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1 Objective

The objective of this lab is to understand how the method ¢ Ban be applied to find approximate solutions to
differential equations which govern mechanical behaviwu should understand that the method of Ritz is just an

application of the Principle of Minimum Potential Energy.
In this lab you will,

e Understand what it means for functions to be orthogonal.
e Use the method of Ritz to solve,

— Tension-compression bars
— Bending of beams



2 The Ritz method

The Ritz method can be summarized by the following steps,
1. Form the expression for the total potential endrigy

ﬁJL %E(I)I(I)(U”)Q dz + IMioad, beam (Beam)
Iy = ];JL 5 )( "2 dx + Myoad bar (Tension-compression bar
Jo% G 2)(¢")? dz + Toad torsion bar ~ (TOrsSION bay
2. Determine the form for the approximate solution,
N
v(z) = Z cifi(@)
=1

wherec; are the coefficients to be determined gi@r) are the Ritz functions. The proper selection of the Ritz
functions is crucial in obtaining a good approximation. ¥neust satisfy the following conditions,

e f:(x) must satisfy the displacement boundary conditions.

Beam Tension bar| Torsion bar
Order of differential equation 4 2 2
Displacement B.C. Onv(z) andf(z) = 2 Onu(x) Onp(z)

e f:(x) must be linearly indpendent.
e fi(x) must be nonzero for enough derivatives to make sense iniffreess matrix.

Beam Tension bar| Torsion bar
Order of differential equation 4 2 2
Must be nonzero for 2 derivatives| 1 derivative| 1 derivative

3. Insert the approximation into the expression for the ptidgéenergy,
I (v(z)) = I (c) .

4. Apply the principle of stationary potential energy,
(“)Ht (C)

e Kc-F=0,
where,
L
/ fiEAfjdx  bar
K / f{'EIfjdz beam
/ Il GJf dx  torsion bar
and,

L
/ fibdx + term from point loads (Tension-compression bar
L
F = / figdx + term from point loads (Beam)
0

L
/ fitdz + term from point loads  (Torsion bay
0



5. Solve the linear system of equations,
Kc=F.

to obtain the approximation,

3 Orthogonality of functions

Two functionsf(z) andg(x) defined on the intervdk, b] are orthogonal if and only if,

b
(frg) = /f(il?)g(a?)da::O.

If they are orthogonal, they are linearly independent. T&isimilar to the situation for vectors. Given to vectars
andb, if they are orthogonad - b, they are linearly independent.



4 Sample file for Ritz program for beams

% -- Example of a uniform cantilever beam (length L=1, stiffn ess El=1)

% loaded at the end (x=L) with a point load P=1.

%

% The exact solution has the form of a cubic function with

%

% v(x==L) = PL"3/(3El)

%

clear all;

% -- Interval on which the beam is defined

% Assume the beam is length of 1

%

a=0;

b = 1;

ritz.interval = [a,b];

% -- Order of the differential equation

% The differential equation for a beam is 4th order

%

ritz.order = 4;

% -- The functions in the Ritz method

% The cell array 'ritz.f' holds the function handles to

% the Ritz functions and its derivatives. Assume we have

%

% N -- Number of Ritz functions

% ritz.order -- Order of differential equation

%

% Then we require expressions up to the 'M'th derivative of th e functions

%

% M = ritz.order/2+1;

%

% Thus the size of 'ritz.f' is M-by-N, where

%

% -Rows correspond to the order of derivative

% -Columns correspond to the different functions

%

% For example,

%

% ritz.f{i,j} -- Function handle to the (i-1)st derivative o f the

% j  th Ritz function

%

ritzN = 1; % -- Number of functions

ritz.f = cell(ritz.order/2+1,ritz.N); % -- Cell array to ho Id functions
% and their derivatives

