weak equilibrium/balance form. For concreteness let us suppose that
we wish to solve this equation over the domain [0, L] with a specified
concentration at the left-end x = 0 of c(0) = co and a specified diffusive
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flux Jdiffusive(L) = JDL at the right-end x = L. The true solution lies in
the solution space

S = {c(x) | c(0) = co} .
To proceed let us define a test function space (space of virtual concen-

trations)
V = {δc(x) | δc(0) = 0} .

Here we have followed the same pattern as before of requiring the test
functions to be zero at points where we know the value of our primary
unknown. To generate a weak form balance equation, we can multiply
our governing balance equation by an arbitrary test function and then
manipulate until we have it in an acceptable form. In this case, our steps
produce the following.

δc v
dc

dx
= δc

d

dx

[
ε
dc

dx

]
∫ L

0

δc v
dc

dx
− δc d

dx

[
ε
dc

dx

]
dx = 0∫ L

0

δc v
dc

dx
+
dδc

dx
ε
dc

dx
dx =

[
δc ε

dc

dx

]L
0∫ L

0

δcv
dc

dx
+
dδc

dx
ε
dc

dx
dx = −δc(L)JDL . (7.1)

The basic (weak form) problem can then be stated as needing to find
c ∈ S such that (7.1) holds for all δc ∈ V.

As before to make this infinite dimensional search feasible, one can
approximate the space of solutions and the space of test functions via
finite dimensional subsets; i.e. we can create subsets Ŝ ⊂ S and V̂ ⊂ V
which are parameterized by a finite set of parameters:

Ŝ = {c(x) | c(x) =
∑
i

cifi(x)}

V̂ = {δc(x) | δc(x) =
∑
j

δcjgj(x)} ,

where the functions fi and gj are known and satisfy the necessary con-
ditions for the approximation spaces to be subsets of the full spaces.
If we choose fi(x) = gi(x) then we obtain a Bubnov-Galerkin method.
For the advection-diffusion equation this is known to not be optimal
and in fact can lead to poor (unstable) results if too few terms are used
in the expansions. A more common choice for this problem class is to
pick different (though related) functions resulting in a Petrov-Galerkin
method. A common choice would be to use linear hat functions for fi(x)
and then to choose gi(x) = fi + sign(v)dfi/dx; this selection results in
what is known as an up-winding method. It places weight in the weak
form balance of mass to the upwind side of the flow. In this setting, the
final discrete equations have the form

∑
iKjici = Fj , where

Kji =

∫ L

0

gjv
dfi
dx

+
dgj
dx

ε
dfi
dx

dx



148 Two-dimensional problems

Flux input

x

z

x

y

2 m/s

5 m/s

Localized

Fig. 7.12 Geometry and coordinate system for CO emission computation.

and Fj depends upon the particular boundary conditions assumed.

Example 7.4
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Steady state CO concentration by a freeway As an example let us con-
sider the situation described in Nazaroff and Alvarez-Cohen Environ-
mental Engineering Science (2001, Ex. 7.D.2). In this problem we wish
to determine the CO concentration distribution downwind from a free-
way (in the steady state). On the freeway in question, 10,000 cars pass
by in each direction per hour and are traveling at an average speed of
50 mi/hr. The vehicles are assumed to emit 20 gCO/mi. This emis-
sion diffuses away from the freeway as well as being convected away.
For an analysis domain, we will look at a representative two dimen-
sional vertical slice orthogonal to the freeway; see Fig. 7.12. Using the
given data, one can show that the vehicles emit 70 mg/(m s) of CO
into the domain. For the advection we will assume that the ground
level wind speed is 2 m/s and that it increases linearly to 5 m/s at an
elevation of 100 m (the top of our analysis domain). The turbulent dif-
fusivity in the horizontal direction will be assumed as εx = 0.1 m2/s
and in the vertical direction we will assume that it varies parabolically
as εy = 0.1 + 0.1y(100− y)/2500 m2/s. The dimensions of the analysis
domain will be 1000 m by 100 m with zero flux boundary conditions top
and bottom. At the left side, we will assume an inward boundary flux
which is localized near ground level J(0, y) · (−ex) = −70 exp[−y/1.0].
On the right side, we will assume a convective (only) boundary flux
Jdiffusive(1000, y) · ex = 0.

To create our approximation spaces we will use a two dimensional
generalization of the hat functions that are built off quadrilaterals for
the concentration field and their up-winding counterparts for the test
functions. The quadrilaterals are made smaller near the emission source
to increase the accuracy of the computation in that region (the region
of high gradients). Figure 7.13(a) shows the concentration field for the
overall domain using a 1000 by 100 grid (10,000 equations). A zoom
view is shown in Fig. 7.13(b). Vertical and horizontal sections of the
solution are shown in Fig. 7.14. The CO is seen to be localized near the
ground level and then diffuses quite rapidly as one move away from the
source. An examination of the flux vectors (not shown) of the CO close
to the source reveals that the transport is mainly convective but the
plume spreads vertically with diffusion. As noted the flux is composed
of a convective component and a diffusive component. Looking at the
separate components shows how the diffusive flux lifts the CO and mixes
it in the vertical direction while the convective component moves it lat-
erally without dispersion. Of importance for air quality standards is the
ground level concentrations of CO and this is shown in Fig. 7.14(a) –
teal-blue curve. The allowable 8hr exposure standard is 10 mg/m3 which
occurs ∼ 50 m from the freeway. At higher elevations the values drop
off quickly; for example at 1.7 m elevation the concentration is always
below 10 mg/m3. If one recomputes the problem using emission values
representative of 1960 values (roughly an order of magnitude higher than
today’s standards and four times higher than the number we have used
in our analysis) then this distance increases to over 1000 m.
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(b) Zoom view.

Fig. 7.13 Concentration field.
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Fig. 7.14 Concentration field sections.
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Exercises

(7.1) Consider an elastic cylinder of outer radius Ro and
inner radius Ri with length L. Assume that the
outer radius is fixed (zero motion) and the inner
radius is bonded to a rigid rod. A force F is ap-
plied to the end of the rod to move it an amount
∆. Using stationary potential energy find an ex-
pression for the deflection of the cylinder. Assume
a one parameter solution (parameter C) of the form

w(r, θ) = ∆−∆
r −Ri
Ro −Ri

+C(r−Ri)(r−Ro) ∈ S .

Approach this as an anti-plane shear problem. Also
find the required force F . Note that τrz = Gγrz
and γrz = ∂w/∂r (for anti-plane shear).

(7.2) Consider a circular membrane of radius R which
is restrained from deflection at its perimeter. The
membrane is under a uniform tension of magnitude
S and loaded with a uniform pressure p. Assume a
deflection of the form:

w(r, θ) = C

[
1−

( r
R

)2
]

and using stationary potential energy find an ap-
proximate expression for the center-point deflec-
tion. Note that in polar coordinates

∇w =

 ∂w
∂r

1
r
∂w
∂θ


and that

∫
A

(·)dxdy →
∫
A

(·)rdrdθ.
(7.3) Consider a circular membrane of radius R which

is restrained from deflection at its perimeter. The
membrane is under a uniform tension of magnitude
S and loaded with a point force P at its center. As-
sume a deflection of the form:

w(r, θ) = C
[
1−

( r
R

)]
and using stationary potential energy find an ap-
proximate expression for the center-point deflec-
tion.

(7.4) Consider the membrane in Problem 7.2 but with a
pressure loading of the form p(r) = po

r
R

. Find an
expression for the displacement field using station-
ary potential energy using a guess of the form:

w(r, θ) =

3∑
n=0

wn
( r
R

)n
.

Since the guess does not automatically satisfy the
kinematic boundary condition you can either add
that constraint using a Lagrange multiplier or by
simply eliminating one of the coefficients a priori
and solving the minimization problem in terms of
three unknown parameters instead of four. Note
that the boundary conditions is

∑3
n=0 wn = 0.

Your result will actually be the exact solution.

(7.5) Consider a rectangular plate Ω = {(x, y) | 0 ≤ x ≤
a and 0 ≤ y ≤ b}. The plate has thickness h and
is loaded at its center with a point force P (trans-
verse to the plane of the plate). Assume that the
plate is supported at its edges with simple supports
(no displacement, free to rotate) and compute an
approximate solution for the deflection of the plate
of the form:

w(x, y) ≈ C sin(πx/a) sin(πy/b)

using stationary potential energy.

(7.6) Consider a plate of dimension 2a×2b with clamped
edges (zero motion and zero rotation) which is
loaded with a uniform transverse pressure po. As-
sume an approximate solution in the form of a sin-
gle period cosine function in x times a single period
cosine function in y (coordinate origin at the center
of the plate) and find an approximate expression for
the center point displacement. [Hint: The exact so-
lution w(0, 0) ≈ 0.0759poa

4/Eh3 for a/b = 1.5 and
ν = 0.3. Your solution should be quite close to
this.]

(7.7) Consider the potential energy for a stretched mem-
brane of domain Ω with tension S and applied
transverse pressure p(x, y). Assume the membrane
is fixed on its boundary ∂Ω. Compute the varia-
tional derivative of the energy.

(7.8) Consider a rectangular bar with cross-sectional di-
mensions a× b.
y

xa

b cross-section of bar
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Determine an approximation for the torsional stiff-
ness kT by assuming an approximation of the form

S̃ = {ϕ(x, y) | ϕ(x, y) = A sin(πx/a) sin(πy/b)}

for the Prandtl stress function.

(7.9) Consider a square membrane with side length a
which is clamped at its perimeter and subject to a
uniform tension S and a transverse pressure p(x, y).

(a) Derive the weak form expression for this prob-
lem.

(b) Find a solution for the deflection of membrane
by approximately solving the weak form. Use
single parameter solution and test spaces.

(7.10) Bilayer lipid biomembranes are two dimensional
plate-like structures, whose (elastic) bending en-
ergy is given by the so-called Helfrich energy func-
tional:

Πelastic[h(x, y)] =

∫
A

1

2
B

(
∂2h

∂x2
+
∂2h

∂y2

)2

dxdy ,

where A is the area of the membrane, B is the
bending stiffness of the membrane (in units of en-
ergy), and h(x, y) is the (transverse) deflection of
the membrane as a function of x and y.

h(x,y)

x

y

L

L

(a) Consider a square membrane of size L ×
L where h = 0 on the perimeter of
the membrane and determine an approx-
imate solution for the center deflection
versus applied (uniform) normal pressure
(Πload = −

∫
A
ph dxdy). Assume Ŝ =

{h(x, y) | h(x, y) = C sin(πx/L) sin(πy/L)}.
(b) If L = 10 µm, B = 10−19 J, how much pres-

sure is required to generate a 1 µm deflection?

(7.11) Consider Problem 6.13. What is the underlying
governing differential equation for w(x)?

(7.12) A low-molecular weight substance γ is being in-
jected into a one-dimensional reservoir at a con-
stant rate bo (g/m3 · s). γ is being consumed by a
chemical reaction at a spatially inhomogeneous rate
α(x) = α1 +α2x (1/s), where α1, α2 are given con-
stants. It also diffuses laterally with a spatially in-
homogeneous diffusivity D(x) = D1 +D2x (m2/s),
where D1, D2 are given constants.

x

L

bo

If the concentration of γ is known at x = 0 and
x = L, then the distribution of γ, c(x) ∈ S =
{c(x) | c(0) = co and c(L) = cL} over the domain
[0, L], is the minimizer of the potential

Π[c(x)] =

∫ L

0

1

2
D(x)(c′)2 dx+

∫ L

0

1

2
α(x)c2 dx

−
∫ L

0

boc dx

Determine the governing differential equation for
c(x).

