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1 Objective

The objective of this lab is to program a Ritz solution using a special set of Ritz functions
known as hat functions. These function underly the most important numerical method for
solving a very wide variety of problems in science and engineering – viz., the finite element
method.

2 Model Problem

The model problem we will work with is an elastic tension-compression bar which has an
imposed displacement at the left-end, an applied force at the right-end, and a constant
distributed load. Thus the problem we wish to solve looks like:

AEu′′ + b = 0 , (1)

where u(0) = 0.03, AE du
dx

(l) = Fapp = −2000, b(x) = 4000 and AE = 30 × 106 – all in US
customary units. The total potential energy which describes this problem is

Π(u(x)) =

∫ l

0

1

2
AE(u′)2 dx−

∫ l

0

bu dx− Fappu(l) , (2)

where l = 2.

3 Linear Hat Functions

As an approximation we will assume that

u(x) =
n∑

I=1

cIgI(x) , (3)

where

gI(x) =


x−xI−1

∆x
xI−1 < x < xI

xI+1−x

∆x
xI < x < xI+1

0 otherwise .

(4)
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The points xI = (I − 1)∆x are called the nodes and ∆x = l/(n− 1), where n is the number
of functions in our Ritz expansion. Note that each function is equal to one at the node
associated with its index. The intervals between the nodes are called the elements and there
are nel = n− 1 of them. Graphically these functions look as follows:

1

x1 x2 x3 x4 x5 x6 x7 x8

g1(x)
g8(x)g4(x)

In the figure, we have used the example of n = 8 and thus ∆x = 2/7 and nel = 7. Note that
the functions on the ends are non-zero over just one element whereas those in the interior
are non-zero over two elements.

4 Discrete Equations

Inserting the Ritz expansion into the functional and take its derivative with respect to an
arbitrary parameter yields the system of equations:

n∑
J=1

KIJcJ = FI , (5)

where

KIJ =

∫ l

0

g′IAEg′J dx (6)

and

FI =

∫ l

0

gIb dx + FappgI(2) (7)

Because the linear hat functions have compact support most of the terms in the stiffness
matrix are zero. In fact KIJ = 0 unless |I − J | ≤ 1. It should also be observed that we
already know that c1 = 0.03 by the boundary conditions.

To efficiently compute the integrals and implement them in a clean fashion in code,
the integrals are computed by computing the contributions from each element and then
assembling them into the global stiffness KIJ . Thus

KIJ =

∫ l

0

g′IAEg′J dx =
nel∑
L=1

∫ xL+1

xL

g′IAEg′J dx , (8)

where nel is the total number of elements. The term inside the summation is known as
the element stiffness and in our case it has only four non-zero entries. These occur for
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I, J ∈ {L, L+1}. Thus when computing the contribution from a given element, say element
L, we usually form a two-by-two matrix with entries:

ke
ij =

∫ xL+1

xL

ge′

i AEge′

j dx , (9)

where i, j ∈ {1, 2} and ge
1 = gL and ge

2 = gL+1. In this way ke
ij is a two-by-two matrix

that contributes to the global stiffness matrix. For example, consider a case where one
has 4 elements. Then for element two ke=2

11 would contribute to as K22 = K22 + ke=2
11 ,

K23 = K23 + ke=2
12 , etc.

We treat the right hand side in a similar fashion; i.e. we form an element right-hand side
and assemble it into the global right-hand side. So considering element L, we have

f e
i =

∫ xL+1

xL

ge
i b dx + Fappg

e
i (2) . (10)

Here as before i ∈ {1, 2} and ge
1 = gL and ge

2 = gL+1. This two-by-one vector is then
assembled into the global right-hand side. For example, consider a case where one has 4
elements. Then for element three F3 = F3 + f e=3

1 and F4 = F4 + f e=3
2 .

4.1 Exercise 1

Compute, by hand, an expression for the matrix elements ke
ij for a generic element. Your

result should be a two-by-two matrix and it will be symmetric.

4.2 Exercise 2

Compute an expression for f e
i for a generic element. Your result should be a two-by-one

vector. Note that the applied end force will only affect the very last element.

4.3 Exercise 3

Download the file lab7 student.m from bspace and program your expressions into it to solve
the given problem. If you have done it correctly you will find that your approximate solution
is exact at the nodes.

1. Test it for n = 2 and n = 3 to verify this.

2. How many elements do you for the error to vanish in the ”eye” norm?

4.4 Exercise 4: Extra if you have time

Make a log-log plot of the relative L2 error versus n. How many terms are required to reduce
the relative error to 10−6? Hint: Compute the integrals by performing numerical quadrature
over the elements and then adding up the result.
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