% -- Use polynomial approximation as Ritz functions

%

% The 1st Ritz function is a quadratic function x"2

ritz.f{1,1} = @(2)z."2; % -- Oth derivative

ritz.f{2,1} = @(2)2 *Z; % -- 1st derivative

ritz.f{3,1} = @(2)2 *ones(size(z,1),size(z,2)); % -- 2nd derivative

% The 2nd Ritz function is a cubic function x"3



% COMPLETE THIS PROCEDURE

% The 3rd Ritz function is a quartic function x"4
% COMPLETE THIS PROCEDURE

% -- Define effective material

% For the beam the effective bending rigidity EI must be defin
%

E = 1;

| =
ritzmat = E «I;

% -- Define distributed load

% For the beam the distributed load q must be defined
%

ritz.distload = O;

% -- Define point loads (forces and moments)

% ritz.pointload= [cdl, cd2, ... , cd_np

% x1, X2, ..., X_hp;
% vall, val2, ... ,val_np;];
% Thus the,

% 1st row : Type of loading

% 2nd row : Location of loading

% 3rd row : Value of the loading

% The ’'cd’ denotes the type of load

% cd==0 : Point load P)
% cd==1 : Point moment (M)
%

ritz.pointload = [ 0;

b;
1];
% -- Define displacement BC (displacement and rotation)
% ritz.dispbc = [cdl, cd2, ..., cd_np
% x1, X2, ..., X_hp;
% vall, val2, ... ,val_np;];
% Thus the,
% 1st row : Type of displacement BC
% 2nd row : Location of displacement BC
% 3rd row : Value of the displacement BC

% The ’'cd’ denotes the type of displacement BC

% cd==0 : On the displacement (u)

% cd==1 : On the rotation (du/dx)
%

% -- Define displacement BC

%

ritz.dispbc= [ 0, 1;

ed



5 Exercise

5.1 Download files

1. Download the fileitz.zip into yourcel30n/programs  directory and unzip it.

2. Goto thecel30n/programs/ritz/exercise/ directory, and execute the filgit.m . This will set the
necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

5.2 Function handles and plotting functions

In this section you will learn how to define very simple fulocts within MATLAB and visually plot the functions.

5.2.1 Define, plot, and integrate a function

You have already seen how you can define complicated furxchigcreating seperate files. Here, you will understand
how you can create small simple functions without savingtlireseperate files. By writing the following line of code,

‘>> f = @(2)z2.72; % -- f is a function where f(z) = z272; ‘

one can define a functidnwhich given an argumet returnsz 2. Confirm this by the line of code,

[>> (3) |

which should retur®. One can easily plot this function on the inter{@l2] by the line of code,

|>> fplot(f,[0,2]); % -- Plot f on the interval [0,2] |

The functionfplot  automatically generates the plot for the function on theginterval. One can also integrate the
functionf on the interval0, 2] by the line of code,

>> quad(f,0,2) % -- Integrate f on the interval [0,2]

which should retur/3 .

5.2.2 Define a function which is the product of two functions

One can also define a function which is the product of two fianstby the following lines of code,

>> f = @(2)z.72; % -- f is a function where f(z) = z°2;

>> g = @(2)z.3; % -- g is a function where g(z) = z°3;

>> fg= @(2)func_prod(z,f,9); % -- fg is a function where fg(z )= fz) *g(2)
% = 7'5;

Herefg is the functionz®. Confirm this by plotting the functiofg usingfplot  or evaluatingg(3) . Using this
method one can easily find the integral of the product of twefions by usingjuad ,

>> quad(fg,0,2) % -- Integrate f-times-g on the interval [O, 2]

This should retur32/3.



5.2.3 Plotting polynomial functions

One can also use the following function to produce polyndsnia

>> order = 3; % -- Order of the polynomial

>> dorder= 0O; % -- Order of derivatives to take
>> a = -1; % -- Left value of interval

>> b = 1 % -- Right value of interval

>> f = @(z)polynomial(z,order,dorder,a,b);

The functionf is the standard polynomial of order 3 scaled and translaietat f (¢) = 0 and f(b) = 1. Thus,

o= (228)

Confirm this by typindplot(f,[a,b]) . If one desires the 2nd derivative of this function,

o= T O (122),

one can obtain this by,

>> order = 3; % -- Order of the polynomial

>> dorder= 2; % -- Order of derivatives to take
>> a = -1; % -- Left value of interval

>> b = 1 % -- Right value of interval

>> g = @(z)polynomial(z,order,dorder,a,b);

where the variabldorder has been set . Confirm thatg(z) is linear by plotting it,fplot(g,[a,b])

5.2.4 Plotting Legendre polynomials

One can use the following function to produce Legendre paiyials P, (z).