(7.13) Consider the problem of Darcy flow (seepage)
where the flux law has been modified to account
for anisotropic permeability characteristics in the
soil mass:(

qx
qy

)
= −

[
kx kxy
kxy ky

](
∂h/∂x
∂h/∂y

)
.

Here kx, kxy, and ky are given permeability con-
stants. In this case the governing potential energy
expression is of the form:

Π[h(x, y)] =

∫
Ω

1

2

[
kx

(
∂h

∂x

)2

+ 2kxy

(
∂h

∂x

)(
∂h

∂y

)

+ ky

(
∂h

∂y

)2
]
dxdy .

If one assumes an approximation of the form

h(x, y) =
∑
A

hAfA(x, y) ,

where fA(x, y) are known, then one can show that
the linear equations governing the parameters hA
are given as

∑
BKABhB = 0. Find an expression

for KAB .
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Boston, MA.

(5) Ugural, A.C. and Fenster, S.K. (2011). Advanced Mechanics of
Materials and Applied Elasticity (5th edn). Prentice-Hall, Upper
Saddle River, NJ.

The finite element method:

(1) Hughes, T.J.R. (1987). The Finite Element Method . Prentice-
Hall, Englewood Cliffs, NJ.

(2) Ottosen, N. and Petersson, H. (1992). Introduction to the Finite
Element Method . Prentice Hall, Hertfordshire UK.

(3) Zienkiewicz, O.C., Taylor, R.L. and Zhu, J.Z. (2013). The Finite
Element Method: Its Basis & Fundamentals (7th edn.) Butterworh-
Heinemann, Oxford.



Dirac Delta Function B
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Fig. B.1 Distributed load representa-
tion of a localized force.

The Dirac Delta function from the study of ordinary differential equa-
tions is the proper mathematical representation of a point force (or other
source of load). To see this, one must first observe that point forces are
merely mathematical idealizations which we employ for convenience. In
reality, it is impossible to apply a force at a point. Forces must be ap-
plied over finite areas. Figure B.1 shows one possible representation,
fζ(x), of a distributed load that is localized in a region of width ζ near
x = 0. Note that the total load represented by fζ(x) is given by

Total force =

∫ ζ/2

−ζ/2
fζ(x) dx =

1

2
ζ

2

ζ
= 1, (B.1)

independent of ζ. The idealization of a point force of magnitude 1 will
then be given by fζ(x) in the limit as ζ goes to zero. We define this
limit as δ(x); i.e.

δ(x) = lim
ζ→0

fζ(x) (B.2)

and call this function the Dirac delta function.
As defined, the Dirac delta function has the following indefinite inte-

gration property ∫
δ(x) dx = H(x) + C, (B.3)

where H(x) is the Heaviside step function defined by:

H(x) =

{
0 x < 0
1 x > 0 .

(B.4)

It is also useful to introduce the the Macaulay bracket notation, where
angle brackets have the following special meaning:

〈x〉 =

{
0 x < 0
x x ≥ 0.

(B.5)

With these definitions one can deduce the following useful integration
rules: ∫

H(x) dx = 〈x〉+ C (B.6)∫
〈x〉n dx =

1

n+ 1
〈x〉n+1 + C. (B.7)

Note that the definition we have introduced for the Dirac delta func-
tion also possesses the familiar property that for a continuous function
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g(x), ∫ 0+

0−
g(x)δ(x) dx = g(0). (B.8)
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Much of the utility of the topics presented in this book is related to
their use in a computational setting. Throughout, the theory has been
developed with an eye towards computer implementations. To gain a full
appreciation and command of the concepts, computational exercises and,
in particular, programing exercises are essential. In this appendix, one
will find directed laboratory exercises covering the main topics presented
in the preceding chapters. For most of the laboratory exercises, one
starts with partially completed programs (written in MATLAB) and
these are available for download from:

http://www.ce.berkeley.edu/∼sanjay/programs
Each lab is designed to be comfortably completed within a single su-
pervised three-hour computer laboratory session with the exception of
the last laboratory assingment which is designed for two three-hours
sessions.

C.1 Solution of traditional problems using
BVP4c

The objective of this lab is to expose you to solving differential equations
which govern mechanical phenomenon, not through hand calculations,
but through numerical methods. As you will see in your studies, as
the mechanical system becomes more and more complex, hand solutions
will become more and more difficult to obtain; in certain cases analytical
closed form solutions may not even be accessible. By using numerical
methods, even when these closed form solutions are not available one will
still be able to obtain good approximations for the exact solution. Good
numerical methods let you control the magnitude of the permissible
errors in your approximate solutions.

In this lab you will be using the software MATLAB and its built in
functions to solve the mechanical problem associated with bars in tension
and compression.

In this lab you will be asked to conduct the following things:

(1) Understand the procedure of using MATLAB to solve the tension-
compression bar problem.

(2) Use it to solve a set of boundary value problems.
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C.1.1 Tension-compression bar

Governing differential equation

The governing equations for a tension-compression bar are the following,

• Equilibrium

dR

dx
+ b(x) = 0 (C.1)

The distributed load b(x) can vary along the length of the bar.

• Kinematics

ε =
du

dx
(C.2)

• Constitutive relation

σ = E(x)ε (C.3)

The Young’s modulus E(x) can vary along the length of the bar.

• Resultant definition

R = A(x)σ (C.4)

Here we have assumed a simple system, where the stress σ is
constant across any cross-section. The cross-sectional area A(x)
can vary along the length of the bar.

These four relations can be combined to obtain a single equation rep-
resenting equilibrium in terms of the displacement,

d

dx

[
EA

du

dx

]
+ b = 0 . (C.5)

In order to utilize the solver in MATLAB, one must convert the govern-
ing equations into first-order form,

dy

dx
= f(y, x), (C.6)

where y is a vector of unknown variables, and f is a vector of known func-
tions depending on y and the position x. For the tension-compression
bar, it is convenient to choose the variables u and R as the unknown
variables (since the boundary conditions are typically given in terms of
u and R). In order to expand from second order form to first order form
we can re-introduce R into (C.5). This yields a system of two coupled
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equations,

dR

dx
+ b = 0,

R = EA
du

dx
.

The two equations can be rewritten as,

d

dx

 u

R

 =

 R

E(x)A(x)

−b(x)

 .

By defining,

y :=

[
y1

y2

]
=

[
u
R

]
,

f(y, x) :=

 f1(y, x)

f2(y, x)

 =

 y2

E(x)A(x)

−b(x)

 ,

(C.7)

one obtains the desired first-order form,

d

dx

 y1

y2

 =

 y2

E(x)A(x)

−b(x)

 .

Boundary condition

To solve the differential equation, one must apply boundary conditions.
For the second-order differential equation (C.5), one requires 2 boundary
conditions.

In order to apply boundary conditions in the solver in MATLAB, one
must define a function which returns a residual measuring how much the
boundary conditions are not satisfied; a residual of zero implies that the
boundary conditions are satisfied exactly. The function has the form,

g(y(a),y(b)) = 0

where g is a vector depending on the value of y evaluated at the bound-
ary points x = a and x = b; Here we assume the problem is defined on
the interval (a, b).

To clarify the form of the function, consider the boundary condition,

u(0) = u0,

R(L) = RL,
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where the displacement is known as u0 at the end point x = 0, and
the force is known as RL at the end point x = L. The residual vector
measuring the extent to which the boundary conditions are violated can
be written as  u(0)− u0

R(L)−RL

 .

Using the correspondence between u,R and y defined in (C.7), one de-
fines g as,

g(y(0),y(L)) :=

 g1(y(0),y(L))

g2(y(0),y(L))

 =

 y1(0)− u0

y2(L)−RL

 . (C.8)

Numerical method

To solve the differential equation in first-order form (C.6), we will use
the built-in MATLAB function bvp4c. The following point is impor-
tant to keep in mind when using numerical methods to solve differential
equations.

A numerical method always gives approximate so-
lutions! unless you get very lucky!

Only in special cases does one obtain an exact solution when using a
numerical method. There are cases when it seems like one has the exact
solution, but this is only because the solution has been obtained to a
high-degree of accuracy. Thus when invoking a numerical method, one
must specify the degree of accuracy one desires in the approximate solu-
tion. The accuracy of the approximate solution yapprox can be measured
by the relative accuracy, defined as,

||yapprox − yexact||
||yexact||

,

where yexact is the exact solution.
In the case of using bvp4c to solve the differential equation (C.6), there

are three parameters one can adjust to determine the attained accuracy
in the approximate solution. Let us assume we would like to solve the
differential equation on the interval (a, b). The three parameters are,

(1) xi (i = 1, . . . , N): The points at which you want to satisfy the
differential equation, where N is the total number of points and
x1 = a and xN = b.

(2) RELTOL: bvp4c will return an approximate solution yapprox

which satisfies the relation,∥∥∥∥dyapprox(xi)

dx
− f(yapprox(xi), xi)

∥∥∥∥ ≤ ∥∥f(yapprox, xi)
∥∥RELTOL ,
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for i = 1, . . . , N . Thus this controls the relative error in the solu-
tion at the points xi.

(3) ABSTOL: bvp4c will return an approximate solution yapprox

which satisfies the relation,∥∥∥∥dyapprox(xi)

dx
− f(yapprox(xi), xi)

∥∥∥∥ ≤ ABSTOL ,
for i = 1, . . . , N . Thus this controls the absolute error in the
solution at the points xi.

The number and location of the points xi must be placed so that
one will be able to sufficiently represent the behavior of the solution on
(a, b). A smaller value of ABSTOL and RELTOL will lead to a more
accurate solution but will in general require more time to obtain the
solution. Typically, ABSTOL and RELTOL are chosen between the
values of 1× 10−1 and 1× 10−16. The setting of tolerances must always
take into account the fact that computations on computers are always
subject to finite precision limits due to the fact that numbers are stored
in computers using a fixed number of bits.

C.1.2 MATLAB solution method with bvp4c

To solve boundary value problems in MATLAB, we will use the built-in
ODE solver bvp4c. bvp4c take 4 arguments and returns a structure that
contains the solution.

SOL = BVP4C(ODEFUN,BCFUN,SOLINIT,OPTIONS)

Type help bvp4c in MATLAB to see more information on the function.
In short, the first argument is a pointer to a function which computes
the right-hand side of the first order form of the ODE, the second argu-
ment is a pointer to a function which computes the boundary condition
residual, the third argument is a structure with information to start
the computation, and the fourth argument is a structure with solution
options.

To utilize this solver in MATLAB, one must go through the following
steps.

(1) Convert the differential equation into first-order form (C.6) and
choose the unknown variables in the vector y. Using this repre-
sentation, construct the function ODEFUN.

(2) Construct a function which returns a the boundary condition resid-
ual as in (C.8). Using this representation, construct the function
BCFUN.

(3) Use the function BVPINIT (built-in in MATLAB) to construct an
initial solution structure SOLINIT.

(4) Use the function BVPSET to construct an options structure OPTIONS,
which determines the degree of accuracy to which the solution is
obtained.
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(5) Pass the arguments ODEFUN and BCFUN as function handles and the
structures SOLINIT and OPTIONS into the function BVP4C.

In the following function and structure explanations, nvar defines the
length of the vector y defined in (C.6).

