
UNIVERSITY OF CALIFORNIA BERKELEY Structural Engineering,
Department of Civil Engineering Mechanics and Materials
Spring 2010 Professor: S. Govindjee

Mechanics of Structures (CE130N)
Lab 8

1 Objective

The objective of this lab is to understand how the principle of stationary potential energy
can be applied to understand the behavior of buckling phenomenon. In this lab we will focus
the case of a discrete system consisting of rigid elements and springs.

2 Geometry

The geometry we will work with is the two degree of freedom shown below. The two degrees
of freedom that we will work with are the rotation angles of the bars from vertical. The
bars are joined with a linear torsional spring with spring constant kt which has dimensions
of Force × Length. Further the middle joint is restrained by a linear translational spring
with spring constant kl which has dimensions of Force / Length.
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3 Potential Energy

The potential energy for this system can be expressed as

Π(θ1, θ2) =
1

2
klL

2[(1− cos(θ1))
2 + sin2(θ1)] +

1

2
kt(θ2− θ1)

2−PL(2− cos(θ1)− cos(θ2)) . (1)
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This expression is valid independent of the magnitude of the rotations.

3.1 Non-dimensionalization

In many problems, it is useful to non-dimensionalize expressions to remove redundant param-
eters from the problem and to improve performance in numerical calculations. The dimen-
sions of energy are Forces × Length thus a convenient parameter for non-dimensionalization
is kt. This yields

Π(θ1, θ2) =
1

2
e[(1− cos(θ1))

2 + sin2(θ1)] +
1

2
(θ2 − θ1)

2 − λ(2− cos(θ1)− cos(θ2)) , (2)

where the potential energy is now non-dimensionalized (divided by kt), e = klL
2/kt is a non-

dimensional ratio of spring stiffnesses, and λ = PL/kt is a non-dimensional load parameter.

3.2 Exercise 1

Approximate the energy to quadratic order in the rotations. Keeping up to quadratic order
terms in the potential energy leads to linear order equilibrium equations. Hint:

cos(x) ≈ 1− 1

2!
x2 +

1

4!
x4 − · · · (3)

sin(x) ≈ x− 1

3!
x3 + · · · (4)

3.3 Exercise 2

Compute the equilibrium equations associated with your approximate energy and arrange
them in the matrix form K − λG = 0.

3.4 Exercise 3

Download the Matlab files from bspace and place them in your working directory. These
files include plotting routines as well as a file which computes the potential energy of the
system for large deformations.

Compute (using Matlab) the buckling loads and modes using [V,D]=eig(K,G). To help
you visualize the results you should use the routine plotv.m. Typing help plotv explains
how to use the routine. For example to plot the first buckling mode in red type:

>> plotv(V,D,1,L,’r’)

where L is the length of the bars (choose 10 for example) and the vectors and eigenvalues
are stored in V and D.

1. Assuming e = 0.1, what is the critical non-dimensional buckling load? and correspond-
ing bucking mode?
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2. Assuming e = 5.0, what is the critical non-dimensional buckling load? and correspond-
ing bucking mode?

3. Assuming e = 100.0, what is the critical non-dimensional buckling load? and corre-
sponding bucking mode?

4 Energy Landscape

For every value of the load parameter, the potential energy possesses stationary points that
represent the possible equilibrium states of the system. An equilibrium point can either
be a minimum point (i.e. stable), a saddle point (i.e. unstable in one direction, stable in
another), or a maximum point (i.e. unstable). Consider the case of e = 10. Make plots for
the following three load cases using plotpe.m. Type help plotpe to see the arguments for
this routine. For each case, identify all the equilibrium points on the graph and label them
as stable or unstable.

4.1 Exercise 4

1. λ = 0.80λcr.

2. λ = 5.00λcr.

3. λ = 30.0λcr.

Note, plotpe.m plots the energy (2) and not the approximate energy.

5 Evolution of equilibrium

To be able to visualize the development of the system’s equilibrium states one can animate
the progression of the equilibrium states with increasing loads. To do so, use the routine
animate8.m. The routine takes two arguments e the stiffness ratio and L the bar lengths.
Before being able to use the routine, you will need to edit the routine to add expressions for
K and G where indicated.

To use type:

>> animate8(e,L)

where e and L are set to appropriate values.
The routine will plot the buckling modes was well as a surface plot of the energy and

a contour plot of the energy. The contour plot will additionally have the directions of the
linearized buckling modes superposed – red being the first mode and blue the second mode.
The animation plots the state of energy of the system for ten load values below the critical
load, then ten load values between the two buckling loads, and finally ten values above the
second buckling load.
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5.1 Exercise 5

Animate the system for the case e = 5 (and L = 10).

1. By observing the plot, describe the expected evolution of the system as the load is
increased from zero to the highest value.

2. Are there ever any stable equilibrium states associated with the second buckling mode?
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