HW 9 Due Wednesday April 9

[Problems numbers are from revision (e) of the book.]

1. (10 pts) Book Problem 5.13

2. (30 pts) Consider an Aluminum, vertical, tapered circular column of height L, radius $r(x)=r_{o}-r_{o} x / L$, density ρ, clamped at the base and free at the top. Determine a restriction on the height of the column. For properties, let $E=11 \mathrm{GPa}, r_{o}=0.3 \mathrm{~m}$, $\rho=2700 \mathrm{~kg} / \mathrm{m}^{3}$, and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$. Assume $\tilde{\mathcal{S}}=\left\{v(x) \mid v(x)=c_{1} x^{2}+c_{2} x^{3}, \quad c_{1}, c_{2} \in\right.$ $\mathbb{R}\}$. [Hint: Compute the necessary integrals numerically. The determinant equation will result in a high degree polynomial; solve for its roots numerically and then select the physically meaningful root.]

3. (30 pts) Consider a deep cantilever beam $h \gg b$ of length L. If such a beam is loaded with a tip-load P, it will bend (very slightly) in the y, z-plane - bending about the x-axis. However, if the load P exceeds a critical value $P_{c r}$, the beam will undergo a so-called lateral-torsional instability - a form of buckling in which the beam twists about the z-axis while it simultaneously bends about the y-axis.

The potential energy for the system (with respect to twisting) is given by the relation:

$$
\begin{equation*}
\Pi[\phi(z)]=\int_{0}^{L} \frac{1}{2}(G J)_{\mathrm{eff}}\left(\phi^{\prime}(z)\right)^{2} d z-\int_{0}^{L} \frac{P^{2}}{2 E I_{y}}(L-z)^{2} \phi^{2}(z) d z \tag{1}
\end{equation*}
$$

where $(G J)_{\text {eff }}=\frac{1}{3} h b^{3} G$ is the torsional rigidity and $I_{y}=h b^{3} / 12$ is the area moment of inertia about the y-axis. Assume $\tilde{\mathcal{S}}=\left\{\phi(z) \mid \phi(z)=C\left(z^{2}-2 L z\right), \quad C \in \mathbb{R}\right\}$ and find an approximation for $P_{c r}$.
[Remark: The exact buckling mode is given by $\phi(z)=\sqrt{L-z} J_{-1 / 4}\left(2.0063(L-z)^{2} / L^{2}\right)$ with $P_{c r}=\frac{4.013}{L^{2}} \sqrt{E I_{y}(G J)_{\text {eff }}}-$ see e.g. $\S 6.3$ in S.P. Timoschenko and J.M Gere, Theory of Elastic Stability, McGraw-Hill (1961). The function $J_{-1 / 4}$ is the Bessel function of the first kind of order $-1 / 4$. It can be evaluated/plotted in MATLAB using the built-in function besselj ().]