ODEFUN

[F] = ODEFUN(X,Y)

• This function serves the purpose of computing f(y, x) mentioned
in (C.6).

• INPUT:

X :Scalar value defining the position x
Y :Vector (nvar × 1) representing y evaluated at x.

• OUTPUT:

F :Vector (nvar × 1) representing f evaluated at x using y, i.e., f(y(x), x).

• EXAMPLE: For the tension-compression bar in 1D with E = 1,
A = 1 and b(x) = sin

(
π
2x
)
, the function is defined as,

function [fxy] = bar1d_ode(x,y)

% -- Define material property and geometry

E = 1;

A = 1;

L = 1;

% -- Define distributed load

b = sin(x*pi/(2*L));

% -- Define function

fxy = [y(2)/(E*A);

-b];

end

BCFUN

[RES] = BCFUN(YA,YB)

• To impose boundary conditions in MATLAB one must define a
function g of the form,

g(y(a),y(b)), (C.9)

where y(a) denotes the value of the function y at x = a, and y(b)
denotes the value of the function y at x = b. This function returns
a vector of residuals measuring the degree to which the boundary
conditions are not satisfied; the function g takes the value g = 0
if the value of y at x = a and x = b exactly satisfy the boundary
conditions.
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• INPUT:

YA :Vector (nvar × 1) defining the value of y at position x = a
YB :Vector (nvar × 1) defining the value of y at position x = b

• OUTPUT:

RES :Vector (nvar × 1) representing g.

• EXAMPLE: For the tension-compression bar in 1D with boundary
conditions,

u(0) = 0,

R(L) = 1 .

One defines the function g in the following way,

g(y(0),y(L)) :=

[
y1(0)− u0

y2(L)−RL

]
.

function [res] = bar1d_bc(ya,yb)

% -- Boundary Conditions (BC)

% u: displacement

% f: force

ua = 0;

fb = 1;

res= [ya(1)-ua;

yb(2)-fb];

end

BVPSET

OPTIONS = BVPSET(’RelTol’,RELTOL,’AbsTol’,ABSTOL)

• To set the degree of desired accuracy in the approximate solution,
one must construct an options structure OPTIONS to pass to bvp4c.

• INPUT:

RELTOL : See Section C.1.1 for definition.
ABSTOL : See Section C.1.1 for definition.

• OUTPUT:

OPTIONS : A MATLAB structure.
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BVPINIT

SOLINIT = BVPINIT(X,YINIT)

• One must construct a structure SOLINIT, defining initial parame-
ters of the solution, to pass to bvp4c.

• INPUT:

X : Vector defining the points at which one desires the solution.
YINIT : Vector (nvar × 1) defining a constant initial guess for each

component of the solution.

• OUTPUT:

SOLINIT : A MATLAB structure.

C.1.3 Lab Exercises

Function handles

If you are unfamiliar with function handles in MATLAB, try the exercise
in Section C.1.4 regarding usage of function handles in MATLAB. Make
sure you understand the importance of adding the @ symbol.

Download files

(1) Download the file bar1d.m.

Tension-compression bar

(1) Execute the file,

>> bar1d

This should give you a plot showing the displacement u(x) and the
internal force R(x). The solution is to a problem where

A = 1 ,

E = 1 ,

L = 1 ,

b(x) = sin
( π

2L
x
)
,

subject to boundary conditions:

u(0) = 0 ,

R(L) = 0 .

The exact solution to this problem can be obtained by solving the
differential equation by hand to yield:

u(x) =

(
2

π

)2

sin
( π

2L
x
)
,

R(x) =

(
2

π

)
cos
( π

2L
x
)
.
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Check the solution at a few points in the interval to determine the
error in the numerical solution; think about how this relates to
the error tolerances that you specified. Note that you can use the
MATLAB function deval to evaluate the solution structure at a
set of desired points.

(2) Change the file so that you obtain the solution for the problem,

A = 1 ,

E = 1 ,

L = 1 ,

b(x) = 0 ,

with boundary conditions

u(0) = 0 ,

R(L) = 1 .

What should the shape of the displacement field look like?

(3) Change the file so that you obtain the solution for the problem,

A = 1 ,

E = 1 ,

L = 1 ,

b(x) = sin

(
2π

L
x

)
,

with boundary conditions

u(0) = 0 ,

u(L) = 0 .

Does the solution make sense?

(4) Change the file so that you obtain the solution to the problem,

A = 1 ,

E = 1 ,

L = 1 ,

b(x) = δ(x− L/2) ,

with boundary conditions

u(0) = 0 ,

u(L) = 0 .

Does the solution make sense? Note, you will need to “define” the
“meaning” of the delta function for MATLAB, since it is not a built-
in function; see Appendix B or S. Govindjee Engineering Mechanics
of Deformable Solids Example 2.8, page 28, for details on the delta
function.
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C.1.4 MATLAB tips

To use the MATLAB bvp4c solver, one must know how to use function
handles. In basic programming, one learns how to pass “numbers” into
a function. Analogous to this one can also pass a “function” into a
function. This is done through the use of function handles or pointers.

The simple exercise below illustrates how they are used. We will
combine the two functions:

• A function which takes a number as an argument and returns its
3rd power.

• A function which takes a function as an argument and displays the
function value evaluated at 3.

Exercise

(1) Write a function called cubic which takes a number x as an argu-
ment and returns its 3rd power,

function y = cubic(x)

y = x^3;

end

and save this as the file cubic.m.

(2) Write a function which takes a function func as an argument and
prints the value of func evaluated at 3,

function eval_print(func)

func(3)

end

and save this as the file eval print.m.

(3) In the command window, execute the function eval print with
cubic as the input argument

>> eval_print(cubic)

You will see that this gives an error. The proper way of executing
this is:

>> eval_print(@cubic)

The @ tells MATLAB that the argument cubic is a function. Thus
whenever MATLAB requires a function handle, one must be care-
ful not to omit the @.
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C.2 Using BVP4c for beam bending
problems

The objective of this lab is to apply the skills learned in Lab 1 to the case
of beam bending. You will first modify your program so that it is able
to solve beam bending problems and plot appropriate results. Then you
will apply the program to two simple problems for which hand solutions
are well-known. The program from this lab is also useful for solve some
of the exercises in Chapter 1.

C.2.1 Beam equations in first order form

Governing differential equations: The governing equations for a
beam in bending are (see Fig. 1.8 for the sign convention):

• Equilibrium

dV

dx
+ q(x) = 0, (C.10)

dM

dx
+ V = 0 , (C.11)

where q(x) is the distributed load.

• Kinematics

θ =
dv

dx
, (C.12)

κ =
dθ

dx
. (C.13)

• Effective constitutive relation

M = E(x)I(x)κ (C.14)

The Young’s modulus E(x) and area moment of inertia I(x) can
vary along the length of the beam.

These relations can be combined to obtain a single equation repre-
senting equilibrium in terms of the displacement,

d2

dx2

[
EI

d2v

dx2

]
= q . (C.15)

This relation is effective for hand solutions as seen in Chapter 1. In order
to utilize the solver in MATLAB, one needs to employ the governing
equations in first-order form:

dy

dx
= f(y, x), (C.16)

where y is the vector of unknown variables, and f is a vector of known
functions depending on y and the position x.
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For beams in bending, we choose the variables v, θ, M , and V as the
unknown variables (since the boundary conditions are typically enforced
on these quantities). Recall from the solution of systems of equations
that one must have the same number of equations as variables. Thus we
will need 4 differential equations from the governing equations above.
These can be obtained by eliminating the variable κ from Eqns. (C.10-
C.14). This yields the four equations:

dV

dx
+ q(x) = 0,

dM

dx
+ V = 0,

θ =
dv

dx
,

M = E(x)I(x)
dθ

dx
.

These can be rewritten as:

d

dx



v

θ

M

V


=



θ

M

E(x)I(x)

−V

−q(x)


.

By defining

y :=



y1

y2

y3

y4


=



v

θ

M

V


,

f(y, x) :=



f1(y, x)

f2(y, x)

f3(y, x)

f4(y, x)


=



y2

y3

E(x)I(x)

−y4

−q(x)


,

(C.17)
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one obtains the desired first-order form,

d

dx



y1

y2

y3

y4


=



y2

y3

E(x)I(x)

−y4

−q(x)


.

Boundary conditions: To solve the system of differential equations,
one must apply boundary conditions. For the fourth-order differential
equation (C.15), one requires 4 boundary conditions.

In order to apply boundary conditions in the solver in MATLAB,
one needs to define a function which returns a residual measuring the
the boundary condition violation; a residual of zero implies that the
boundary conditions are satisfied exactly. The function has the form,

g(y(a),y(b)) = 0

where g is a vector-valued function depending on the value of y evaluated
at the boundaries x = a and x = b.

To clarify the form of the function, consider a cantilever beam with
an end shear; assume the end at x = 0 is built-in and the end at x = L
has the applied end shear V̄L, then

v(0) = 0,

θ(0) = 0,

M(L) = 0,

V (L) = V̄L .

The vector g defining the boundary condition residual is then given as

g =


v(0)− 0
θ(0)− 0
M(L)− 0
V (L)− V̄L

 .

Using the correspondence between v, θ,M, V and y defined in Eqn.
(C.17), one can define g as:

g(y(0),y(L)) :=


g1(y(0),y(L))
g2(y(0),y(L))
g3(y(0),y(L))
g4(y(0),y(L))

 =


y1(0)− 0
y2(0)− 0
y3(L)− 0
y4(L)− V̄L

 . (C.18)
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C.2.2 First Steps

Starting from the file from Lab 1:

(1) Edit the function names in the file to make them refer to beams
instead of bars. This is not necessary but is stylistically important
– for example, bar1d → beam1d, etc.

(2) Edit the function beam1d so that the number of variables will be
4.

(3) Edit beam1d ode to implement the beam bending equations.

(4) Edit beam1d bc to implement beam bending boundary conditions.

(5) Edit beam1d plot to create 2 additional sub-plots so that you have
one plot for each of the four solution fields v, θ,M, V . Make sure
that you have the correct plot labels.

Test your program: Use your program to solve the following prob-
lems.

(1)

E = 200 kN/mm2,

I = 104 mm4,

L = 1000 mm,

q(x) = q0 = −10 N/mm,

with boundary conditions

v(0) = 0,

M(0) = 0,

v(L) = 0,

M(L) = 0 .

This is a beam with both ends pinned and a uniform distributed
load of 10 N/mm. Is the displacement at the center of the beam
what you expect from the classical solution; viz.

v(L/2) =
5

384

q0L
4

EI
?

Use deval( ) to properly evaluate the solution. Do all four plots
correspond to your intuition?

(2) Change the file so that you obtain the solution for the problem,

E = 30× 106 psi,

I = 25 in4,

L = 36 in,

q(x) = 0,
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with boundary conditions

v(0) = 0,

θ(0) = 0,

M(L) = 0,

V (L) = −10 kip .

This is a cantilever beam with a load applied at the end. What
should the shape of the displacement look like? Does the tip dis-
placement match the expected result PL3/3EI? Use deval( )

to properly evaluate the solution. Do all four fields match your
expectations for this problem?
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C.3 Truss lab 1

The objective of this lab is for you to set up the necessary data structures
for defining a truss and to use them to generate the compatibility matrix
for a truss and the resulting stiffness matrix too. The results of this lab
will also be used for the next lab where we will program the boundary
conditions and loads into the file and solve the resultant equilibrium
equations.

