
UNIVERSITY OF CALIFORNIA AT BERKELEY CE 130N, Spring 2009
Department of Civil and Environmental Engineering Prof. S.Govindjee and Dr. T. Koyama
Structural Engineering, Mechanics and Materials Lab 6

Mechanics of Structures (CE130N)
Lab 6

1 Objective

The objective of this lab is to implement the techniques introduced to analyze statically determinate and indeterminate
truss and frame structures. When the size of the structure issmall, i.e., the number of unknown quantities is small,
one can solve the problems by hand, but as the size of the problem increases, the complexity of hand solutions grows
exponentially. The systematic method introduced allows one to easily analyze large structures.

In this lab you will be asked to write some functions and procedures which will allow you to complete a program
which analyzes general truss and frame structures. The steps you will follow can be roughly organized as,

1. 3D Truss structures

• Extend your program to analyze 3D truss structures

2. 2D Frame structures

• Understand the data structure which describes the problem,

• Solve for the the displacements and forces of frame structures.

1



2 Analysis of truss and beam structures

2.1 Definition of some variables

Let us define the following quantities,

ndim : Number of dimensions
ndof : Number of degrees of freedom per node
num ev : Number of variables per element
nnp : Number of node points
nel : Number of elements

Some examples for the values ofndim, ndof , andnum ev for some problems are summarized in Table 1. These
along with thennp andnel define the size of the vectors and matrices involved in the problem.

Table 1: Values ofndim, ndof , num ev for some problems
2D trusses 3D trusses 2D frames

ndim 2 3 2
ndof 2 3 3

(x, y translations) (x, y, z translations) (x, y translations,θ rotation)
num ev 1 1 3

(R tension-compression force)(R tension-compression force)(R tension-compression force,
MA, MB moment at two ends)

2.2 Governing equation and boundary conditions

The governing equations for a general truss or frame structure are the following,

• Equilibrium

F = A
T
R (1)

HereF ∈ R
nnp·ndof×1 is the vector of nodal forces,R ∈ R

nel·num ev×1 is the vector of element
forces, andA ∈ R

nel·num ev×nnp·ndof is the compatibility matrix.

• Effective Kinematics

V = Au (2)

Hereu ∈ R
nnp·ndof×1 is the vector of nodal displacements,V ∈ R

nel·num ev×1 is the vector of
element deformations. In the case of a truss,V = ∆L.

• Effective Constitutive Relation

R = KsV (3)

HereKs ∈ R
nel·num ev×nel·num ev is the matrix relating the element forces and element deforma-

tions. In the case of a truss,Ks = [AE/L].

These three relations can be combined into a single equationrepresenting equilibrium in terms of the vector of
displacementsu,

F = Ku, (4)

2



where,

K := A
T
KsA .

One can apply boundary conditions to these equations by identifying the (F)REE degrees-of-freedomidf and
(D)ISPLACEMENT known degrees-of-freedomidd to form the system of equations,

[
Ff

Fd

]

=

[
Kff Kfd

Kdf Kdd

] [
uf

ud

]

.

Hereuf contains the displacement degrees-of-freedom corresponding to idf andud to those corresponding toidd.
Employing the fact thatud is known, we can solve for theuf andFd in the following two steps,

1. Solve for theuf . Define,

rf := Ff − Kfdud = Kffuf ,

and solve,

uf = K
−1

ff rf . (5)

2. EvaluateFd,

Fd = Kdfuf + Kddud ,

or by,

F = Ku ,

since nowu is solved and a known quantity.

3



3 Numerical implementation

3.1 Solution procedure

A program to solve for the displacements and forces of truss and frame structures can be summarized as:

1. Determine the geometry and boundary condition (loading and supports).

2. Form the matricesA, Ks, and computeK = A
T
KsA.

3. Identify the (F)ree degrees-of-freedom and known (D)isplacement degrees-of-freedom, to extractKff and form
rf .

4. Solve for the displacementsuf through the equationrf = Kffuf . Consecutively compute other desired
quantities such as bar forcesR.

3.2 Forming the compatibility matrix A

From the previous sections it is clear that the size of the matrix A depends on the number of nodesnnp, number of
elementsnel, number of degrees-of-freedom per nodendof , and the number of variables per elementnum ev. The
important aspect ofA is that it has a nice block structure, i.e.,A looks like the following,

A →

nnp blocks
︷ ︸︸ ︷

nel blocks

{









� � · · · �

�
. . .

. . .
...

...
. . .

. . .
...

� · · · · · · �









.

In this case each of the boxes� arenum ev-by-ndof sized matrices. This implies that the size of the matrix� depends
on the problem one is treating. In the case of a 2D truss, the size is 1-by-2. The actual size ofA is (nel · num ev)-
by-(nnp · ndof).

In our numerical implementation, we have a function,

[Ae] = assembleAe_XXX(mesh,ie);

which returns theieth element contributionAe to the compatibility matrixA. The size ofAe here isnum ev-by-
2ndof . This means that it has the structure,

Ae = [� �] .

