UNIVERSITY OF CALIFORNIA BERKELEY
Department of Civil Engineering
Spring 2011
Structural Engineering, Mechanics and Materials Professor: S. Govindjee

HW 4: Due Feb. 17

1. Consider the truss shown below. Assume the bars are steel $E=30 \times 10^{6} \mathrm{psi}$. The vertical bars have a diameter of 0.5 in , the horizontal 0.75 in , and the diagonal 1.0 in . Use the number scheme shown and your program from Lab 3 to help solve this problem. [Note you should not have any need to use the \boldsymbol{K} matrix to solve this problem.]

(a) Find the compatibility matrix for the truss.
(b) Find the diagonal matrix $\lceil A E / L\rfloor$.
(c) Assume $u_{1 x}=-0.1 \mathrm{in}, u_{1 y}=0.1 \mathrm{in}, u_{2 x}=0.1 \mathrm{in}, u_{2 y}=0.0 \mathrm{in}$.
i. Find the strains in the 5 bars.
ii. What are the stresses in the 5 bars?
iii. What are the internal forces in the 5 bars?
iv. What forces must have been applied to nodes 1 and 2?
v. What are the support reactions at nodes 3 and 4?
2. Consider the force field $\boldsymbol{F}(x, y)=10 x y \boldsymbol{e}_{x}+5 y \boldsymbol{e}_{y}(\mathrm{~N})$. Does this force field emmenate from a potential? i.e., is it conservative?
3. Find an expression for the end-rotation of a circular bar loaded with a torque, T_{o}, at its end. Assume the bar is built-in at the other end, has a length L, and a constant torional rigidity $G J$. Use conservation of energy to solve this problem.
4. A solid circular bar is bent 90° at two locations and is built-in at one end. Assume A, I, J, E, and G are constants.
(a) Using conservation of energy, determine a formula for the vertical deflection at the point of load application. [$\alpha=10 / 9$ for round bars.]
(b) Let $L=200 \mathrm{~mm}$ and the diameter of the bar be $d=30 \mathrm{~mm}$. What is the percent contribution to the total deflection from axial loading, bending, torsion, and direct shear? Assume $E / G=2$.
(c) Repeat with $L=500 \mathrm{~mm}$ and $d=10 \mathrm{~mm}$.