C.3.1 Truss equations synopsis

• Equilibrium

ATR = F ,

• Compatibility/Strain-displacement relation

ε =

⌈
1

L

⌋
Au ,

• Constitutive relation

σ = dEcε ,

• Resultant definition

R = dAcσ .

The combined equilibrium equation solely in terms of the nodal dis-
placements is

Ku = F ,

where K = AT dAE/LcA. Recall further that the dimensions of A are
b×2n, where b is the number of truss bars and n is the number of nodes
in the truss. Each row of A has two non-zero (vectorial) entries. For
a generic row r in A, the non-zeros are located in columns associated
with the two nodes associated with bar r. These entries are eTn1n2

and
eTn2n1

, where the first goes into the column(s) associated with node n2

and the second into the column(s) associated with node n1. The vectors
themselves are the unit vectors connecting nodes n1 and n2.

C.3.2 Download

Download the two lab files. plotmesh truss.m is a plotting routine
which you will use in your program. There is no need to edit it.
truss student.m is the file you will need to edit. In this file there are
several locations identified with the text COMPLETE AS APPROPRIATE. At
these points you will need to provide the requisite code.
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C.3.3 Walk Through

Location of truss nodes

You will first need to define the locations of the nodes. This will be stored
in a 2× n matrix truss.node. The first row of this matrix will contain
the x-coordinates of the nodes and the second row the y-coordinates.
Each column will thus represent the x, y coordinates of the node and
there will be one column per node. Set up this matrix for the two bar
truss shown in Fig. 2.14.

Definition of the bars

You will next need to define which nodes are connected to each other
by bars. This information will be stored in a 2× b matrix truss.conn.
Each column of truss.conn will correspond to a bar and the entry in
the first row will be the node number for the first node for the bar and
in the second row will be the node number for the second node for the
bar. Set up this matrix for the truss in Fig. 2.14 where bar 1 is the
diagonal bar and bar 2 is the vertical bar.

Checkpoint

At this point comment out the rest of the file below the call to
plotmesh truss and run it. You should get a plot of the truss. Go back
and add a third bar which is horizontal and re-run to make sure things
are working ok. Once satisfied, remove the third bar.

Initialize A

Determine the size that A should be from the information in the struc-
ture truss and initialize.

Compute and insert entries into A

We will now loop over the bars and construct the compatibility matrix
using the information we have set up in truss.node and truss.conn.
In the loop, r refers to the generic bar r.

End to end vector Using the information in truss, compute the end
to end vector from the first node of bar r to the second node of bar r.
Do not normalize yet. The result will go in en1n2 as a 2× 1 vector.

Compute bar length Compute the length of the bar and store in L.

Compute AE/L Set up an array of AE/L values for the bars. For
simplicity, assume AE = 10 for every bar. Store in AEoL. There is line
under the allocation line for A to preallocate AEoL that you should now
properly complete. The preallocations are for efficiency.
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Normalize Normalize the length of en1n2 and store the result back
into en1n2.

Compute the end to end vector in the other direction Compute
the normalized end to end vector from the second node to the first node
and store in en2n1.

Insert into A For the bar r set up row r in A by inserting the trans-
pose of en1n2 and en2n1. This is the tricky part. For example eTn1n2

is a
1×2 matrix. It will need to be inserted into the two columns associated
with node n2. As a concrete hint, suppose the first node of a bar 4 was
node 1 and the second node was node 3. Then one needs to insert the
first component of eT31 into row 4 column 1 and the second component
into row 4 column 2. Further one needs to insert the first component of
eT13 into row 4 column 5 and the second component into row 4 column
6.

Compute K

Compute K. Hint: To turn the vector of AE/L values into a diagonal
matrix use the command diag.

C.3.4 Verify

Two bar example

Verify that your code is producing the correct expressions for A and for
K for the two bar truss from Fig. 2.14 with AE = 10. The answers are:

A =

[
−0.7071 −0.7071 0 0 0.7071 0.7071

0 0 0 −1.0000 0 1.0000

]

K =


3.5355 3.5355 0 0 −3.5355 −3.5355
3.5355 3.5355 0 0 −3.5355 −3.5355

0 0 0 0 0 0
0 0 0 10.0000 0 −10.0000

−3.5355 −3.5355 0 0 3.5355 3.5355
−3.5355 −3.5355 0 −10.0000 3.5355 13.5355


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Fig. C.1 Truss program test geometry.

Test

Use your code to input the truss shown in Fig. C.1; assume AE = 10
and compute A and K. Spot check various entries in the matricies to
verify that they are correct.
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C.4 Truss Lab 2

The objective of this lab is for you to complete the truss program which
you started in the previous lab. In this lab you will add boundary
condition data to your program and set up the active equations and
solve them.

C.4.1 Boundary Conditions

The relevant technical details of the imposition of boundary conditions
on a truss are provided in Sec. 2.1.3 on page 28. The primary data
that needs to be specified for each node in the truss is which degrees
of freedom (dofs) are specified, are part of ud, and which degrees of
freedom are subject to applied forces, even if zero, and thus are part of
uf . Additionally, one needs to specify the values of applied forces and
imposed displacements. To achieve this you will create three additional
entries in the truss structure from Lab 3.

(1) truss.bc is a 2×n matrix. Each column corresponds to one node.
The first entry is for the x-dof and the second for the y-dof. If a
dof has a prescribed displacement, then the matrix entry is set to
1 and if the dof has a prescribed force (even if zero) the matrix
entry is set to 0. Because in typical applications, few dofs have
prescribed displacements, the matrix is usually initialized to be all
zeros and then 1s are inserted where needed.

(2) truss.u is a 2×n matrix. Each column corresponds to one node.
The first entry is for the x-displacement and the second for the
y-displacement. If a dof has a prescribed displacement, then the
matrix entry is set to the value of the imposed displacement. Only
the values associated with boundary code 1 in truss.bc are used;
the rest are ignored.

(3) truss.f is a 2×n matrix. Each column corresponds to one node.
The first entry is for the x-force and the second for the y-force. If a
dof has a prescribed force, then the matrix entry is set to the value
of the imposed force. Only the values associated with boundary
code 0 in truss.bc are used; the rest are ignored.

C.4.2 Download

Download the lab files. plotmesh truss L4.m and plot defo truss.m

are plotting routines which you will use in your program. There is no
need to edit them. truss student L4.m is the file you will need to edit.
In this file there are several locations identified with the text COMPLETE
AS APPROPRIATE. At these points you will need to provide the requisite
code.
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C.4.3 Walk Through

Setting the boundary condition codes

You will first need to set the boundary condition codes for the nodes.
These will be stored in a 2 × n matrix truss.bc. The first row of this
matrix will contain the x-direction boundary codes of the nodes and
the second row the y-direction boundary codes. Each column will thus
represent the x, y-direction boundary codes of each node and there will
be one column per node. Set up this matrix for the truss in Fig. 2.14.
Note that nodes 1 and 2 will have boundary codes (1, 1)T and node 3
will have boundary codes (0, 0)T .

Set the imposed displacements

You will next need to define the driven displacement values at the
node/dof combinations where you set a value of 1 in truss.bc. The
given file already zeros out the truss.u array so there is nothing more
to do for this test case. If non-zero values were specified as driven sup-
port motions, then one would have to set the corresponding numbers in
this array.

Set the imposed forces

You will next need to define the imposed force values at the node/dof
combinations where you set a value of 0 in truss.bc. The given file
already zeros out the truss.f array so you will only need to set the
forces on nodes with applied loads. For the test case there is a horizontal
force at node 3. Thus one needs to set column 3 of truss.f to (1, 0)T ;
i.e. a unit horizontal force.

Checkpoint

Now, comment out all the lines below this point, run your program and
then call plot truss L4(truss). This should produce a plot showing
the appropriate supports and loads. Change node 1 to have a horizontal
roller support, re-run, and re-plot. Make sure the plot is correct. If every
thing is working, set the boundary codes back to being a pin support
at nodes 1 and 2 and uncomment the lines which you commented out.
Note that sometimes you will need to increase the size of the plot on
your screen to distinguish between pins and rollers.

Stiffness matrix

The code to generate the stiffness matrix K is set up and should cor-
respond to what you did in the prior lab. There is no need to edit this
part of the code.
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Extract the sub-matrices for the driven and free degrees of
freedom

The degrees of freedom associated with the driven degrees of freedom
are flagged by a 1 in truss.bc. To find the corresponding equation
numbers one first needs to reshape the matrix into a 2n× 1 array. This
is accomplished by using MATLAB’s reshape command. The relevant
equations numbers are then extracted using the find command. This
sets up the needed index arrays idd and idf. This is already done for
you in the code. The sub-matrix Kff , for example, is extracted using
the statement Kff = K(idf,idf). Complete the statements to extract
Kdd,Kfd, and Kdf .

Extract the forces on the free degrees of freedom

To extract the relevant forces, we first reshape the forces into a 2n × 1
vector and then use the idf index array to find the relevant values and
store them in Ff. This is done for you already.

Solve for the free displacements

We will now solve for uf . To do so we first reshape the displacement
array into a 2n × 1 matrix. The solution uf = K−1

ff [F f −Kfdud] is
then stored in u(idf). The reshape is done for you in the code already.
Complete the line that computes u(idf).

Compute the unknown reaction forces

Evaluate the unknown reactions forces and store them in F(idd). The
relevant relation is F d = Kdfuf +Kddud.

Reshape and store result in truss

One now reshapes the 2n× 1 vectors u and F to store the solution into
truss.u and truss.f, respectively. This is already done for you in the
code.

Plotting

To plot the deformed truss, you can call the function
plot defo truss(truss,scale), where scale is a magnification factor
for plotting the displacements (which are often too small to be seen
without magnification/scaling).

Test 1

Run your program on the two bar truss in Fig. 2.14. A scale factor of 1
is plenty for this example since AE = 10 and the load is 1. Does the plot
look correct? Print out truss.u to see the nodal displacements. Print
out truss.f. Are the forces correct? Note you can easily check them
by hand for this problem since the system is statically determinate.
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Test 2

Use your code to input the truss shown in Fig. C.2. Assume the distances
are given in milli-meters and that node 2 is pinned, node 5 has a vertical
roller, and node 4 has a horizontal roller. Let each bar be 30 mm in
diameter and be made of steel E = 210 kN/mm2. At node 1 assume
there is an imposed load of −10.0ey kN. Find the displacement of node
1, the reaction force at node 2, and plot the deformed truss using an
appropriate scale factor to make the motion of the truss clear.
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Fig. C.2 Test problem for truss program.
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C.5 Truss Lab 3

In this lab you will use your completed assignment from the prior lab to
solve two truss design questions.

C.5.1 Problem 1

Consider the truss shown in Fig. C.3. Assume that L = 2 ft, the bars are
all solid round stock mild steel (E = 30× 106 psi), the upper bars have
diameter 0.75 in, the lower bars have diameter 1.0 in and the diagonal
and vertical bars have diameter 0.5 in. Assume that F1 = 2.0F2 > 0.

(1) Find the smallest value of F2 at which a bar in the truss reaches
the yield stress σY = 40 ksi.

(2) Find the deflections at the locations of the applied loads when
yield first occurs.

(3) Which bar yields first?

Answers should be reported correctly to 3 significant digits.

L

F1

F2

L

Fig. C.3 Multiply supported truss.

Hints:

(1) See Lab 3 for a synopsis of the truss equations.

