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1 Objective
The objective of this lab is to expose you to solving differential equations which govern mechanical
phenomenon, not through hand calculations, but through numerical methods. As you will see in
your studies, as the mechanical system becomes more and more complex, hand solutions will
become more and more difficult to obtain; in certain cases analytical closed form solutions may
not even be accessible. By using numerical methods, even when these closed form solutions are
not available one will still be able to obtain good approximations for the exact solution. Good
numerical methods let you control the magnitude of the permissible errors in your approximate
solutions.

In this lab you will be using the software MATLAB and its built in functions to solve the
mechanical problem associated with bars in tension and compression.

In this lab you will be asked to conduct the following things:

1. Understand the procedure of using MATLAB to solve the tension-compression bar problem.

2. Use it to solve a set of boundary value problems.

2 Tension-compression bar

2.1 Governing differential equation
The governing equations for a tension-compression bar are the following,
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• Equilibrium

dR

dx
+ b(x) = 0 (1)

The distributed load b(x) can vary along the length of the bar.

• Kinematics

ε =
du

dx
(2)

• Constitutive relation

σ = E(x)ε (3)

The Young’s modulus E(x) can vary along the length of the bar.

• Resultant definition

R = A(x)σ (4)

Here we have assumed a simple system, where the stress σ is constant across any
cross-section. The cross-sectional area A(x) can vary along the length of the bar.

In the lecture these four relations have been combined to obtain a single equation representing
equilibrium in terms of the displacement,

d

dx

[
EA

du

dx

]
+ b = 0 . (5)

In order to utilize the solver in MATLAB, one must convert the governing equations into first-order
form,

dy

dx
= f(y, x), (6)

where y is a vector of unknown variables, and f is a vector of known functions depending on y
and the position x. For the tension-compression bar, it is convenient to choose the variables u and
R as the unknown variables (since the boundary conditions are typically given in terms of u and
R). Two expand from first order form to second order form we can re-introduce R into (5). This
yields a system of two coupled equations,

dR

dx
+ b = 0,

R = EA
du

dx
.
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The two equations can be rewritten as,

d

dx

 u

R

 =

 R

E(x)A(x)

−b(x)

 .

By defining,

y :=

[
y1

y2

]
=

[
u
R

]
,

f(y, x) :=

 f1(y, x)

f2(y, x)

 =

 y2

E(x)A(x)

−b(x)

 ,

(7)

one obtains the desired first-order form,

d

dx

 y1

y2

 =

 y2

E(x)A(x)

−b(x)

 .

2.2 Boundary condition
To solve the differential equation, one must apply boundary conditions. For the second-order
differential equation (5), one requires 2 boundary conditions.

In order to apply boundary conditions in the solver in MATLAB, one must define a function
which returns a residual of how much the boundary conditions are not satisfied; a residual of zero
implies that the boundary conditions are satisfied exactly. The function has the form,

g(y(a), y(b))

where g is vector of functions depending on the value of y evaluated at the boundary points x = a
and x = b (Here we assume the problem is defined on the interval (a, b)).

To clarify the form of the function, consider the boundary condition,

u(0) = u0,

R(L) = RL,

where the displacement is known as u0 at the end point x = 0, and the force is known as RL at
the end point x = L. The vector defining the residual of how much the boundary condition is not
satisfied is,  u(0)− u0

R(L)−RL

 .

Using the correspondence between u, R and y defined in (7), one defines g as,
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g(y(0), y(L)) :=

 g1(y(0), y(L))

g2(y(0), y(L))

 =

 y1(0)− u0

y2(L)−RL

 . (8)

2.3 Numerical method
To solve the differential equation in first-order form (6), we will use the function built-in MATLAB
function BVP4C. The following point is important to keep in mind when using numerical methods
to solve differential equations.

A NUMERICAL METHOD ALWAYS GIVES APPROXIMATE
SOLUTIONS! UNLESS YOU VERY LUCKY!