Since this is theieth element contribution,� and� both go in theieth block row ofA. Theieth block row
corresponds to,

ie th block row →







(ie− 1) × num ev + 1
...

(ie− 1) × num ev + num ev

,

and thus it will actually go into these rows ofA. Let us assume that the element is connected to nodeia at endA
and nodeib at endB. Then� will go in theiath block column and� in theibth block column. Theiath block
column corresponds to,

ia th block column →







(ia− 1) × ndof+ 1
...

(ia− 1) × ndof+ ndof

,

4



and thus� will actually go into these columns ofA. Theibth block column corresponds to,

ib th block column →







(ib− 1) × ndof+ 1
...

(ib− 1) × ndof+ ndof

,

and thus� will actually go into these columns ofA.

3.3 Forming the effective stiffness matrixK
s

From the previous sections it is clear that the size of the matrix Ks depends on the number of elementsnel and the
number of variables per elementnum ev. The important aspect ofKs is that it has a nice block structure, i.e.,Ks

looks like the following,

Ks →

nel blocks
︷ ︸︸ ︷

nel blocks

{









� � · · · �

�
. . .

. . .
...

...
. . .

. . .
...

� · · · · · · �









.

In this case each of the boxes� arenum ev-by-num ev sized matrices. This implies that the size of the matrix�

depends on the problem one is treating. In the case of a 2D truss, the size is 1-by-1, i.e.,Ks is a diagonal matrix. The
actual size ofKs is (nel · num ev)-by-(nel · num ev).

In our numerical implementation, we have a function,

[Ae] = assembleKse_XXX(mesh,ie);

which returns theieth element contributionKse to the matrixKs. The size ofKse here isnum ev-by-num ev.
This means that it has the structure,

Kse = [�] .

Since this is theieth element contribution,� goes into theieth block row and column ofKs. Theieth block row
and column corresponds to,

ie th block row →







(ie− 1) × num ev + 1
...

(ie− 1) × num ev + num ev

,

and thus it will actually go into these rows and columns ofKs.

5



4 3D Truss structures

4.1 Data structure

−0.5
0

0.5
1

1.5

−0.5
0

0.5
1

1.5

−0.5

0

0.5

1

1.5

Figure 1: 3D truss example

To solve the truss problem numerically, one needs more than apicture. One requires an abstract representation of
the truss structure along with the boundary conditions. Various representations are possible and below we present the
data structure we will be using in our implementation. The data structure is for the truss shown in Figure 1. This is
identical to the problem you have treated in the lecture.

clear mesh;

% -- Specify the problem
mesh.ndim = 3; % -- Dimension of problem
mesh.ndof = 3; % -- Degrees of freedom per node
mesh.num_ev= 1; % -- Number of element variables
mesh.etype = ’truss’; % -- Type of element

% -- Node to coordinate array
%
% mesh.node -- An array of size (ndim)-by-(number of nodes)
%
% For the 3D case,
%
% mesh.node = [node1.x, node2.x,...]
% [node1.y, node2.y,...]
% [node1.z, node2.z,...]
%
mesh.node = [0, 1, 1, 1;

0, 0, 1, 0;
0, 0, 0, 1;];

% -- Element connectivity array
%
% mesh.conn -- An array of size

6



% (number of connections)-by-(number of elements)
%
% For the ’truss’ case,
%
% mesh.conn = [element1.n1, element2.n1,...]
% [element1.n2, element2.n2,...]
%
mesh.conn = [1, 2, 3;

4, 4, 4;];

% -- Material properties
%
% mesh.mat -- An array of structures of
% size (number of elements)
%
% The material properties for ’i’th element number
%
% mesh.mat{i}.E -- Youngs modulus
% mesh.mat{i}.A -- Cross-sectional area
%
mat1.E = 1e3;
mat1.A = 1;
mesh.mat{1}= mat1;
mesh.mat{2}= mat1;
mesh.mat{3}= mat1;

% -- Node to boundary condition code array
%
% mesh.bc -- An array of size
% (ndof)-by-(number of nodes)
%
% The entries of this array take either a value of 0 or 1.
% For the i-th degree of freedom for the j-th node,
%
% mesh.bc(i,j) = 0 -- Implies Known Force BC
% mesh.bc(i,j) = 1 -- Implies Known Displacement BC
%
mesh.bc = zeros(mesh.ndof,size(mesh.node,2));

% -- Initally assume all Known Force BC
mesh.bc(:,1) = [1;

1;
1;];

mesh.bc(:,2) = [1;
1;
1;];

mesh.bc(:,3) = [1;
1;
1;];

