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1 Objective

The objective of this lab is to implement the techniquesidticed to analyze statically determinate and indeterminat
truss and frame structures. When the size of the structlsmall, i.e., the number of unknown quantities is small,
one can solve the problems by hand, but as the size of thegmabkreases, the complexity of hand solutions grows
exponentially. The systematic method introduced allowestoreasily analyze large structures.

In this lab you will be asked to write some functions and pohaes which will allow you to complete a program
which analyzes general truss and frame structures. The gtapwill follow can be roughly organized as,

1. 3D Truss structures
e Extend your program to analyze 3D truss structures
2. 2D Frame structures

e Understand the data structure which describes the problem,
e Solve for the the displacements and forces of frame strastur



2 Analysis of truss and beam structures

2.1 Definition of some variables

Let us define the following quantities,

ndim  : Number of dimensions

ndof : Number of degrees of freedom per node
num_ev : Number of variables per element

nnp : Number of node points

nel : Number of elements

Some examples for the valuesadim, ndof, andnum_cv for some problems are summarized in Table 1. These
along with thennp andnel define the size of the vectors and matrices involved in thelpro.

Table 1: Values ofidim, ndof, num_ev for some problems

2D trusses 3D trusses 2D frames
ndim 2 3 2
ndof 2 3 3
(z,y translations) (z,y, z translations) (z, y translationsg rotation)
num_ev | 1 1 3
(R tension-compression force) (R tension-compression force) (R tension-compression force,
M 4, Mg moment at two ends

2.2 Governing equation and boundary conditions

The governing equations for a general truss or frame stracte the following,

e Equilibrium
F = AR 1)

HereF € Rnnrndofxl s the vector of nodal force® € Rnrel-num-cvxl g the vector of element
forces, andA € Rnel-num-evxnnpndof g the compatibility matrix.

o Effective Kinematics
V = Au (2)

Hereu € R""rdofx1 is the vector of nodal displacemenié, € R ¢l mum-evx1 js the vector o
element deformations. In the case of a trdés+ AL.

o Effective Constitutive Relation
R = K,V 3)

HereK, € Rnel-mum-evxnel-num-cv g the matrix relating the element forces and element dederm
tions. Inthe case of atrusK; = [AE/L].

These three relations can be combined into a single equadmesenting equilibrium in terms of the vector of
displacements,

F = Ku, (4)



where,
K = ATK,A.

One can apply boundary conditions to these equations bytifdiewy the (F)REE degrees-of-freedoidf and
(D)ISPLACEMENT known degrees-of-freedaia/ to form the system of equations,

HREEaIH
Fy Ky Kag ug |
Hereuy contains the displacement degrees-of-freedom correspgmalidf andu, to those corresponding t@d.

Employing the fact thati; is known, we can solve for the; andF 4 in the following two steps,

1. Solve for theuy. Define,

ry = Ff—deud:Kfof,
and solve,
uy = K;flrf . (5)
2. EvaluateF,,
F; = Kgur+Kggug,
or by,
F = Ku,

since nowu is solved and a known quantity.



3 Numerical implementation

3.1 Solution procedure

A program to solve for the displacements and forces of trassfialame structures can be summarized as:
1. Determine the geometry and boundary condition (loadirhsupports).
2. Form the matriced, K, and comput& = ATK A.

3. ldentify the (F)ree degrees-of-freedom and known (Dispment degrees-of-freedom, to extgt; and form
ry.

4. Solve for the displacements; through the equatiom; = Kysu;. Consecutively compute other desired
quantities such as bar forcBs

3.2 Forming the compatibility matrix A

From the previous sections it is clear that the size of theima depends on the number of nodesp, number of
elementsiel, number of degrees-of-freedom per nod® f, and the number of variables per elemenin_ev. The
important aspect oA is that it has a nice block structure, i.@&,looks like the following,

nnp blocks

—_—
A — .

nel blocks{
o ... ... 0O

In this case each of the boXgsarenum_ev-by-ndo f sized matrices. This implies that the size of the maftidepends

on the problem one is treating. In the case of a 2D truss, #eeisil-by-2. The actual size & is (nel - num_ev)-

by-(nnp - ndof).
In our numerical implementation, we have a function,

[[Ae] = assenbl eAe_XXX(nesh, ie); ‘

which returns the eth element contributiode to the compatibility matrixA. The size ofAe here isnum_ev-by-
2ndof. This means that it has the structure,
Ae=]0 HNH.