(2) The problem is linear and thus you can exploit superposition, if
you want.

C.5.2 Problem 2

Consider the truss shown in Fig. C.4, where all bars have modulus E =
100 kN/mm2 and area A = 100 mm2. Assume that F = 500 N. First,
compute the state of the stress in the truss and observe that the forces in
the upper and lower bars are increasing from the right to the left. Now
try and redesign the truss so that the forces in the upper and lower bars
are approximately uniform. Do this by moving only the free nodes while
keeping the length of the structure at 999 mm. The supports should
also remain fixed.

Hints:

(1) Just as in a beam you can think of the “internal moment” in this
system as being linear.
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(2) This “internal moment” is primarily carried by the forces in the
upper and lower cords.

333 mm

F

F

333 mm

Fig. C.4 Cantilevered truss with end-load.
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C.6 Potential energy: Visualization

The objective of this lab is to develop a understanding of the principle
of stationary potential energy through the visualization of the potential
energy in 1 and 2 degree of freedom systems.

C.6.1 Principle of stationary potential energy

Define the following quantites

Πtotal : Total potential energy of the mechanical system,
Πelastic : Elastic energy in the mechanical system,
Πload : Energy due to the load

and define

Πtotal := Πelastic + Πload .

Assume that all the energy quantites noted above depend on N variables
or displacements, u1, · · · , uN , i.e.,

Πtotal(u1, · · · , uN ) .

By defining the vector u,

u :=

u1

...
uN

 ,
we can denote the dependence as

Πtotal(u) .

The principle of stationary potential energy states:

A mechanical system is in an
equilibrium state

⇔
Πtotal is stationary.

More concretely this implies the following:

A mechanical system is in an equilibrium
state at û
⇔

∂Πtotal

∂ui
(û) = 0 for i = 1, . . . , N .

This principle allows us to look for the equilibrium states of a mechanical
system by looking for the stationary points of its potential energy. This
principle also tells us that if there are no stationary points, then there
are no states of equilibrium.
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C.6.2 Potential energy for linear mechanical
systems

For linear mechanical systems under the action of dead-loads, Πtotal can
be written as

Πtotal =
1

2
uTKu− uTF ,

where K is an N -by-N matrix and F is a size N vector. We will assume
here and throughout that K is a symmetric; i.e. K = KT .

Example: Spring with an end-load

Consider a spring (spring constant k), fixed at one end and subject to a
dead-load F at the other end. This is an example of the case of N = 1.
Denote the displacement at the loaded end by u. The potential energy
of the spring and the potential energy of the load are

Πspring =
1

2
uku =

1

2
ku2 ,

Πload = −uF

and thus

Πtotal =
1

2
ku2 − uF .

Example: Bar with two loads

Consider a mechanical system consisting of an elastic bar of length L
fixed at x = 0 and subject to two loads, F1 at the point x = a, and F2 at
the end x = L. Denote the displacement at x = a as u1 and the displace-
ment at x = L as u2. Employing the knowledge that the displacement
is linear between the loads, one obtains the following expression for the
potential energies:

Πbar =
1

2

EA

a
u2

1 +
1

2

EA

L− a (u2 − u1)
2
,

Πload = −F1u1 − F2u2 .

After some manipulation, the total potential energy can be expressed
as,

Πtotal =
1

2

[
u1 u2

] [EA
a + EA

L−a − EA
L−a

− EA
L−a

EA
L−a

] [
u1

u2

]
−
[
u1 u2

] [F1

F2

]
=

1

2
uTKu− uTF .

C.6.3 Solutions for linear mechanical systems

The behavior of the solutions for linear mechanical systems can be un-
derstood by looking at the properties of the matrix K (assumed sym-
metric). There are several important cases:
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(1) K is (symmetric) positive definite (all eigenvalues are positive):

• There is only one stationary point which is also a minimum.

• The minimum corresponds to a stable equilibrium state.

(2) K has both positive and negative eigenvalues :

• There is only one stationary point which is a saddle point
(not a minimum or maximum).

• The system is unstable at this point.

(3) K has a zero eigenvalue:

• There is at least one stationary point.

• The system can be at most neutrally stable at this(these)
points.

C.6.4 Exercise

Download files

Download the files plotenergy1v.m and plotenergy2v.m.

Potential energy for a 1 degree of freedom case

The function plotenergy1v.m plots the total potential energy for a 1
degree of freedom linear mechanical system. The potential energy for
this system is

Πtotal =
1

2
Ku2 − uF ,

where K and F are scalars. This expression corresponds to the total
potential energy for a spring (spring constant K) with end-load F .

You should be able to run the function with the following lines,

>> K = 1;

>> F = 1;

>> param.u_range = [-2,2];

>> param.e_range = [-2,2];

>> plotenergy1v(K,F,param);

to obtain the Figure C.5.
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Plot of the Potential Energy

Fig. C.5 Sample potential energy for
single degree of freedom system – K =
1 and F = 1.

(1) For each of the following cases

(a) K = 2, F = 1

(b) K = −2, F = 1

(c) K = 0, F = 1

plot the energy and identify key features on the graph; additionally,
answer the following questions:
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• Does the system have a solution (equilibrium point)?

• Does the potential energy have a stationary point?

• If the system has a solution calculate it by hand. What does
this solution correspond to in the plot (locate it). Is the
solution a maximum, minimum, or saddle state at this point?

• If the system has an equilibrium point, is this point stable or
unstable?

Potential energy for a 2 degree of freedom system

The function plotenergy2v.m plots the total potential energy for a 2
degree of freedom linear mechanical system as well as its countour plot
and gradient. The potential energy for this system is

Πtotal =
1

2
uTKu− uTF ,

where K is a 2-by-2 matrix and F is a 2-by-1 vector.

(1) Potential energy for a 2 spring system

(a) Derive the expression for the total potential energy of the
system constructed from 2 springs shown in Figure C.6. The
stiffness of the springs are k1 and k2, the displacement and
load at the two nodes are u1, F1, u2, F2, respectively. Write
down the expression for K for this system.

k1

u1, F1

k2

u2, F2

Fig. C.6 2 degree of freedom system

You should be able to run the plotting code with the following
lines,

>> % K = DEFINE AN APPROPRIATE 2-BY-2 MATRIX;

>> % F = DEFINE AN APPROPRIATE LOAD VECTOR;

>> param.u1_range = [-2,2]; % Adjust as needed

>> param.u2_range = [-2,2]; % Adjust as needed

>> plotenergy2v(K,F,param);

(b) For each of the following cases,

(i) k1 = k2 = 1, F1 = 0, F2 = 1

(ii) k1 = −1, k2 = 1, F1 = 1, F2 = 1
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(iii) k1 = k2 = −1, F1 = 1, F2 = 1

plot the energy using the function plotenergy2v.m and an-
swer the questions:

• Does the system have a solution (equilibrium point)?

• Does the potential energy have a stationary point?

• If the system has a solution calculate it by hand. What
does this solution correspond to in the plot. Is the so-
lution a maximum, minimum, or a saddle state at this
point?

• If the system has an equilibrium point, is this point stable
or unstable? (HINT: Compute the eigenvalues of K.)

(2) Potential energy for a shallow truss structure The potential
energy for the shallow truss structure shown in Figure C.7 is given
as,

Πtotal =
1

2
uTKu− uTF ,

where

K =
2EA

(1 + a2)
3/2

[
1 0
0 a2

]
.

For this problem assume EA = 1 and F1 = 0, F2 = 1. Comment
on the behavior of this structure as a decreases from a = 1 to
a = 0. Comment in terms of stability of the structure.

L = 1 L = 1

u1, F1

u2, F2

a

Fig. C.7 Shallow truss

C.6.5 Additional Exercise

Find the paper S. Govindjee, “Stability analysis of bay bridge saddle
configuration,” ASCE Journal of Structural Engineering, 136 1613-1618
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(2010).1 This short paper describes an analysis of a structural repair sys-
tem that was used to fix a broken eye-bar on the Oakland-San Francisco
Bay Bridge in 2009.

(1) Read the entire paper and in your own words briefly summarize
what is presented in the paper (a half-page paragraph should be
sufficient).

(2) Verify that the results of the paper are correct by reproducing
Figure 3 in the paper. [Note: the value of k is not needed. Simply
plot Π/k. This is sufficient to understand the behavior of the
system.]

1http://dx.doi.org/10.1061/(ASCE)ST.1943-541X.0000245
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C.7 Ritz’s method: Hat functions

The objective of this lab is to program a Ritz solution using a special
set of Ritz functions known as hat functions. These function underly
the most important numerical method for solving a very wide variety of
problems in science and engineering – viz., the finite element method.
Further, they posses good properties in terms of the degree to which
they are linearly independent.

C.7.1 Model Problem

The model problem we will work with is an elastic tension-compression
bar which has an imposed displacement at the left-end, an applied force
at the right-end, and a constant distributed load. Thus the problem we
wish to solve looks like:

AEu′′ + b = 0 , (C.19)

where u(0) = 0.03, AE du
dx (l) = Fapp = −2000, b(x) = 4000 and AE =

30 × 106 – all in US customary units. The space of trial solutions for
this problem is given by

S = {u(x) | u(0) = 0.03} . (C.20)

As we will be automating the solution for this problem we will work with
a solution space that does not a priori enforce the kinematic boundary
conditions. This implies that the potential energy expression we will
work with will need to include the potential energy of the support re-
action at x = 0. The needed expression for the total potential energy
which describes this problem is

Π(u(x)) =

∫ l

0

1

2
AE(u′)2 dx−

∫ l

0

bu dx− Fappu(l)−R0u(0) , (C.21)

where l = 2. For later use we will consider breaking the length l into
nel (equal) sized pieces (called elements); see Fig. C.8. In this way each
integral can be written as a sum over the elements:∫ l

0

(· · · ) dx =

nel∑
L=1

∫ xL+1

xL

(· · · ) dx . (C.22)

C.7.2 Linear Hat Functions

As an approximation we will assume that

u(x) =

n∑
I=1

cIgI(x) , (C.23)

where

gI(x) =



x−xI−1

∆x xI−1 < x < xI

xI+1−x
∆x xI < x < xI+1

0 otherwise .

(C.24)
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1

x1 x2 x3 x4 x5 x6 x7 x8

g1(x)
g8(x)g4(x)

Fig. C.8 Example hat functions g1(x), g4(x), and g8(x).

The points xI = (I − 1)∆x are called the nodes and ∆x = l/(n − 1),
where n is the number of functions in our Ritz expansion. Note that
each function is equal to one at the node associated with its index and is
zero at all the other nodes – gI(xJ) = δIJ . An important implication of
this is that the parameters cI represent the displacements at the nodes
and, in particular, we already know c1 = 0.03.

The intervals between the nodes, as already mentioned, are called the
elements and there are nel = n − 1 of them. Figure C.8 demonstrates
what these functions look like, where we have used the example of n = 8
and thus ∆x = 2/7 and nel = 7. Note that the functions on the ends are
non-zero over just one element whereas those in the interior are non-zero
over two elements.

C.7.3 Discrete Equations

Inserting the Ritz expansion into the functional and taking its derivative
with respect to an arbitrary parameter yields the system of equations:

n∑
J=1

KIJcJ = FI , (C.25)

where

KIJ =

∫ l

0

g′IAEg
′
J dx (C.26)

and

FI =

∫ l

0

gIb dx+ FappgI(2) +R0gI(0) (C.27)

Because the linear hat functions have compact support, most of the
terms in the stiffness matrix are zero. In fact KIJ = 0 unless |I−J | ≤ 1.

