
UNIVERSITY OF CALIFORNIA BERKELEY Structural Engineering,
Department of Civil Engineering Mechanics and Materials
Spring 2011 Professor: S. Govindjee

Mechanics of Structures (CE130N)
Labs 10-11

1 Objective

The objective of this lab is to program a virtual work based solution using a special set of
Bubnov-Galerkin functions known as Hermite polynomials. These function underly the most
important numerical method for solving beam problems – the finite element method. Unlike
the polynomials we have been using, they produce matricies with reasonable properties as
the number of approximation terms grows. To keep things simple will assume a linear elastic
material but the ideas and methodology are quite general.

2 Model Problem

The model problem we will work with is a linear elastic beam which has an imposed displace-
ment at the right-end, is built-in at the left-end and is subjected to a constant distributed
load. Thus the problem we wish to solve looks like:

d2M

dx2
= q (1)

M = EIκ (2)

κ = v′′ (3)

where v(0) = 0, θ(0) = 0, v(L) = 0.1, M(L) = EIv′′(L) = 0, q(x) = −3000, EI = 120× 106

with L = 30 – all in US customary units.

2.1 Exercise 1

Sketch the problem described above.

3 Function spaces

To deal with the boundary conditions we will employ the methodology we have used several
times this semester of ignoring kinematic boundary conditions in the formal derivation of the

1

matrix equations. We will then impose the boundary conditions at the end by separating
the free degrees of freedom from the driven ones; see Lab 7. In this setting, this means

S = {v(x) | no restrictions} (4)

and
V = {δv(x) | no restrictions} (5)

4 Weak Form/Virtual Work Equation

For the given problem the virtual work equation reads:∫ L

0

δv′′(x)EIv′′(x) dx =

∫
δv(x)q(x) dx (6)

− δv(0)V (0)− δv′(0)M(0)

+ δv(L)V (L) + δv′(L)M(L)

5 Hermite Hat Functions

In the spirit of the linear hat functions which we used before, we will assume an expansion
for the displacement and the virtual displacement as:

v(x) =
n∑

J=1

vJgJ(x) + θJhJ(x) , (7)

δv(x) =
n∑

I=1

δvIgI(x) + δθIhI(x) , (8)

(9)

where as before I, J index a set of nodes that breaks up the domain into a set of n − 1
elements. The parameters in this setting are vJ and θJ and they also represent the beam
displacement and rotation at the nodes. The functions have the following properties:

1. gJ(x) has unit value at the node it is associated with. It has zero slope there. At the
neighboring nodes it has zero value as well as zero slope.

2. hJ(x) is zero at the node it is associated with but it has unit slope there. At the
neighboring nodes it has zero value as well as zero slope.

The functions are depicted in Fig. 1. In the graph there is a node at −1, 0, and +1. The
upper graph shows gJ(x) for the node at 0 and the lower graph hJ(x) for the node at 0.
Outside of the domain of the two elements attached to a node the functions are identically
equal to zero.

2

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

g
J
(x)

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

h
J
(x)

Figure 1: Hermite polynomials for a node located at 0 with neighboring nodes at −1 and
+1.

The precise definitions in the general case are given by:

gJ(x) =

3ζ2

∆x2 − 2ζ3

∆x3 xJ−1 < x < xJ

1− 3ξ2

∆x2 + 2ξ3

∆x3 xJ < x < xJ+1

0 otherwise ,

(10)

where ξ = x− xJ and ζ = x− xJ−1 and

hJ(x) =

− ζ2

∆x
+ ζ3

∆x2 xJ−1 < x < xJ

ξ − 2ξ2

∆x
+ ξ3

∆x2 xJ < x < xJ+1

0 otherwise .

(11)

Again, the points xJ = (J − 1)∆x are the nodes and ∆x = L/nel, where nel = n− 1 is the
number of elements. Note, as before, the functions on the ends are non-zero over just one
element whereas those in the interior are non-zero over two elements.

6 Discrete Equations

The discrete equations are arrived as by plugging our expansions into the virtual work
equation, separating out the coefficients of the virtual motion, and noting that the remainder

3

must be zero. The resulting relations are given by

n∑
J=1

KIJcJ = F I , (12)

where

KIJ =

∫ L

0
EI

[
g′′I g

′′
J g′′I h

′′
J

h′′Ig
′′
J h′′Ih

′′
J

]
dx (13)

and

F I =

∫ L

0

[
gIq

hIq

]
dx−

[
gI(0)V (0)

h′I(0)M(0)

]
+

[
gI(L)V (L)

h′I(L)M(L)

]
(14)

and

cJ =

(
vJ

θJ

)
. (15)

Note that for our particular problem M(L) is known; it is zero. The other end reactions are
unknowns and can be found from the ‘right-hand side’ entries associated with the (three)
driven degrees of freedom.

Because the Hermite hat functions have compact support most of the terms in the stiffness
matrix are zero. In fact KIJ = 0 unless |I − J | ≤ 1. It should also be observed that we
already know that v1 = 0.0, θ1 = 0.0, and vn = 0.1 by the boundary conditions.