Since this is tha eth element contribution,] and B both go in thei eth block row of A. Thei eth block row
corresponds to,
(ie—1) X numev+1
ie th block row — ,
(ie — 1) X num_ev + num_ev
and thus it will actually go into these rows @&f. Let us assume that the element is connected to hadat endA
and nodé b at endB. Thend will go in thei ath block column andll in thei bth block column. The ath block
column corresponds to,
(ia—1) X ndof + 1
ia th block column — ,
(ia— 1) x ndof + ndof
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and thug will actually go into these columns &. Thei bth block column corresponds to,

(ib—1) X ndof + 1

ib th block column —

)

(ib — 1) X ndof + ndof

and thudll will actually go into these columns .

3.3 Forming the effective stiffness matrixK,

From the previous sections it is clear that the size of theim&, depends on the number of elements and the
number of variables per elementim_cv. The important aspect dK; is that it has a nice block structure, i.&
looks like the following,

nel blocks
—_—
o o --- 0O
K, —
nel blocks{

T
In this case each of the boxEkare num_ev-by-num_ev sized matrices. This implies that the size of the maitix
depends on the problem one is treating. In the case of a 2B, thessize is 1-by-1, i.eK is a diagonal matrix. The

actual size oK is (nel - num_ev)-by-(nel - num_ev).
In our numerical implementation, we have a function,

‘[Ae] = assenbl eKse_XXX(rmnesh,ie); ‘

which returns the eth element contributioikse to the matrixKK,. The size ofKse here isnum_ev-by-num_ev.
This means that it has the structure,

Kse = [].

Since this is thé eth element contributior,] goes into the eth block row and column oK. Thei eth block row
and column corresponds to,

(ie—1) x numev + 1
ie th block row — : ,

(ie — 1) X num_ev + num_ev

and thus it will actually go into these rows and column&af



4 3D Truss structures

4.1

Data structure

1.5

0.5;

-0.5
1

15 15

Figure 1: 3D truss example

To solve the truss problem numerically, one needs more ti@ctare. One requires an abstract representation of
the truss structure along with the boundary conditionsiover representations are possible and below we present the
data structure we will be using in our implementation. Th&addructure is for the truss shown in Figure 1. This is
identical to the problem you have treated in the lecture.

clear nesh

% - -
mesh.
mesh.
nmesh.
mesh.

% - -
%
%
%
%
%
%
%
%
%
mesh.

% - -
%
%

Specify the problem

ndim = 3; % -- Di mension of problem

ndof = 3; % -- Degrees of freedom per node
num ev= 1, % -- Nunber of el enent variables
etype = "truss’; %-- Type of el enent

Node to coordinate array
nmesh. node -- An array

For the 3D case

nmesh. node = [ nodel
[ nodel.
[ nodel.
node = [0, 1, 1, 1
0, 0,1, 0
0, 0, 0, 1;1;

El ement connectivity array

nmesh.conn -- An array

of

of

si ze (ndi m-by-(nunber of nodes)

node2. x, . ..]
node2.y,...]
node2.z,...]

si ze



% (nunmber of connections)-by-(nunber of el enents)
%

% For the ’'truss’ case,

%

% nmesh.conn = [elenentl.nl, element2.nl,...]
% [el ement1.n2, elenent2.n2,...]
%
mesh.conn = [1, 2, 3;
4, 4, 4;];
% -- Material properties
%
% nmesh. mat -- An array of structures of
% size (number of el enents)
%
% The material properties for 'i’'th el enent nunber
%
% mesh. mat{i}. E -- Youngs nodul us
% mesh. mat{i}. A -- Cross-sectional area
%
mat 1. E = le3;
mat 1. A =1,
mesh. mat {1} = mat 1;

mesh. mat {2} = mat 1;
mesh. mat {3} = mat 1;

% -- Node to boundary condition code array

%

% nmesh. bc -- An array of size

% (ndof ) - by- (nunber of nodes)
%

% The entries of this array take either a value of 0 or 1.
% For the i-th degree of freedomfor the j-th node,
%

% nmesh. bc(i,j) =0 -- Inplies Known Force BC
% mesh. bc(i,j) =1 -- Inplies Known Displacenent BC
%
mesh. bc = zeros(nesh. ndof, si ze(nesh. node, 2));
%-- Initally assune all Known Force BC

mesh. bc(:,1) = [1;