To efficiently compute the integrals and implement them in a clean
fashion in code, the integrals are computed by computing the contri-
butions from each element and then assembling them into the global
stiffness KIJ . Thus

KIJ =

∫ l

0

g′IAEg
′
J dx =

nel∑
L=1

∫ xL+1

xL

g′IAEg
′
J dx , (C.28)

where nel is the total number of elements. The term inside the summa-
tion is known as the element stiffness and in our case it has only four
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non-zero entries. These occur for I, J ∈ {L,L + 1}. Thus when com-
puting the contribution from a given element, say element L, we usually
form a two-by-two matrix with entries:

e=2

x1 x2 x3 x4

2 1

e=2
g (x) = g     (x)

3 2
g (x) = g     (x)

Fig. C.9 Local and global numbering
scheme for hat functions over element

e = 2.

keij =

∫ xL+1

xL

ge
′

i AEg
e′

j dx , (C.29)

where i, j ∈ {1, 2} and ge1 = gL and ge2 = gL+1. In this way keij , the so-
called element stiffness matrix, is a two-by-two matrix that contributes
to the global stiffness matrix. For example, consider the second element,
e = 2, then ke=2

11 would contribute to as K22 = K22 + ke=2
11 , K23 =

K23 + ke=2
12 , etc. The advantage of this scheme is that the element

stiffness matrix has a form that repeats for all elements and thus only
needs to be programmed once; see Fig. C.9.

We treat the right hand side in a similar fashion; i.e. we form an
element right-hand side and assemble it into the global right-hand side.
So considering element L, we have

fei =

∫ xL+1

xL

gei b dx + Fappg
e
i (2) +R0g

e
i (0) . (C.30)

Here as before i ∈ {1, 2} and ge1 = gL and ge2 = gL+1. This two-
by-one vector is then assembled into the global right-hand side. For
example, consider a case where one has 4 elements. Then for element
three F3 = F3 + fe=3

1 and F4 = F4 + fe=3
2 . Note that Fapp will only

contribute to the last element and R0 will only contribute to the first
element.

Exercise 1

Compute, by hand, an expression for the matrix elements keij for a
generic element. Your result should be a two-by-two matrix and it will
be symmetric.

Exercise 2

Compute an expression for fei for a generic element. Your result should
be a two-by-one vector. Remember that the applied end force will only
affect the very last element and the support reaction will only affect the
first element.

Exercise 3

Download the file lab7 student.m and program your expressions into
it to solve the given problem. If you have done it correctly you will find
that your approximate solution is exact at the nodes.

(1) Test it for n = 2 and n = 3 to verify this.

(2) How many elements do you need for the error to vanish in the
“eyeball” norm?
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Exercise 4

Make a log-log plot of the relative L2 error versus n. How many terms
are required to reduce the relative error to 10−6? Hint: Compute the
integrals by performing numerical quadrature over the elements and then
add up the result.
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C.8 Buckling: System of rigid-bars

The objective of this lab is to understand how the principle of stationary
potential energy can be applied to understand the behavior of buckling
phenomena. In this lab we will focus on the case of a discrete system
consisting of rigid elements and springs.

kl

kl

θ2

P

L

L

kt

θ1

Fig. C.10 Two rigid-bar structure with two springs.

C.8.1 Geometry

The geometry we will work with has two degrees of freedom as shown
in Fig. C.10. The two degrees of freedom that we will work with are
the rotation angles of the bars from vertical. The bars are joined with
a linear torsional spring with spring constant kt which has dimensions
of Force × Length. Further the middle joint is restrained by a linear
translational spring with spring constant kl which has dimensions of
Force / Length.

C.8.2 Potential Energy

The potential energy for this system can be expressed as

Π(θ1, θ2) =
1

2
klL

2[(1− cos(θ1))2 + sin2(θ1)] +
1

2
kt(θ2 − θ1)2

−PL(2− cos(θ1)− cos(θ2)) .
(C.31)

This expression is valid independent of the magnitude of the rotations.

Non-dimensionalization

In many problems, it is useful to non-dimensionalize expressions to re-
move redundant parameters from the problem and to improve perfor-
mance in numerical calculations. The dimension of energy is Force ×
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Length, thus a convenient parameter for non-dimensionalization is kt.
This yields

Π(θ1, θ2) =
1

2
e[(1− cos(θ1))2 + sin2(θ1)] +

1

2
(θ2 − θ1)2

−λ(2− cos(θ1)− cos(θ2)) ,
(C.32)

where the potential energy is now non-dimensionalized (divided by kt),
e = klL

2/kt is a non-dimensional ratio of spring stiffnesses, and λ =
PL/kt is a non-dimensional load parameter.

Exercise 1

Approximate the energy to quadratic order in the rotations. Keeping
up to quadratic order terms in the potential energy leads to linear order
equilibrium equations. Hint:

cos(x) ≈ 1 − 1

2!
x2 +

1

4!
x4 − · · · (C.33)

sin(x) ≈ x − 1

3!
x3 + · · · (C.34)

Exercise 2

Compute the equilibrium equations associated with your approximate
energy and arrange them in the matrix form (K − λG)θ = 0.

Exercise 3

Download the MATLAB files animate8.m, plotpe.m, plotv.m, and
potentiale.m. These files include plotting routines as well as a file
which computes the potential energy of the system for large deforma-
tions.

Compute (using Matlab) the buckling loads and modes using
[V,D]=eig(K,G). To help you visualize the results you should use the
routine plotv.m. Typing help plotv explains how to use the routine.
For example to plot the first buckling mode in red type:

>> plotv(V,D,1,L,’r’)

where L is the length of the bars (choose 10 for example) and the vectors
and eigenvalues are stored in V and D. Type help eig or doc eig for a
description of the output of eig.

(1) Assuming e = 0.1, what is the critical non-dimensional buckling
load? and corresponding bucking mode?

(2) Assuming e = 5.0, what is the critical non-dimensional buckling
load? and corresponding bucking mode?

(3) Assuming e = 100.0, what is the critical non-dimensional buckling
load? and corresponding bucking mode?
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C.8.3 Energy Landscape

For every value of the load parameter, the potential energy possesses
stationary points that represent the possible equilibrium states of the
system. An equilibrium point can either be a minimum point (i.e. sta-
ble), a saddle point (i.e. unstable in one direction, stable in another), or
a maximum point (i.e. unstable).

Exercise 4

Consider the case of e = 10. Make plots for the following three load
cases using plotpe.m. Type help plotpe to see the arguments for this
routine. For each case, identify all the equilibrium points on the graph
and label them as stable or unstable.

(1) λ = 0.80λcr.

(2) λ = 5.00λcr.

(3) λ = 30.0λcr.

Note, plotpe.m plots the full non-linear energy from Eq. (C.32) and not
the quadratic approximate energy.

C.8.4 Evolution of equilibrium

To be able to visualize the development of the system’s equilibrium
states one can animate the progression of the equilibrium states with
increasing loads. To do so, use the routine animate8.m. The routine
takes two arguments: (1) e the stiffness ratio and (2) L the bar lengths.
Before being able to use the routine, you will need to edit the routine
to add expressions for K and G where indicated.

To use type:

>> animate8(e,L)

where e and L are set to appropriate values.
The routine will plot the buckling modes was well as a surface plot of

the energy and a contour plot of the energy. The contour plot will addi-
tionally have the directions of the linearized buckling modes superposed
– red being the first mode and blue the second mode. The animation
plots the state of energy of the system for ten load values below the criti-
cal load, then ten load values between the two buckling loads, and finally
ten values above the second buckling load. Hitting any key on the key-
board will advance the animation – alternately one can edit animate8

to have the program automatically sweep through the loading states by
replacing pause with drawnow near the bottom of the routine.

Exercise 5

Animate the system for the case e = 5 and L = 10.

(1) By observing the plot, describe the expected evolution of the sys-
tem as the load is increased from zero to the highest value.
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(2) Are there ever any stable equilibrium states associated with the
second buckling mode?
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C.9 Buckling: Beams

The objective of this lab is to apply the principle of stationary potential
energy for the solution of beam buckling problems.

C.9.1 Buckling load: A cantilever beam
(clamped-free case)LEI

P

Fig. C.11 Cantilever beam with
compressive axial load.

Consider the cantilever beam showin in Fig. C.11, which is subjected to
a compressive axial load. The potential energy for this system is

Π(v(x)) =

∫ L

0

1

2
EI(v′′)2 dx− P

∫ L

0

1

2
(v′)2 dx . (C.35)

If we assume the deflection has the polynomial form

v(x) =

N∑
i=1

ci

( x
L

)i+1

, (C.36)

then the kinematic boundary conditions at x = 0 are automatically
satisfied.

Exercise 1

If we insert this approximation into the expression for the potential
energy, then we can write the governing equilibrium equations as (K −
λG)c = 0, where K comes from the bending energy term, G comes
from the potential for the load, and c is the vector of cis divided by the
length. Here λ = PL2/EI is a non-dimensional load value. Show that

(1)

Kij =
(i+ 1)(j + 1)ij

i+ j − 1
, (C.37)

(2)

Gij =
(i+ 1)(j + 1)

i+ j + 1
. (C.38)

Exercise 2

Download the file lab9 1 student.m. This file partially implements a
solution to this buckling problem. Where indicated complete the file as
follows:

(1) Fill in the appropriate expressions for K and G.

(2) Extract the critical non-dimensional buckling load λcr and store
in approx.

(3) Extract the corresponding eigenvector and store in c.
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Exercise 3

(1) What is the error with just one term in the approximation?

(2) What is the error with 3 terms in the approximation?

(3) Make a plot of error versus the number of parameters in the ap-
proximation for n = 1, 2, . . . , 10. Use semilog axes (log error versus
number of terms).

C.9.2 Beam with a transverse load and axial
compression LEI

P
P0

Fig. C.12 Simply supported beam
with transverse load and axial

compression.

Consider the beam shown in Fig. C.12. It is subjected to an axial com-
pression P and a transverse load Po. The potential energy for this system
is given by

Π(v(x)) =

∫ L

0

1

2
EI(v′′)2 dx− P

∫ L

0

1

2
(v′)2 dx − Pov(xo) , (C.39)

where xo is the location where the transverse load is applied. If we
assume the deflection has the trigonometric form

v(x) =

N∑
i=1

ci sin(iπx/L) , (C.40)

then the resulting discrete equations have the form (K − PG)c = F ,
where the stiffness K and geometric stiffness G matrices have a very
simple form (they are diagonal).

Exercise 4

(1) Determine expressions for Kij and Gij .

(2) Determine an expression for Fi.

(3) Since your matrices are diagonal, one can find an expression for ci
by hand. Do so.

Exercise 5

Download the file lab9 2 student.m. This file partially computes a
solution to this problem. Complete the file as follows:

(1) Where indicated implement your expression for ci.

(2) Where indicated complete the expression that evaluates the de-
flected shape for plotting purposes.

Exercise 6

(1) Find and plot the deflection of the beam for a transverse load
Po = 3 and axial load P = 0.2PEuler, where xo = 3L/5.
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(2) Plot the midspan deflection of the beam (with Po = 3) versus
P ∈ [0, 0.95PEuler]. When you make your plot, use v(L/2) for the
abscissa and P the ordinate.

