HW 1: Due Thursday Feb. 3

1. Consider a solid round elastic bar with constant shear modulus, $G=140 \mathrm{kN} / \mathrm{mm}^{2}$, and cross sectional area, $A=40 \mathrm{~mm}^{2}$. The bar is built-in at both ends and subject to a spatially varying distributed torsional load

$$
t(x)=p \sin \left(\frac{2 \pi}{L} x\right)
$$

where $p=50 \mathrm{~N} \cdot \mathrm{~mm} / \mathrm{mm}$ and $L=1000 \mathrm{~mm}$. Modify your program from Lab 1 to solve for the system response and determine the location and magnitude of the maximum internal torque in the bar.

2. Consider a circular bar which is built-in at both ends and loaded by a linear distributed load, $t(z)=t_{o} z$. By solving the governing second order ordinary differential equation find a relation that gives the amount of load needed to induce a rotation $\hat{\theta}$ at the mid-point of the bar. Assume $G J$ is a constant.
3. The beam shown below is loaded by a point moment at $x=2$; find the maximum internal moment (in absolute value - i.e. independent of sign) by first solving the governing 4th order differential equation. [Hint: to find the maximum value just plot your answer.]

4. Find the equation for the deflection of the beam shown. Assume a constant value for $E I$. Use the given coordinate system.

