Mechanics of Structures (CE130N) Lab 9

1 Objective

The objective of this lab is to apply the principle of stationary potential energy for the solution of beam buckling problems.

2 Buckling load: A cantilever beam (clamped-free case)

Figure 1: Cantilever beam

Consider a cantilever beam subjected to an axial compressive load. The potential energy for this system is

$$
\begin{equation*}
\Pi(v(x))=\int_{0}^{L} \frac{1}{2} E I\left(v^{\prime \prime}\right)^{2} d x-P \int_{0}^{L} \frac{1}{2}\left(v^{\prime}\right)^{2} d x \tag{1}
\end{equation*}
$$

If we assume the deflection has the polynomial form

$$
\begin{equation*}
v(x)=\sum_{i=1}^{N} c_{i}\left(\frac{x}{L}\right)^{i+1} \tag{2}
\end{equation*}
$$

then the kinematic boundary conditions at $x=0$ are automatically satisfied.

2.1 Exercise 1

If we insert this approximation into the expression for the potential energy, then we can write the governing equilibrium equations as $(\boldsymbol{K}-\lambda \boldsymbol{G}) \boldsymbol{c}=\mathbf{0}$, where \boldsymbol{K} comes from the bending energy term, \boldsymbol{G} comes from the potential for the load, and \boldsymbol{c} is the vector of c_{i} divided by the length. Here $\lambda=P L^{2} / E I$ is a non-dimensional load value. Show that
1.

$$
\begin{equation*}
K_{i j}=\frac{(i+1)(j+1) i j}{i+j-1} \tag{3}
\end{equation*}
$$

2.

$$
\begin{equation*}
G_{i j}=\frac{(i+1)(j+1)}{i+j+1} \tag{4}
\end{equation*}
$$

2.2 Exercise 2

Download the file lab9_1_student.m from the bspace. This file partially implements a solution to this buckling problem. Where indicated complete the file as follows:

1. Fill in the appropriate expressions for \boldsymbol{K} and \boldsymbol{G}.
2. Extract the critical non-dimensional buckling load $\lambda_{c r}$ and store in approx.
3. Extract the corresponding eigenvector and store in c.

2.3 Exercise 3

1. What is the error with just one term in the approximation?
2. What is the error with 3 terms in the approximation?
3. Make a plot of \log error versus number of parameters in approximation for $n=1,2, \ldots, 10$.

3 Beam with a transverse load and axial compression

Figure 2: Simply supported beam with transverse load and axial compression.

Consider the beam shown in the figure. It is subjected to an axial compression P and a transverse load P_{o}. The potential energy for this system is given by

$$
\begin{equation*}
\Pi(v(x))=\int_{0}^{L} \frac{1}{2} E I\left(v^{\prime \prime}\right)^{2} d x-P \int_{0}^{L} \frac{1}{2}\left(v^{\prime}\right)^{2} d x-P_{o} v\left(x_{o}\right), \tag{5}
\end{equation*}
$$

where x_{o} is the location where the transverse load is applied. If we assume the deflection has the trigonometric form

$$
\begin{equation*}
v(x)=\sum_{i=1}^{N} c_{i} \sin (i \pi x / L) \tag{6}
\end{equation*}
$$

then the resulting discrete equations have the form $(\boldsymbol{K}-P \boldsymbol{G}) \boldsymbol{c}=\boldsymbol{F}$, where the stiffness \boldsymbol{K} and geometric stiffness \boldsymbol{G} matrices have a very simple form (they are diagonal).

3.1 Exercise 4

1. Determine expressions for $K_{i j}$ and $G_{i j}$.
2. Determine an expression for F_{i}.
3. Since your matrices are diagonal one can find an expression for c_{i} by hand.

3.2 Exercise 5

Download the file lab9_2_student.m from bspace. This file partially computes a solution this problem. Complete the file as follows:

1. Where indicated implement your expression for c_{i}.
2. Where indicated complete the expression that evaluates the buckling mode for plotting purposes.

3.3 Exercise 6

1. Find and plot the deflection of the beam for a transverse load $P_{o}=3$ and axial load $P=$ $0.2 P_{\text {Euler }}$, where $x_{o}=3 L / 5$.
2. Plot the midspan deflection of the beam (with $P_{o}=3$) versus $P \in\left[0,0.95 P_{\text {Euler }}\right]$. When you make your plot, use $v(L / 2)$ for the abscissa and P the ordinate.
3. Add to this plot curves for $P_{o}=1$ and $P_{o}=5$

Provide a detailed description of what the plots tell you.