(3) Add to this plot curves for Po = 1 and Po = 5.

Provide a detailed description of what the plots tell you.
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C.10 Bubnov-Galerkin method: Beams
with Hermite polynomials

The objective of this lab is to program a virtual work based solution us-
ing a special set of Bubnov-Galerkin functions known as Hermite poly-
nomials. These function underly the most important numerical method
for solving beam problems – the finite element method. Unlike the
polynomials we have been using, they produce matricies with reason-
able properties as the number of approximation terms grows. To keep
things simple will assume a linear elastic material but the ideas and
methodology are quite general.

C.10.1 Model Problem

The model problem we will work with is a linear elastic beam which has
an imposed displacement at the right-end, is built-in at the left-end and
is subjected to a constant distributed load. Thus the problem we wish
to solve looks like:

d2M

dx2
= q (C.41)

M = EIκ (C.42)

κ = v′′ (C.43)

where v(0) = 0, θ(0) = 0, v(L) = 0.1, M(L) = EIv′′(L) = 0, q(x) =
qo = −3000, EI = 120× 106 with L = 30 – all in US customary units.

Exercise 1

Sketch the problem described above.

C.10.2 Function spaces

To deal with the boundary conditions we will employ the methodology
we have used several times this semester of ignoring kinematic boundary
conditions in the formal derivation of the matrix equations. We will then
impose the boundary conditions at the end by separating the free degrees
of freedom from the driven ones; see Lab 7. In this setting, this means

S = {v(x) | no restrictions} (C.44)

and

V = {δv(x) | no restrictions} (C.45)
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C.10.3 Weak Form/Virtual Work Equation

For the given problem the virtual work equation reads:∫ L

0

δv′′(x)EIv′′(x) dx =

∫
δv(x)q(x) dx (C.46)

− δv(0)V (0)− δv′(0)M(0)

+ δv(L)V (L) + δv′(L)M(L)

C.10.4 Hermite Hat Functions

In the spirit of the linear hat functions which we used before, we will
assume an expansion for the displacement and the virtual displacement
as:

v(x) =

n∑
J=1

vJgJ(x) + θJhJ(x) , (C.47)

δv(x) =

n∑
I=1

δvIgI(x) + δθIhI(x) , (C.48)

where as before I, J index a set of nodes that breaks up the domain into
a set of n−1 elements. The parameters in this setting are vJ and θJ and
they also represent the beam displacement and rotation at the nodes.
The functions have the following properties:

(1) gJ(x) has unit value at the node it is associated with. It has zero
slope there. At the neighboring nodes it has zero value as well as
zero slope.

(2) hJ(x) is zero at the node it is associated with but it has unit slope
there. At the neighboring nodes it has zero value as well as zero
slope.

The functions are depicted in Fig. C.13. In the graph there is a node at
−1, 0, and +1. The upper graph shows gJ(x) for the node at 0 and the
lower graph hJ(x) for the node at 0. Outside of the domain of the two
elements attached to a node the functions are identically equal to zero.

The precise definitions in the general case are given by:

gJ(x) =



3ζ2

∆x2 − 2ζ3

∆x3 xJ−1 < x < xJ

1− 3ξ2

∆x2 + 2ξ3

∆x3 xJ < x < xJ+1

0 otherwise ,

(C.49)

where ξ = x− xJ and ζ = x− xJ−1 and

hJ(x) =


− ζ2

∆x + ζ3

∆x2 xJ−1 < x < xJ

ξ − 2ξ2

∆x + ξ3

∆x2 xJ < x < xJ+1

0 otherwise .

(C.50)
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Fig. C.13 Hermite polynomials for a node located at 0 with neighboring nodes at
−1 and +1.

Again, the points xJ = (J−1)∆x are the nodes and ∆x = L/nel, where
nel = n− 1 is the number of elements. Note, as before, the functions on
the ends are non-zero over just one element whereas those in the interior
are non-zero over two elements.

C.10.5 Discrete Equations

The discrete equations are arrived as by plugging our expansions into
the virtual work equation, separating out the coefficients of the virtual
motion, and noting that the remainder must be zero. The resulting
relations are given by

n∑
J=1

KIJcJ = F I , (C.51)

where

KIJ =

∫ L

0

EI

[
g′′I g

′′
J g′′Ih

′′
J

h′′Ig
′′
J h′′Ih

′′
J

]
dx (C.52)

and

F I =

∫ L

0

[
gIq

hIq

]
dx−

[
gI(0)V (0)

h′I(0)M(0)

]
+

[
gI(L)V (L)

h′I(L)M(L)

]
(C.53)

and

cJ =

(
vJ
θJ

)
. (C.54)

Note that for our particular problem M(L) is known; it is zero. The
other end reactions are unknowns and can be found from the ‘right-
hand side’ entries associated with the (three) driven degrees of freedom.
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Because the Hermite hat functions have compact support most of the
terms in the stiffness matrix are zero. In factKIJ = 0 unless |I−J | ≤ 1.
It should also be observed that we already know that v1 = 0.0, θ1 = 0.0,
and vn = 0.1 by the boundary conditions.

To efficiently compute the integrals and implement them in a clean
fashion in code, the integrals are computed by computing the contri-
butions from each element and then assembling them into the global
stiffness KIJ . Thus

KIJ =

∫ L

0

EI

 g′′I g
′′
J g′′Ih

′′
J

h′′Ig
′′
J h′′Ih

′′
J

 dx
=

nel∑
A=1

∫ xA+1

xA

EI

 g′′I g
′′
J g′′Ih

′′
J

h′′Ig
′′
J h′′Ih

′′
J

 dx ,
(C.55)

where nel is the total number of elements. If we consider the contribu-
tion for a single element with, say nodes A and A + 1, then the only
contributions come from I, J ∈ {A,A+ 1}. This results in four (block)
non-zero values for KIJ . Thus when computing the contribution from
a given element, say element A, we usually form a two-by-two block
matrix (four-by-four regular matrix) with block entries:

keij =

∫ xA+1

xA

EI

 ge
′′

i ge
′′

j ge
′′

i he
′′

j

he
′′

i g
e′′

j he
′′

i h
e′′

j

 dx , (C.56)

where i, j ∈ {1, 2} and ge1 = gA and ge2 = gA+1 (similarly for hei ). In
this way keij is a two-by-two block matrix that contributes to the global
stiffness matrix. For example, consider a case where one has 4 elements.
Then for element two ke=2

11 would contribute to as K22 = K22 + ke=2
11 ,

K23 = K23 + ke=2
12 , etc.

We treat the right hand side in a similar fashion; i.e. we form an
element right-hand side and assemble it into the global right-hand side.
So considering element A, we have

fei =

∫ xA+1

xA

[
gei q

heiq

]
dx−

[
gei (0)V (0)

he
′
i (0)M(0)

]
+

[
gei (L)V (L)

he
′
i (L)M(L)

]
,

(C.57)
Here, as before, i ∈ {1, 2} and ge1 = gA and ge2 = gA+1 (simlarly for
hei ). This two-by-one (block) vector is then assembled into the global
right-hand side. For example, consider a case where one has 4 elements.
Then for element three F 3 = F 3 + fe=3

1 and F 4 = F 4 + fe=3
2 .

Exercise 2

The block matrix elements keij for a generic element can be computed
by hand. Put together, the result is a two-by-two (block) matrix (or
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four-by-four scalar matrix) and it will be symmetric. The final result is:

ke =
EI

∆x3


12 6∆x −12 6∆x

4∆x2 −6∆x 2∆x2

12 −6∆x

sym. 4∆x2

 . (C.58)

Verify the first scalar entry of this matrix – i.e. verify that ke11 =
12EI/∆x3. For this exercise, it is helpful to note that over a single
element there are only 4 non-zero functions. If the first node is at 0 and
the second at a, then the two associated with the left most node are:

gleft(x) = 1− 3x2

a2
+

2x3

a3
(C.59)

hleft(x) = x− 2x2

a
+
x3

a2
(C.60)

and the two associated with the right most node are:

gright(x) =
3x2

a2
− 2x3

a3
(C.61)

hright(x) = −x
2

a
+
x3

a2
. (C.62)

Exercise 3

The block vector entries fei for a generic element can also be computed
by hand. The result is a four-by-one scalar vector with the following
entries.

fe =
qo∆x

12


6

∆x
6

−∆x

 . (C.63)

At the end elements there are contributions from the boundary terms.
For element 1, there is the additional contribution

−V (0)
−M(0)

0
0

 . (C.64)

For element nel (the last element), there is the additional contribution
0
0

V (L)
M(L)

 . (C.65)

Verify Eq. (C.63).
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Exercise 4

Download the file lab10 student.m and complete the program. There
is also a plotting program evalbeam.m to download; once downloaded,
type help evalbeam to learn how to use.

Exercise 5

Simplify the loading by setting qo = 0. The problem is then that of a
cantilever beam with an end-shear which has the well-known solution.
Use this special case to check that your program is correct. You should
get an exact answer for any number of elements (even just one element).
Look at all aspects of the solution. Forces, moments, displacements, and
rotations to make sure that they are correct.

Exercise 6

Verify that your program converges by checking that the displacement
solution converges as the number of nodes increases when you turn the
distributed loading back on. Note that with these approximation func-
tions one can increase the number of parameters without the difficulties
that arise with our simple polynomials from the earlier labs.

Exercise 7

Where does the maximum bending moment occur for the problem? and
what is its value?

Exercise 8

Add a mid-span pin support and solve the problem with your code.
Where does the maximum bending moment occur now? and what is its
value?

Exercise 9

Create a modified program that solves the buckling problem using these
approximation functions and re-compute the answers to some of the
prior lab and homework questions.



Sample Syllabus D
At Berkeley we teach the entire contents of this text in a single semester.
The pace is quite comfortable and allows plenty of time for discussion.
Each week there are two one-hour lectures and a three-hour computer
laboratory session. These are organized as follows:

(1) Week 1

(a) Introduction and overview

(b) Review: Tension-Compression bar as a second order differen-
tial equation

• No Lab

(2) Week 2

(a) Review: Torsion of a circular bar as a second order differential
equation

(b) Review: Beam bending as a fourth order differential equation

• (Lab 1) BVP4c in Matlab applied to tension-compression
bars

(3) Week 3

(a) Equilibrium of Trusses: Introduction

(b) Equilibrium matrix and compatibility matrix

• (Lab 2) BVP4c in Matlab applied to beams

(4) Week 4

(a) Truss Stiffness Matrix

(b) Energy Definitions: Power, Work, Conservative Forces, Con-
servative Systems

• (Lab 3) Construction of compatibility matrix for truss
program

(5) Week 5

(a) Energy conservation: trusses and expressions for torsion and
bending.

(b) Energy conservation: examples.

• (Lab 4) Static condensation and solution for nodal dis-
placements

(6) Week 6

(a) Energy conservation example; Potential Energy
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(b) Potential energy example, potential energy truss

• (Lab 5) Utilization of truss program from Lab 4 to ana-
lyze a truss.

(7) Week 7

(a) Potential energy truss, Approximate potential energy

(b) Midterm exam

• No Lab

(8) Week 8

(a) Approximate potential energy, the method of Ritz

(b) Approximate potential energy, the method of Ritz worked
example with program

• (Lab 6) Visualization lab for potential energy in 1 and 2
degree of freedom systems.