1;

11,
mesh. be(:,2) = [1;

1;

L1
mesh. be(:,3) = [1;

1;
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% -- Nodal displacenent val ue array
%
% mesh.u -- An array of size
% (ndof ) - by- (nunber of nodes)
%

% The entries of this array store the value of the nodal displacenents
% The di splacenent in the direction of the i-th degree of freedom

% for the j-th node

% is mesh.u(i,j)

%

% One nust preset the nodal displacenent val ues for

% the KNOAN DI SPLACEMENT BCs

%

mesh. u = zeros(nmesh. ndof, si ze(nesh. node, 2));
mesh.u(:,1) = [0.0;
0.0;



0.0;1;
mesh.u(:,2) =[0.0;
0.0;
0.0;]
mesh.u(:,3) =[0.0;
0.0;
0.0;1;
% -- Nodal force value array
%
% mesh.f -- An array of size
% (ndof ) - by- (nunber of nodes)
%
% The entries of this array store the value of the nodal forces
% The force in the direction of the i-th degree of freedom
% for the j-th node
% is mesh.f(i,j)
%
% One nust preset the nodal force values for
% t he KNOAN FORCE BCs
%
mesh. f = zeros(nmesh. ndof, si ze(nesh. node, 2));
mesh.f(:,4) =[1.0;
0.0;
0.0;1;



5 Frame structures

5.1 Governing equation
Let us define the following quantities,

ndof : Number of degrees-of-freedom per node, for 2D frames(2)
nnp . Number of node points
nel : Number of elements (beams)

The governing equations for a frame structure are the faligw

e Equilibrium
F = ATR (6)

HereF e Rndof mnpxl s the vector of nodal force® € R3nelx1 s the vector of beam forces
andA ¢ R3nelxndof-nnp s the compatibility matrix.

e Kinematics
V = Au, (7)

Hereu ¢ Rndefmmpx1 s the vector of nodal displacemenié, ¢ R37¢/x! s the vector of beam
deformations.

o Effective constitutive relation
R = K,V (8)

HereK, € R3nelx3nel i the block diagonal matrix of beam stiffnesses.

For the case of this 2D-frame structure, one has an additdemree of freedom at each node compared to truss
structures. This degree-of-freedomiis the rotational degf freedom; » . Thusu has the following structure,

up
u =
L Unnp
where the contribution from each node is,
[ Ui,z
u; = U,y
| U6
The vector of nodal forceB will have the same structure,
rF
F = :
L anp
where the contribution from each node is,
F;,
Fi - E,y
F;

)



andF;  is the applied moment at node
The beam also has two more additional variables to defineeitsrohation compared to the bar. These are the
rotations at the two end8; 4 andé; 5. ThusV has the following structure,

Vi
V =
Vnel
where the deformations of each beam are,
AL;
v, = 0;.a
;.8

One can also apply moments at the two ends of the beam whictwadaiore variables to the element forcég; 4
andM; . The vector of beam forceR will have the structure,

R,
R = :
Rnel
where the forces in each beam are,
R;
R, = M; 4
M; B

The relationship between the beam forfesand beam deformationg for bean, is defined as,

R, = K;;vi,
EA
L g1 2mI
K, = | 0 42 281
0 2&'1 4£1
L L

Thus the matriXK s in the effective constitutive relation will have the follavg block diagonal structure,

]E{S71 0 . 0
Ks — 0 Ks,2
S |
0 e 0 Ks,nel
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5.2 Data structure

0.4
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Figure 2: Frame example

To solve the frame problem numerically, one needs more thaintare. One requires an abstract representation
of the frame structure along with the boundary conditiorexids representations are possible and below we present
the data structure we will be using in our implementatione ®ata structure is for the frame shown in Figure 2. This
is identical to the problem you have treated in the lecture.

cl ear nesh;

% -- Specify the problem

mesh.ndim = 2; % -- Di mension of problem
mesh. ndof = 3; % -- Degrees of freedom per node
mesh. num ev= 3; % -- Nunber of el enent variables

mesh. etype "beami; %-- Type of elenent

% -- Node to coordinate array

%

% mesh. node -- An array of size (ndim-by-(nunber of nodes)
%

% For the 2D case,

%

% nmesh. node = [nodel. x, node2.x,...]
% [nodel.y, node2,y,...]
%
mesh. node = [0, 1, 1;

0, 0, 1;1;

% -- El ement connectivity array

%

% mesh.conn -- An array of size

% (number of connections)-by-(nunber of el ements)
%

% For the 'beanmi case,

%

% mesh.conn = [elenentl.nl, element2.nl,...]

