HW 4: Due Wednesday March 3

1. Consider the truss shown below. Assume the bars are steel $E=30 \times 10^{6}$ psi. The vertical bars have a diameter of 0.5 in , the horizontal 0.75 in , and the diagonal 1.0 in . Use the number scheme shown and your program from Lab 3 to help solve this problem.

(a) Find the compatibility matrix for the truss.
(b) Find the diagonal matrix $\lceil A E / L\rfloor$.
(c) Assume $u_{2 x}=0.1 \mathrm{in}, u_{2 y}=0.0 \mathrm{in}, u_{3 x}=-0.1 \mathrm{in}, u_{3 y}=0.1 \mathrm{in}$,
i. Find the strains in the 5 bars.
ii. What are the stresses in the 5 bars?
iii. What are the internal forces in the 5 bars?
iv. What forces must have been applied to nodes 2 and 3 ?
v. What are the support reactions at nodes 1 and 4 ?
2. Consider the force field $\boldsymbol{F}(x, y)=f x y \boldsymbol{e}_{x}+f \boldsymbol{e}_{y}$, where f is a given constant. Demonstrate that this force field is not conservative.
3. Accounting only for bending energy (ignoring shear strain energy), find an expression for the tip deflection of a cantilever beam loaded with a single point force at its end. Assume a beam of length L and a constant bending modulus EI.
4. A solid circular bar is bent 90° at two locations and is built-in at one end. Assume A, I, J, E, and G are constants.
(a) Using conservation of energy, determine a formula for the vertical deflection at the point of load application.
(b) Let $L=200 \mathrm{~mm}$ and the diameter of the bar be $d=30 \mathrm{~mm}$. What is the percent contribution to the total deflection from axial loading, bending, torsion, and direct shear? Assume $E / G=2$.
(c) Repeat with $L=500 \mathrm{~mm}$ and $d=10 \mathrm{~mm}$.