To efficiently compute the integrals and implement them in a clean fashion in code,
the integrals are computed by computing the contributions from each element and then
assembling them into the global stiffness KIJ . Thus

KIJ =

∫ L

0
EI

[
g′′I g

′′
J g′′I h

′′
J

h′′Ig
′′
J h′′Ih

′′
J

]
dx =

nel∑
A=1

∫ xA+1

xA

EI

[
g′′I g

′′
J g′′I h

′′
J

h′′Ig
′′
J h′′Ih

′′
J

]
dx , (16)

where nel is the total number of elements. If we consider the contribution for a single element
with, say nodes A and A+1, then the only contributions come from I, J ∈ {A, A+1}. This
results in four (block) non-zero values for KIJ . Thus when computing the contribution from
a given element, say element A, we usually form a two-by-two block matrix (four-by-four
regular matrix) with block entries:

ke
ij =

∫ xA+1

xA

EI

[
ge′′

i ge′′
j ge′′

i he′′
j

he′′
i ge′′

j he′′
i he′′

j

]
dx , (17)

where i, j ∈ {1, 2} and ge
1 = gA and ge

2 = gA+1 (similarly for he
i). In this way ke

ij is
a two-by-two block matrix that contributes to the global stiffness matrix. For example,
consider a case where one has 4 elements. Then for element two ke=2

11 would contribute to
as K22 = K22 + ke=2

11 , K23 = K23 + ke=2
12 , etc.

4

We treat the right hand side in a similar fashion; i.e. we form an element right-hand side
and assemble it into the global right-hand side. So considering element A, we have

fe
i =

∫ xA+1

xA

[
ge

i q

he
iq

]
dx−

[
ge

i (0)V (0)

he′

i (0)M(0)

]
+

[
ge

i (L)V (L)

he′

i (L)M(L)

]
, (18)

Here, as before, i ∈ {1, 2} and ge
1 = gA and ge

2 = gA+1 (simlarly for he
i). This two-by-one

(block) vector is then assembled into the global right-hand side. For example, consider a
case where one has 4 elements. Then for element three F 3 = F 3 +f e=3

1 and F 4 = F 4 +f e=3
2 .

6.1 Exercise 2

The block matrix elements ke
ij for a generic element can be computed by hand. Put together,

the result is a two-by-two (block) matrix (or four-by-four scalar matrix) and it will be
symmetric. The final result is:

ke =
EI

∆x3

12 6∆x −12 6∆x

4∆x2 −6∆x 2∆x2

12 −6∆x

sym. 4∆x2

 . (19)

Verify the first scalar entry of this matrix – i.e. verify that ke
11 = 12EI/∆x3. For this

exercise, it is helpful to note that over a single element there are only 4 non-zero functions.
If the first node is at 0 and the second at a, then the two associated with the left most node
are:

gleft(x) = 1− 3x2

a2
+

2x3

a3
(20)

hleft(x) = x− 2x2

a
+

x3

a2
(21)

and the two associated with the right most node are:

gright(x) =
3x2

a2
− 2x3

a3
(22)

hright(x) = −x2

a
+

x3

a2
. (23)

5

6.2 Exercise 3

The block vector entries f e
i for a generic element can also be computed by hand. The result

is a four-by-one scalar vector with the following entries.

f e =
qo∆x

12

6

∆x
6

−∆x

 . (24)

At the end elements there are contributions from the boundary terms. For element 1, there
is the additional contribution

−V (0)
−M(0)

0
0

 . (25)

For element nel (the last element), there is the additional contribution
0
0

V (L)
M(L)

 . (26)

Verify Eq. (24).

6.3 Exercise 4

Download the file lab10 student.m from bspace and complete the program. There is also
a plotting program evalbeam.m on bspace; once downloaded, type help evalbeam to learn
how to use.

6.4 Exercise 5

Simplify the loading by setting qo = 0. The problem is then that of a cantilever beam with
an end-shear which has the well-known solution. Use this special case to check that your
program is correct. You should get an exact answer for any number of elements (even just
one element). Look at all aspects of the solution. Forces, moments, displacements, and
rotations to make sure that they are correct.

6.5 Exercise 6

Verify that your program converges by checking that the displacement solution converges as
the number of nodes increases when you turn the distributed loading back on. Note that
with these approximation functions one can increase the number of parameters without the
difficulties that arise with our simple polynomials from the earlier labs.

6

6.6 Exercise 7

Where does the maximum bending moment occur for the problem? and what is its value?

6.7 Exercise 8

Add a mid-span pin support and solve the problem with your code. Where does the maximum
bending moment occur now? and what is its value?

6.8 Extra Credit

Create a modified program that solves the buckling problem using these approximation
functions and re-compute the answers to some of the prior lab and homework questions.
[Note: Extra credit can only be obtained, if you have already completed the first 8 Exercises.]

7