Only in special cases does one obtain an exact solution when using a numerical method. There are
cases when it seems like one has the exact solution, but this is only because the solution has been
obtained to a high-degree of accuracy. Thus when invoking a numerical method, one must specify
the degree of accuracy one desires in the approximate solution. The accuracy of the approximate
solution yapprox can be measured by the relative accuracy, defined as,

||yapprox − yexact||
||yexact||

,

where yexact is the exact solution.
In the case of using BVP4C to solve the differential equation (6), there are three parameters one

can adjust to determine the attained accuracy in the approximate solution. Let us assume we would
like to solve the differential equation on the interval (a, b). The three parameters are,

1. xi (i = 1, . . . , N): The points at which you (definitely) want to satisfy the differential
equation, where N is the total number of points and x1 = a and xN = b.

2. RELTOL: BVP4C will return an approximate solution yapprox which satisfies the relation,∥∥∥∥dyapprox(xi)

dt
− f(yapprox(xi), xi)

∥∥∥∥ ≤ ∥∥f(yapprox, xi)
∥∥RELTOL.

for i = 1, . . . , N .

3. ABSTOL: BVP4C will return an approximate solution yapprox which satisfies the relation,∥∥∥∥dyapprox(xi)

dt
− f(yapprox(xi), xi)

∥∥∥∥ ≤ ABSTOL,

for i = 1, . . . , N .
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The number and location of the points xi must be placed so that one will be able to sufficiently
represent the behavior of the solution on (a, b). A smaller value of ABSTOL and RELTOL
will lead to a more accurate solution but will in general require more time to obtain the solution.
Typically, ABSTOL and RELTOL are chosen between the values of 1 × 10−1 and 1 × 10−16.
(The lower bound in accuracy is due to finite precision of numbers representable on a computer.)

3 MATLAB solution method with BVP4C
To solve boundary value problems in MATLAB, we will use the built-in ODE solver bvp4c.
bvp4c take 4 arguements and returns a structure that contains the solutions.

SOL = BVP4C(ODEFUN,BCFUN,SOLINIT,OPTIONS)

Type help bvp4c in MATLAB to see more information on the function. In short, the first
arguement is a pointer to a function which computes the right-hand side of the first order form of
the ODE, the second arguement is a pointer to a function which computes the boundary condition
residual, the third arguement is a structure with information to start the computation, and the fourth
argument is a structure with solution options.

To solve utilize this solver in MATLAB, one must go through the following steps.

1. Convert the differential equation into first-order form (6) and choose the unknown variables
in the vector y. Using this representation, construct the function ODEFUN.

2. Construct a function g which returns a residual measuring by how much the boundary con-
ditions are not satisfied as in (8). Using this representation, construct the function BCFUN.

3. Use the function BVPINIT (built-in in MATLAB) to construct an initial solution structure
SOLINIT.

4. Use the function BVPSET to construct an options structure OPTIONS, which determine the
degree of accuracy to which the solution is obtained.

5. Pass the arguments ODEFUN and BCFUN as function handles and the structures SOLINIT
and OPTIONS into the function BVP4C.

In the following function and structure explanations, nvar defined the number of unknown vari-
ables in the vector y defined in (6).

ODEFUN

[F] = ODEFUN(X,Y)

• This function serves the purpose of computing f(y, x) mentioned in (6).

• INPUT:
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X :Scalar value defining the position x
Y :Vector (nvar × 1) representing y evaluated at x.

• OUTPUT:

F :Vector (nvar × 1) representing f evaluated at x using y, i.e., f(y(x), x).

• EXAMPLE: For the tension-compression bar in 1D with E = 1, A = 1 and b(x) = sin
(

π
2
x
)
,

the function is defined as,

function [fxy] = bar1d_ode(x,y)

% -- Define material property and geometry
E = 1;
A = 1;
L = 1;

% -- Define distributed load
b = sin(x*pi/(2*L));

% -- Define function
fxy = [y(2)/(E*A);

-b];
end

BCFUN

[RES] = BCFUN(YA,YB)

• To impose boundary conditions in MATLAB one must define a function g of the form,

g(y(a), y(b)), (9)

where y(a) denotes the value of the function y at x = a, and y(b) denotes the value of the
function y at x = b. This function returns a vector of residuals which defines how much the
boundary conditions are not satisfied; the function g takes the value g = 0 if the value of y
at x = a and x = b exactly satisfy the boundary conditions.

• INPUT:

YA :Vector (nvar × 1) defining the value of y at position x = a
YB :Vector (nvar × 1) defining the value of y at position x = b

• OUTPUT:
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RES :Vector (nvar × 1) representing g.