% [el enent 1. n2, elenment2.n2,...]

%

11



mesh.conn = [1, 3;
3, 2;];
% -- Material properties
%
% nmesh. mat -- An array of structures of
% size (nunmber of el enents)
%
% The material properties for 'i’th el enent nunber
%
% mesh. mat{i }. E -- Youngs nodul us
% mesh.mat{i}. A -- Cross-sectional area
%
mat 1. E = le3;
mat 1. A = 1,
mat 1. | =1,
mesh. mat {1} = mat 1;

mesh. mat {2} = mat 1;

% -- Node to boundary condition code array
%

% nmesh. bc -- An array of size
% (ndof ) - by- (nunber of nodes)
%

% The entries of this array take either a value of 0 or 1.
% For the i-th degree of freedomfor the j-th node,
%

% nmesh. bc(i,j) =0 -- Inplies Known Force BC
% nmesh. bc(i,j) =1 -- Inplies Known Displacenent BC
%
mesh. bc = zeros(nmesh. ndof, si ze(nesh. node, 2));
%-- Initally assune all Known Force BC

mesh. bc(:,1) = [1;

1;

11,
mesh. be(:,2) = [1;

1;

L1

% -- Nodal displacenent value array

%

% mesh.u -- An array of size

% (ndof ) - by- (nunber of nodes)

%

% The entries of this array store the value of the nodal displacenents
% The di splacement in the direction of the i-th degree of freedom
% for the j-th node

% is mesh.u(i,j)

%

% One nust preset the nodal displacenent values for

% t he KNOMN DI SPLACEMENT BCs

%
mesh. u = zeros(mesh. ndof, si ze(nesh. node, 2));
mesh.u(:,1) =[0.0;
0.0;
0.0];
mesh.u(:,2) =[0.0;
0.0;
0.0];

% -- Nodal force value array
%

% mesh.f -- An array of size
% (ndof ) - by- (nunber of nodes)
%

12



% The
% The
%

% is
%

% One
% t he
%

nmesh. f

entries of this array store the value of the nodal forces
force in the direction of the i-th degree of freedom

for the j-th node
mesh.f(i,j)

nmust preset the nodal force values for
KNOMWN FORCE BCs

zeros(mesh. ndof, si ze(nesh. node, 2))

mesh. f(:, 3) ; [1.0

0.0;
0.0;1;

13



5.3 Element-by-element assembly of the compatibility maix A

It has been introduced in the lecture that thecan be formed systematically. Consider the compatibiligtnr of
Figure 2,

A = |: Egla (1)“ E§3b ] ,
0 E32b E23a
which relates the beam deformatio¥is with the nodal displacements
V = Auy,
Vi _ Ef., 0 E{Bb o
V2 B 0 E, E, e
us

Here the matriceE 45, andE 4 g, are 3-by-3 matrices which have the form,

e nap nap
EABa = |: 33 :I[ 6 :|a

e nap  nap
Eapy, = { ’SB (L) i }7

ande 45 is the unit vector point from nodd to nodeB andn 4 g is the unit vector orthogonal te, 5 obtained by
rotatinge 4 g clockwise by 90 degrees. The rows Afcorrespond to the beams, and the columns correspond to the
nodes. Each beam only links to two nodes, so there are onlyehiries per row. In order to assembdg one can
iterate through the beams starting from beam 1 to beaiinserting one row at a time.

In our implementation, there is a function,

function [Ae] = assenbl eAe_bean{mesh,ie)
which given the element numbarandnesh data structure, return&.., the element contribution to the compatibility
matrix, defined as
u
Vie = Ae |: A :| )

up
where,

A€ = [EgAa? EaBb} )
[ AL,

Vie = eie,A )

L eie,B

UA x
uAs = UA,y y
L UA,0

Here it is assumed that the element connects to nddmsd B. Once theA. is computed, it can be inserted into the
correct location of the compatibility matri& using the information fronmesh. conn. This is done in the function,

function [A] = assenbl eA(nesh)