(9) Week 9

(a) Revisit rigid buckling with potential energy

(b) Revisit beam buckling with potential energy

• (Lab 7) Potential energy solution with hat functions:
mini-FEA code

(10) Week 10

(a) Buckling with supports and distributed loads

(b) Response of beams with axial compression; intro to virtual
work (bars)

• (Lab 8) Buckling lab with rigid bars

(11) Week 11

(a) Virtual Work; Principle of V.W.; approximate V.W.

(b) Virtual Work expressions for torsion and bending

• (Lab 9) Buckling of beams using polynomial and trigno-
metric expansions with potential energy approximations

(12) Week 12

(a) Introduction to multidimensional problems.

(b) Example two dimensional mechanical system

• (Lab 10) Virtual work solutions of beam problems using
Hermite polynomials: mini-FEA code (part 1)

(13) Week 13

(a) Example application to seepage and Darcy’s flow by potential
energy methods.

(b) Example application to pollutant transport by advection-diffusion
and weak equilibrium.

• (Lab 10 continued) Virtual work solutions of beam prob-
lems using Hermite polynomials: mini-FEA code (part
2)
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(14) Week 14

(a) Advection-diffusion example continued

(b) Review, final exam discussion, evaluations

• No labs
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Index

advection diffusion, 146
anti-plane shear, 131

approximate solution, 133
boundary conditions, 134
potential energy, 132
strong form, 137

area moment of inertia, 6
axial rigidity, 9
axial stiffness, 9
axial strain, 2
axial-bar, see tension-compression bar

beams, 6–8
amplified deflections with axial loads,

103
area moment of inertia, 6
bending strain, 6
bending strains, 123
bending with axial loads, 102, 199
boundary conditions

BVP4c, 171
buckling, see buckling, beam
canitlever, 7
cantilever

work stored, 52
composite cross-section, 7
curvature, 6
differential equation, 7
equilibrium, 6, 122
first order form, 10, 170
fourth order form, 169
moment boundary conditions, 122
moment resultant, 6
shear deflections, 54
shear force boundary conditions, 122
sign convention figure, 6
stored energy, 52
strain-curvature relation, 123
strong form, 122
structural relations, 10, 169, 201
work stored, 55

shear, 53, 55
bending stiffness, 10
Bernoulli’s equation, 139
bi-harmonic equation, 139
Bubnov-Galerkin method, 115, 147, 201
buckling, 89–104

basic properties, 89
beam

approximate solution, 96

clamped-clamped boundary
conditions, 95

clamped-free boundary conditions,
95

clamped-pin boundary conditions,
95

Euler load, 95
homogeneous solution, 95
load potential, 96
pin-pin boundary conditions, 95
potential energy, 96, 198

beam equilibrium, 94
buckling load, 90
classical boundary conditions, 94
collapse under self-weight, 101
continuous systems, 94
critical load, 90
discrete systems, 89
distributed loads, 100
eigenfunction, 99
eigenmode, 99
eigenmodes, see buckling, eigenvectors
eigenvalue problem, 92, 93, 98
eigenvalues, 93
eigenvector, 99
eigenvectors, 94
energy landscape, 196
Euler load, 95
generalized eigenvalue problem, 99,

100, 195, 198
homogeneous system of equations, 100
homogenous system of equations, 92
linearized load potential, 91
load potential, 89, 96
mode shape, 99
mode shapes, see buckling,

eigenvectors
multiple solutions, 90, 92
non-trivial solution, 94
potential energy formulation, 96
rigid-bar system, see potential energy,

rigid-bar system
stability of solution paths, 91
stationary points, 90
transverse spring support, 99
trivial solutions, 94

carbon monoxide transport, 149
Castigliano’s first theorem, 64–69

truss, 65

compatibility matrix, 20, 25
conservation of mass, 140, 146
conservative

system, 47
conservative force, see force,conservative
convective flux, 146

Darcy’s law, 140
delta function, see Dirac delta function
diffusive flux, 146
Dirac delta function, 157
directional derivative, 118

elevation head, 139
energy

conservation, 48–56
torsion, 50
trusses, 50

potential energy, 59
stored

torsion, 51
work-in, 49

error
absolute, 81, 163
L2, 81
pointwise, 81
relative, 81, 162

essential boundary conditions, 113
external virtual work, 112

flexural rigidity, 10, 139
follower force, 126
force

body, 44
conservative, 45–47
distributed, 44
friction, 45
gravitational, 47
non-conservative, 45
path independent, 46
potential, 46
surface, 44
volumetric, 44
workless, 44

functions
angle between, 80
as vectors, 78
inner product, 79
Lagrange polynomials, 80
linearly independent, 80
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norm, 79
orthogonal, 80
parallel, 80

generalized eigenvalue problem, 99
gradient, 133
ground water transport, 139

approximate solution, 140
differential equation, 140
potential energy, 140
seepage, 142

hat functions, 190
Hermite, 202

head, 139
elevation, 139
pressure, 139
velocity, 139

Heaviside step function, 157
Hermite functions, 202
homogeneous system of equations, 92
Hooke’s law, 2

axial, 2, 6
shear, 4

inner product
functions, 79

internal virtual work, 112

L2-inner product, 79
L2-norm, 79
Lagrange polynomials, 80
linearly independent

vectors, 79

Macaulay bracket, 157
MATLAB

BCFUN, 163, 164
BVP4c, 163
BVPINIT, 163, 166
BVPSET, 163, 165
deval, 167, 172
diag, 176
first order form, 160, 170
function handle, 168
ODEFUN, 163, 164
SOLINIT, 163

method of Ritz, 69
accuracy, 74
anti-plane shear, 133
beam, 70
buckling, 96
distributed load, 84
error estimate, 81
expansion, 71, 198, 199
functions, 71
hat functions, 190

element forces, 192
element stiffness, 192
elementwise integration, 191

multiple loads, 73
multiple space dimensions, 131
non-circular torsion, 136
polynomial expansion, 198
relative error, 72
solution space, 72
summary, 83
tension-compression bar, 74, 76
thin membrane, 136
trignometric expansion, 199
two parameter buckling solution, 97

moment of inertia, see area moment of
inertia

natural boundary conditions, 113
networks, 17–38

electrical, 37
piping systems, 33–36

compatibility, 35
flow rates, 35
mass conservation, 34
pressure form, 36
summary equations, 35

thermal, 37
neutral stability, see potential energy,

neutral stability
non-circular torsion, 136

strong form, 137
non-conservative force, 45
non-conservative load, 126
norm

functions, 79

Oakland-San Francisco Bay Bridge, 188

permeability, 140
Petrov-Galerkin method, 147
piezometric transport, 139
plate bending, 138

bi-harmonic equation, 139
flexural rigidity, 139

Poisson’s equation, 137
polar moment of inertia, 4
pollution transport, 146

space of solutions, 147
space of test functions, 147

potential
additive constant, 47
curl condition, 47
definition, 46
force, 46
gravitational, 47

potential energy
anti-plane shear, 132
beam buckling, see buckling, beam,

potential energy
dead load, 60, 185
dead-load, 194
directional derivative, 118
elastic elements, 60

equilibrium states, 60, 185
ground water transport, 140
minimum, 60
multiple degrees of freedom, 61, 185,

187
multiple loads, 61, 65
neutral stability, 186
plate bending, 138
rigid-bar system, 194
spring, 59, 185, 187
stable, 60, 186
stationary, 59–64, 184

approximate, see method of Ritz
stiffness matrix eigenstructure, 185

tension-compression bar, 185, 190
thin membrane, 136
torsion bar, 62
truss, 65, 188
unstable, 186, 188
variational derivative, 118

power
definition, 43
distributed force, 44
volumetric force, 44

Prandtl’s stress function, 136
pressure head, 139
principle of stationary potential energy,

59
approximate, see method of Ritz

principle of virtual work, 111, 113
principle of stationary potential

energy, 117

Ritz’s method, see method of Ritz
Roché-Capelli Theorem, 21

Saint Venant’s torsion, 136
space of solutions

pollution transport, 147
space of test functions

pollution transport, 147
space of trial solutions, 112
stable, see potential energy, stable
step function, see Heaviside step function
strain

matrix, 132
tensor, 132

strain-displacement relation, 2
strain-displacement relations, 132
streamline, 139
strong form

tension-compression bar, 109

Taylor serier
cosine function, 195

Taylor series
sine function, 195

tension-compression bar, 1–3
boundary conditions

BVP4c, 161



Index 213

composite cross-section, 2
differential equation, 2
distributed load, 2
first order form, 9, 161
internal force, 1
potential energy, see potential energy,

tension-compression bar
resultant, 1
second order form, 160, 190
strain, 2
structural relations, 9, 160
work stored, 49, 54, 55

thin membrane, 136
strong form, 137

torsion
energy conservation, 50
work stored, 51

torsion bar, 3–5
composite cross-section, 4
differential equation, 4
equilibrium, 4
first order form, 9
internal torque, 4
non-circular, 136

potential energy, 136
point torque, 5
polar moment of inertia, 4
resultant torque, 4
shear strain, 4
structural relations, 9
weak form, 120
work stored, 55

torsional rigidity, 9
torsional stiffness, 9
trusses, 17–32

bar unit vector, 18
boundary conditions, 28, 178

fixed, 29
free, 29

change in bar length, 25
compatibility matrix, 20, 25, 174
definition, 17
energy conservation, 50
equation summary, 174
equilibrium, 18–23, 26, 174

displacement form, 26
indeterminacy, 20
kinematics, 24–25
number of

equations, 21
unknows, 21

potential energy, 188
program, 175
resultant definition, 25, 26, 174
simple, 17

static determinacy, 22
solution procedure summary, 32
static condensation, 29–31, 180
static determinacy, 20–22
stiffness matrix, 27, 174, 179
strain, 24
strain-displacement relation, 25, 26,

174
strains, 25
stress-strain relation, 25, 26, 174

turbulent diffusivities, 146

unstable, see potential energy, unstable
up-winding, 147

variational derivative, 118
vectors

dot product, 78
inner product, 78
linearly independent, 79
norm, 78

velocity head, 139
virtual curvature, 123
virtual deflections, 122
virtual displacements, see virtual work,

virtual displacements
virtual rotations, 119
virtual strains, 112
virtual twist rate, 119
virtual work, 109–128

admissible displacements, 109
approximate

beam, 125
solution space, 115
test function space, 115

approximate solution, 114
approximate spaces, 121
as an infinite dimensional search, 114
beam element force, 204
beam element stiffness, 204
bending, 121, 202
bending-torsion, 127
Bubnov-Galerkin method, 115, 117,

201

derivation
beams, 123
torsion, 119

derivations, 110
distributed load, 114, 120
essential boundary conditions, 113
exact solution, 113
external, 112

beams, 123
fixed boundaries, 120
generalizations, 127
internal, 112
multiple dimensional approximation,

116
natural boundary conditions, 113
non-conservative load, 126
non-linear case, 126
principle of virtual work, 111
solution space, 109, 121
tension-compression bar, 109
test functions, 110
test space, 121
torsion, 119, 120
trial solutions, 112
virtual curvature, 123
virtual deflections, 122
virtual displacements, 110
virtual rotations, 119
virtual strains, 112
virtual twist rate, 119
weak form, 111

water content, 139
water flux, 139
weak form, see virtual work, weak form
work

definition, 45
in, 49

force, 49
torque, 50
torsion, 50

path dependency, 45
stored, 49

beams in shear, 53, 55
bending, 52, 55
general, 54
tension-compression bar, 49, 54, 55
torsion, 55