>> order = 3; % -- Order of the polynomial

>> dorder= O; % -- Order of derivatives to take
>> a = -1; % -- Left value of interval

>> b = 1 % -- Right value of interval

>> f = @(z)legendre_polynomial(z,order,dorder,a,b);

The functionf is the Legendre polynomial of order 3 scaled and translatatat f (a) = —1 and f(b) = 1. Thus,

f(z) =Py (z:;‘ —1) .

Confirm this by typindplot(f,[a,b]) . If one desires the 1st derivative of this function,
_df
9(z) = e

one can obtain this by,

>> order = 3; % -- Order of the polynomial

>> dorder= 1; % -- Order of derivatives to take
>> a = -1; % -- Left value of interval

>> b = 1 % -- Right value of interval

>> g = @(z)legendre_polynomial(z,order,dorder,a,b);




where the variabldorder has been set to. Confirm the shape af(z) by plotting it, fplot(g,[a,b])

5.2.5 Plotting sine functions

One can use the following function to produce sine functiwhih are zero at the end of the interya b].

>> order = 3; % -- Order of the polynomial

>> dorder= 0; % -- Order of derivatives to take
>> a = -1; % -- Left value of interval

>> b = 1 % -- Right value of interval

>> f = @(z)sine_dd(z,order,dorder,a,b);

The functionf is the sine function of order 3 scaled and translated softtgt= 0 and f (b) = 0. Thus,

f(z) = sin (?mz - a) .

— a
Confirm this by typindgplot(f,[a,b]) . If one desires the 1st derivative of this function,
daf
9(z) = e

one can obtain this by,

>> order = 3; % -- Order of the polynomial

>> dorder= 1; % -- Order of derivatives to take
>> a = -1; % -- Left value of interval

>> b = 1 % -- Right value of interval

>> g = @(z)sine_dd(z,order,dorder,a,b);

where the variabldorder has been set to. Confirm the shape aj(z) by plotting it, fplot(g,[a,b])



5.2.6 Plotting and integrating functions

e Plot a polynomial term of order 3 and 4 on the inter{gl2] using the functiorpolynomial.m  and draw
them in the paper. The 3rd-order polynomial is defined as,

o= (1)

o= (21)

Observe that they both take the value of 0 at the left end pwidtl at the right end point.

and the 4th-order polynomial as,

What can you say about the shape of the functions as you setha order of the polynomial? Do they look
more alike or are they still different? What does this tellyabout the linear independence of the functions?

Evaluate the expression,

2
A f(@)g(z) de

This can be done using the method introduced earlier usingtiion handles and the functidunc _prod.m .
What is the value you obtain? Are the functions orthogonate @y two polynomial functions of different
order orthogonal?

0.8

0.6~

0.4-

0.2+




e PlotaLegendre polynomial of order 3 and 4 on the intefi/al] using the functiotegendre _polynomial.m
and draw them in the paper. Defif¢z) as the 3rd-order Legendre polynomial af(@d) as the 4th-order Leg-
endre polynomial. Observe that they both take the value af the left end point and 1 at the right end point.

What can you say about the shape of the functions as you setha order of the polynomial? Do they look
more alike or are they still different? What does this telliyabout the linear independence of the functions?

Evaluate the expression,

[ st ar.

This can be done using the method introduced earlier usingtifon handles and the functidanc _prod.m .
What is the value you obtain? Are the functions orthogonate @ny two polynomial functions of different
orthogonal?

