
UNIVERSITY OF CALIFORNIA BERKELEY Structural Engineering,
Department of Civil Engineering Mechanics and Materials
Spring 2010 Professor: S. Govindjee

Mechanics of Structures (CE130N)
Lab 3

1 Objective
The objective of this lab is for you to set up the necessary data structures for defining a truss and to
use them to generate the compatibility matrix for a truss and the resulting stiffness matrix too. The
results of this lab will also be used for the next lab where we will program the boundary conditions
and loads into the file and solve the resultant equilibrium equations.

2 Truss equations synopsis

• Equilibrium

AT R = F ,

• Compatibility/Strain-displacement relation

ε =

⌈
1

L

⌋
Au ,

• Constitutive relation

σ = dEcε ,

• Resultant definition

R = dAcσ .

The combined equilibrium equation solely in terms of the nodal displacements is

Ku = F ,

where K = AT dAE/LcA. Recall further that the dimensions of A are b × 2n, where b is the
number of truss bars and n is the number of nodes in the truss. Each row of A has two non-zero
(vectorial) entries. For a generic row r in A, the non-zeros are located in columns associated with

1



the two nodes associated with bar r. These entries are eT
n1n2

and eT
n2n1

, where the first goes into
the column(s) associated with node n2 and the second into the column(s) associated with node n1.
The vectors themselves are the unit vectors connecting nodes n1 and n2.

3 Download
Download the two lab files from bspace. plotmesh truss.m is a plotting routine which you
will use in your program. There is no need to edit it. truss student.m is the file you
will need to edit. In this file there are several locations identified with the text COMPLETE AS
APPROPRIATE. At these points you will need to provide the requisite code.

4 Walk Through

4.1 Location of truss nodes
You will first need to define the locations of the nodes. This will be stored in a 2 × n matrix
truss.node. The first row of this matrix will contain the x-coordinates of the nodes and the
second row the y-coordinates. Each column will thus represent the x, y coordinates of the node
and there will be one column per node. Set up this matrix for the two bar example from lecture -
one node at the origin, one at (1, 1) and one at (1, 0).

4.2 Definition of the bars
You will next need to define which nodes are connected to each other by bars. This information
will be stored in a 2× b matrix truss.conn. Each column of truss.conn will correspond to
a bar and the entry in the first row will be the node number for the first node for the bar and in the
second row will be the node number for the second node for the bar. Set up this matrix for our two
bar example from lecture where there is one diagonal bar and one vertical bar.

4.3 Checkpoint
At this point comment out the rest of the file below the call to plotmesh truss and run it. You
should get a plot of the truss. Go back and add a third bar which is horizontal and re-run to make
sure things are working ok. Once satisfied, remove the third bar.

4.4 Initialize A

Determine the size that A should be from the information in the structure truss and initialize.

2



4.5 Compute and insert entries into A

We will now loop over the bars and construct the compatibility matrix using the information we
have set up in truss.node and truss.conn. In the loop, r refers to the generic bar r.

4.5.1 End to end vector

Using the information in truss, compute the end to end vector from the first node of bar r to the
second node of bar r. Do not normalize yet. The result will go in en1n2 as a 2× 1 vector.

4.5.2 Compute bar length

Compute the length of the bar and store in L.

4.5.3 Compute AE/L

Set an array of AE/L values for the bars. For simplicity, assume AE = 10 for every bar. Store in
AEoL.

4.5.4 Normalize

Normalize the length of en1n2 and store the result back into en1n2.

4.5.5 Compute the end to end vector in the other direction

Compute the normalized end to end vector from the second node to the first node and store in
en2n1.

4.5.6 Insert into A

For the bar r set up row r in A by inserting the transpose of en1n2 and en2n1. This is the
tricky part. For example eT

n1n2
is a 1 × 2 matrix. It will need to be inserted into the two columns

associated with node n2. As a concrete hint, suppose the first node of bar 4 was node 1 and the
second node was node 3. Then one needs to insert the first component of eT

31 into row 4 column 1
and the second component into row 4 column 2. Further one needs to insert the first component of
eT

13 into row 4 column 5 and the second component into row 4 column 6.

4.6 Compute K
Compute K. Hint: To turn the vector of AE/L values into a diagonal matrix use the command
diag.

3



5 Verify

5.1 Two bar example
Verify that your code is producing the correct expressions for A and for K for the two bar truss
from lecture with AE = 10. The answers are (assuming the same numbering as in lecture)

A =

[
−7.0711e− 01 −7.0711e− 01 7.0711e− 01 7.0711e− 01 0 0

0 0 0 1.0000e + 00 0 −1.0000e + 00

]

K =


3.5355e + 00 3.5355e + 00 −3.5355e + 00 −3.5355e + 00 0 0
3.5355e + 00 3.5355e + 00 −3.5355e + 00 −3.5355e + 00 0 0

−3.5355e + 00 −3.5355e + 00 3.5355e + 00 3.5355e + 00 0 0
−3.5355e + 00 −3.5355e + 00 3.5355e + 00 1.3536e + 01 0 −1.0000e + 01

0 0 0 0 0 0
0 0 0 −1.0000e + 01 0 1.0000e + 01


5.2 Test
Use your code to input the following truss; assume AE = 10 and compute A and K. Make sure
you use the given number scheme.

0 0.5 1 1.5 2

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1 3 5 7

4 4 5

1 2 2 6 3

4