REMARK: This procedure is identical to the procedure for constngcthe compatibility matrix for the truss
structure where the compatibility matrix has the form,

el 0 €L
A:{31T1T3_

0 ez ey

In this case the 4g’s are 2-by-1 matrices, i.e., vectors.
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6 Exercise

6.1 Download updates for thetruss program

1. Gotothedirectorgel30n/ week4/ | ab/ mat | ab/t r uss/ cor e directory and rename the following files.

assenbl eA. m— assenbl eAweek5. m
sol venesh. m— sol venesh_.week5. m

2. Download the fild r uss_updat e_week®6. zi p into yourcel30n/ week4/ | ab/ mat | ab/ directory and
unzip it.

3. Copy the files in the directoityr uss _updat e week6 into the appropriate locations in your
cel30n/ week4/ 1 ab/ mat | ab/ t r uss directory, overwriting some previous files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

6.2 Modify the truss program for 3D analysis

1. Load the sample data structure and plot the 3D truss steict

>> nmesh_dat a_truss_exanpl e3d;
>> pl ot nesh(nesh);

The filemesh_dat a_t r uss_exanpl e3d. mcontains the data structure for this truss stored in theatbéei
nmesh, and the functiopl ot nesh. mplots the data structureesh.

2. Make sure the function
cel30n/ week4/ | ab/ mat | ab/ truss/ el enent/ assenbl eAetruss. m
works for the 3D truss case. You may have to modify the way yaapmute the unit vector so that it applies for
both the 2D and 3D case.

To test the function for the 3D case, one must first load thehnsésicture for the problem and then run the
function,

>> mesh_dat a_t russ_exanpl e3d;
>> [ Ae] = assenbl eAe_truss(nmesh,1);

Make sure the function still works for the 2D case by running,

>> mesh_dat a_t russ_exanpl e;
>> [ Ae] = assenbl eAe_truss(nesh,1);
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3. Complete the function
cel30n/ week4/ | ab/ mat | ab/truss/ core/ determ nercind. m
which computes the row and column indices of the compaiytitiatrix A into which the element compatibility
matrix A is inserted.

To test the function you can run for example,

>> je = 3

>> ja = 2;

>> ib = 5;

>> numev = 2;

>> ndof = 3

>> [rid,cidA cidB] = determ ne_rcind(numev, ndof,ie,ia,ib);

For this case, one should obtain the results,

rid =1[5,6];
ci dA = [4,5,6];
ci dB =[13,14,15];

4. Complete the function
cel30n/ weekd4/ 1 ab/ mat | ab/truss/ core/ assenbl eA m
This version will implement the function you have constactabovelet er mi ne_r ci nd. mand will be more
general in its applicability. You will be able to form th% matrices for 2D/3D trusses and 2D frames.

To test the function one must first load the mesh structuréh®problem and then run the function,

>> mesh_dat a_t russ_exanpl e3d;
>> sol venesh;
>> pl ot def o( nesh, 1lel);

The correct displacement for the top nodéd<)038, —0.0010, —0.0010).

CHECKPOINT: Show the plot for the deformed structures. Explain what trection forces, bar forces, and
bar stresses are and how you can obtain them. Compare thisa@izse with the 2D case that you have already
analyzed in theresh_dat a_t r uss_exanpl e. m Why does the top node have a negative displacement in the
y direction? Why is it not zero?
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6.3 Analyze frame structures

1. Load, plot, and solve the example frame structure shovirigare 2.

>> mesh_dat a_f rame_exanpl e;
>> pl ot nesh(nesh);

>> sol venesh(nesh);

>> pl ot def o(nesh, 1e3);

2. Construct the data structure for the irregular framecstme shown in Figure 3. Then load, plot, and solve for
the displacements and forces. The applied force at the midaliie is(0, —25,0) and at the top right node is

(20,0,0).
15
d T i
5
o -

0 5 10 15 20

Figure 3: Irregular frame structure

CHECKPOINT: What are the displacements at the nodes? What are the reémtes at the supports? What
are the beam forces (axial force, moments, shear force)?ddovone obtain the element compatibility matdx for
one of the beams in the frame structure?
The configuration of the frame structuresh_dat a_f r ame_exanpl e. misidentical totheresh_dat a_t r uss_exanpl e. m
Try to relate the results you obtain from the two structu(edNT: Make thel for the frame example structure smaller
and observe how the displacement at the top node changes).
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