0.6~

0.4+

0.2

10



e Plot a sine function of order 3 and 4 on the interjiak] using the functiorsine _dd.m and draw them in the
paper. Defing’(z) as the 3rd-order sine function ap¢:) as the 4th-order sine function. Observe that they both
take the value of 0 at the left end point and 0 at the right entpo

Evaluate the expression,

/1 " f@)al) de

This can be done using the method introduced earlier usingtifon handles and the functidanc _prod.m .
What is the value you obtain? What can you say about the sHahe dunctions as you increase the order?
Do they look more alike or are they still different? What ddtés tell you about the linear independence of the
functions?

0.6~

0.4+

0.2

11



5.3 The method of Ritz

Let us use the method of Ritz to solve some mechanical prabléfhe method requires assuming a form for the
approximate solution,

N

o) = Y cfix),

i=1

where the; are the coefficients to be determined afad:) are the Ritz functions. To successfully apply the method
of Ritz, one must select Ritz functions which satisfy the fbary conditions. (One can use functions which do not
satisfy the boundary conditions, but it requires additldreatment.) Thus, depending on the boundary conditions of
the problem one must change the Ritz functions. Here wedatre the Ritz functions and corresponding family of
mechanical problems they can be used to solve.

1. Using polynomial term functions defined on the interfwab),

falw) = (i:j)n,

which satisfy the boundary condition,

These are suited in solving,

e Tension-compression bar with one end fixed.
e Cantilever beams.
e Torsion bars with one end fixed.

2. Using sine functions defined on the interjealb],

fn(z) =sin (mr: — a) ,

—a

which satisfy the boundary condition,

These are suited in solving,

e Tension-compression bar with both ends fixed.
e Simply supported beams.
e Torsion bars with both ends fixed.

The general structure to solve the problem involves thevdthg MATLAB commands,

>> ritz_data_beam_exercisel; % -- Load data structure for p roblem
>> plotproblem(ritz); % -- Plots configuration of problem
>> plotritzf(ritz,[1]); % -- Plots Ritz function for number s [1]
>> solveritz; % -- Solves problem
% Forms K,F and solve for c=K\F
>> plotsol(ritz,c); % -- Plots solution and components of so lution

12



You can obtain the displacement at any location along thendéal] by the function,

>> xloc = 1.0; % -- Location to obtain approximate displaceme nt
>> evaldisp(ritz,c,xloc) % -- Use ritz structure and approx imation ¢

5.3.1 Polynomials for the cantilever beam

Here we use polynomials to solve the cantilever beam.

1. Run the problem using polynomials.

>> ritz_data_beam_exercisel; % -- Load data structure for p roblem
>> plotproblem(ritz); % -- Plots configuration of problem
>> plotritzf(ritz,[1]); % -- Plots Ritz function numbers [1 ]
>> solveritz; % -- Solves problem
% Forms K,F and solve for c=K\F
>> plotsol(ritz,c); % -- Plots solution and components of so lutiom

This problem solves for a uniform cantileve{ = 1, L = 1) with an end vertical load® = 1). The Ritz
approximation is,

1

v(x) = Y afilw),

i=1

fl(z) = 22 )

using only one quadratic function. Note that this functjofic) satisfies the displacement boundary conditions,
zero deflectiony; (x = 0) = 0 and zero rotatiorf;(x = 0) = 0 atz = 0.

What is the displacement at= L? How does it compare with the exact solutioty = L) = PL3/3EI?

13



2. Modify the fileritz _data _beam_exercisel.m so that you use two functions in your Ritz approximation,

2

o(z) = Zcifi(x)a
i=1

hz) = 22,

fa(z) = 23

To do this you will have to define functions in the cell arréty.f for the cubic function and its derivatives
up to 2. Observe how this is done for the quadratic function.

What is the displacement at= L? How does it compare with the exact solutioty = L) = PL3/3EI?