• EXAMPLE: For the tension-compression bar in 1D with boundary conditions,

u(0) = 0,

R(L) = 1 .

One defines the function g in the following way,

g(y(0), y(L)) :=

[
y1(0)− u0

y2(L)−RL

]
.

function [res] = bar1d_bc(ya,yb)

% -- Boundary Conditions (BC)
% u: displacement
% f: force

ua = 0;
fb = 1;

res= [ya(1)-ua;
yb(2)-fb];

end

BVPSET

OPTIONS = BVPSET(’RelTol’,RELTOL,’AbsTol’,ABSTOL)

• To set the degree of desired accuracy in the approximate solution, one must construct an
options structure OPTIONS to pass to BVP4C.

• INPUT:

RELTOL : See Section 2.3 for definition.
ABSTOL : See Section 2.3 for definition.

• OUTPUT:

OPTIONS : A MATLAB structure.
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BVPINIT

SOLINIT = BVPINIT(X,YINIT)

• One must construct a structure SOLINIT, defining initial parameters of the solution, to pass
to BVP4C.

• INPUT:

X : Vector defining the minimum points at which one desires the solution.
YINIT : Vector (nvar × 1) defining the initial guess for solution.

• OUTPUT:

SOLINIT : A MATLAB structure.

4 Lab Exercises

4.1 Function handles
If you are unfamiliar with function handles in MATLAB, try the exercise in Section 5 regarding
usage of function handles in MATLAB. Make sure you understand the importance of adding the @
symbol.

4.2 Download files
1. Download the files for Lab 1 from bspace.

4.3 Tension-compression bar
1. Execute the file,

>> bar1d

This should give you a plot showing the displacement u(x) and the internal force R(x). The
obtained solution is to a problem where

A = 1,

E = 1,

L = 1,

b(x) = sin
( π

2L
x
)

,
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and boundary condition,

u(0) = 0,

R(L) = 0 .

The exact solution to this problem can be obtained by solving the differential equation by
hand to yield:

u(x) =

(
2

π

)2

sin
( π

2L
x
)

,

R(x) =

(
2

π

)
cos

( π

2L
x
)

.

Check the solution at a few points in the interval and verify that it satisfies the input toler-
ances. Note that you can use the MATLAB function deval to evaluate the solution structure
at a set of desired points.

2. Change the file so that you obtain the solution for the problem,

A = 1,

E = 1,

L = 1,

b(x) = 0,

and boundary condition,

u(0) = 0,

R(L) = 1 .

What should the shape of the displacement look like?

3. Change the file so that you obtain the solution for the problem,

A = 1,

E = 1,

L = 1,

b(x) = sin

(
2π

L
x

)
,

and boundary condition,

u(0) = 0,

u(L) = 0 .

Does the solution make sense?
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4. Change the file so that you obtain the solution to the problem,

A = 1,

E = 1,

L = 1,

b(x) = δ(x− L/2),

and boundary condition,

u(0) = 0,

u(L) = 0 .

Does the solution make sense? Note, you will need to “define” the “meaning” of the delta function
for MATLAB, since it is not a built-in function.

5 MATLAB tips
To use the MATLAB BVP4C solver, one must know how to use function handles. In basic pro-
gramming, one learns how to pass “numbers” into a function. Analogous to this one can also pass
a “function” into a function. This is done through the use of function handles.

The simple exercise below illustrates how they are used. We will combine the two functions:

• A function which takes a number as an argument and returns its 3rd power.

• A function which takes a function as an argument and displays the function value evaluated
at 3.

Exercise

1. Write a function called cubic which takes a number x as an argument and returns its 3rd
power,

function y = cubic(x)
y = xˆ3;

and save this as the file cubic.m.

2. Write a function which takes a function func as an argument and prints the value of func
evaluated at 3,

function evalat3(func)
func(3)

and save this as the file eval print.m.
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3. Execute the function eval print with cubic as the input argument in the command
window,

>> evalat3(cubic)

You will see that this gives an error. The proper way of executing this is,

>> evalat3(@cubic)

The @ tells MATLAB that the argument cubic is a function. Thus whenever MATLAB
requires a function handle, one must be careful not to omit the @.

11