. Modify the fileritz _data _beam_exercisel.m so thatyou use 3 functions in your Ritz approximation,
3

v(@) = Y efiw),
i=1

f1(2) 2 )

fa(z) = 23

fa(z) = 24

To do this you will have to define functions in the cell arréy.f for the quartic function and its derivatives
upto 2.

What is the displacement at= L? How does it compare with the exact solutiefly = L) = PL3/3EI?
Does this 3 term approximation give you better results thar?tterm approximation? Explain why or why not.

14



4. Modify the fileritz _data _beam_exercisel.m so that you use 2 functions in your Ritz approximation,

2

viw) = Y cifix),

i=1
filz) = 22,
falz) = 22,

Does MATLAB give you some complaint in running this proble®®es this 2 term approximation give you
better results than the 1 term approximation with 1 quadfatction? Explain why or why not. Why do you
think MATLAB complains? (HINT: Look at thd matrix).

5. Modify the fileritz _data _beam_exercisel.m so that you use 2 functions in your Ritz approximation,

2

viw) = Y cifix),

i=1
fl (Z) = Z,
falz) = 22,

Does f;(z) satisfy the displacement boundary conditions for this [Eot? Does MATLAB give you some
complaint in running this problem? Does this 2 term appration give you better results than the 1 term
approximation with 1 quadratic function? Explain why or wingt. Why do you think MATLAB complains?
(HINT: Look at theK matrix).

15



6. Modify the fileritz _data _beam_exercisel.m so that you use two functions in your Ritz approximation,

2

v(r) = Zcifi@%
hz) = 2%,

Rz) = (z—1)°.

Does f,(z) satisfy the displacement boundary conditions for this [Eot? Does MATLAB give you some
complaint in running this problem? Does this 2 term appration give you better results than the 1 term
approximation with 1 quadratic function? Explain why or wingt.

7. Runthefilaitz _data _beam.exercise2.m  which solves this problem using up 16 terms.

N
v(r) = Zcifi(x)a
filz) = P

Confirm that the results you obtain féf = 1, 2, 3 coincide with your previous results.

16



5.3.2 Polynomials for the cantilever beam

Here we use polynomials to solve the tension-compressiowittaone end fixed.

1. Run the fileritz _data _bar _exercise3.m  which solves the problem introduced in the lecture for the
tension-compression bar. Confirm that the results coindidevarying V.

5.3.3 Sine functions for the simply supported beam

Here we use sine functions to solve the simply supported beam

1. Runthefileritz _data _beam._exercise4.m
This problem solves for a uniform simply supported bednd (= 1, L = 1) with a uniform distributed load
(¢ = 1). The Ritz approximation is,

N

v(x) = Y afiw),

i=1
fulz) = sin(nwi:Z).

Note that this functiong;(x) satisfies the displacement boundary conditions, zero digife¢;(z = 0) = 0
andf;(x = L) =0atz = 0andz = L.

What is the displacement at = L/2? How does it compare with the exact solutiarfx = L/2) =
5qL*/384FE1? Fill in the table for the middle displacement with respeci\t. Does the approximation get
better? Do theéV = even terms contribute to a better solution? Compute the relativer.

N 1 2 3 4 5 6
v(x=L/2)
relative error

17



5.3.4 Sine functions for the doubly fixed tension-compressn bar

Here we use sine functions to solve the tension-compressiowith both ends fixed.

1. Runthe fileitz _data _bar _exercise5.m
This problem solves for a uniform babEd = 1, L. = 1) with a varying distributed loadh(= sin (27r%)). You
have solved this problem in Lab 3. The Ritz approximation is,

N

v(x) = Y afiw),

i=1
fulz) = sin(nwi:Z).

Note that this functiong;(x) satisfies the displacement boundary conditions, zero digife¢;(z = 0) = 0
andf;(x = L) =0atz = 0andz = L.
What is the displacement at= 3L/4? How does it compare with the exact solution?

v(z) = (%)Qsin (27%) .

Fill in the table for the displacement with respectfo Does the approximation get better? Why or why not?
Compute the relative error.

N 1 2 3 4
v(x=3L/4)
relative error

18