% -- Nodal displacement value array
%
% mesh.u -- An array of size
% (ndof)-by-(number of nodes)
%
% The entries of this array store the value of the nodal displacements
% The displacement in the direction of the i-th degree of freedom
% for the j-th node
% is mesh.u(i,j)
%
% One must preset the nodal displacement values for
% the KNOWN DISPLACEMENT BCs
%
mesh.u = zeros(mesh.ndof,size(mesh.node,2));
mesh.u(:,1) = [0.0;

0.0;

7



0.0;];
mesh.u(:,2) = [0.0;

0.0;
0.0;];

mesh.u(:,3) = [0.0;
0.0;
0.0;];

% -- Nodal force value array
%
% mesh.f -- An array of size
% (ndof)-by-(number of nodes)
%
% The entries of this array store the value of the nodal forces
% The force in the direction of the i-th degree of freedom
% for the j-th node
% is mesh.f(i,j)
%
% One must preset the nodal force values for
% the KNOWN FORCE BCs
%
mesh.f = zeros(mesh.ndof,size(mesh.node,2));
mesh.f(:,4) = [1.0;

0.0;
0.0;];

8



5 Frame structures

5.1 Governing equation

Let us define the following quantities,

ndof : Number of degrees-of-freedom per node, for 2D frames(2)
nnp : Number of node points
nel : Number of elements (beams)

The governing equations for a frame structure are the following,

• Equilibrium

F = A
T
R (6)

HereF ∈ R
ndof ·nnp×1 is the vector of nodal forces,R ∈ R

3nel×1 is the vector of beam forces,
andA ∈ R

3nel×ndof ·nnp is the compatibility matrix.

• Kinematics

V = Au, (7)

Hereu ∈ R
ndof ·nnp×1 is the vector of nodal displacements,V ∈ R

3nel×1 is the vector of beam
deformations.

• Effective constitutive relation

R = KsV (8)

HereKs ∈ R
3nel×3nel is the block diagonal matrix of beam stiffnesses.

For the case of this 2D-frame structure, one has an additional degree of freedom at each node compared to truss
structures. This degree-of-freedom is the rotational degree of freedomui,θ . Thusu has the following structure,

u =






u1

...
unnp






where the contribution from each node is,

ui =





ui,x

ui,y

ui,θ



 .

The vector of nodal forcesF will have the same structure,

F =






F1

...
Fnnp






where the contribution from each node is,

Fi =





Fi,x

Fi,y

Fi,M





9



andFi,M is the applied moment at nodei.
The beam also has two more additional variables to define its deformation compared to the bar. These are the

rotations at the two ends,θi,A andθi,B. ThusV has the following structure,

V =






v1

...
vnel






where the deformations of each beam are,

vi =





∆Li

θi,A

θi,B



 .

One can also apply moments at the two ends of the beam which addtwo more variables to the element forces,Mi,A

andMi,B. The vector of beam forcesR will have the structure,

R =






R1

...
Rnel






where the forces in each beam are,

Ri =





Ri

Mi,A

Mi,B



 .

The relationship between the beam forcesRi and beam deformationsvi for beami, is defined as,

Ri = Ks,ivi,

Ks,i :=





EA
L

0 0
0 4EI

L
2EI
L

0 2EI
L

4EI
L





Thus the matrixKs in the effective constitutive relation will have the following block diagonal structure,

Ks =









Ks,1 0 · · · 0

0 Ks,2

. . .
...

...
. . .

. . . 0

0 · · · 0 Ks,nel









10



5.2 Data structure

0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2: Frame example

To solve the frame problem numerically, one needs more than apicture. One requires an abstract representation
of the frame structure along with the boundary conditions. Various representations are possible and below we present
the data structure we will be using in our implementation. The data structure is for the frame shown in Figure 2. This
is identical to the problem you have treated in the lecture.

clear mesh;

% -- Specify the problem
mesh.ndim = 2; % -- Dimension of problem
mesh.ndof = 3; % -- Degrees of freedom per node
mesh.num_ev= 3; % -- Number of element variables
mesh.etype = ’beam’; % -- Type of element

% -- Node to coordinate array
%
% mesh.node -- An array of size (ndim)-by-(number of nodes)
%
% For the 2D case,
%
% mesh.node = [node1.x, node2.x,...]
% [node1.y, node2,y,...]
%
mesh.node = [0, 1, 1;

0, 0, 1;];

% -- Element connectivity array
%
% mesh.conn -- An array of size
% (number of connections)-by-(number of elements)
%
% For the ’beam’ case,
%
% mesh.conn = [element1.n1, element2.n1,...]
% [element1.n2, element2.n2,...]
%

11



mesh.conn = [1, 3;
3, 2;];

% -- Material properties
%
% mesh.mat -- An array of structures of
% size (number of elements)
%
% The material properties for ’i’th element number
%
% mesh.mat{i}.E -- Youngs modulus
% mesh.mat{i}.A -- Cross-sectional area
%
mat1.E = 1e3;
mat1.A = 1;
mat1.I = 1;
mesh.mat{1}= mat1;
mesh.mat{2}= mat1;

% -- Node to boundary condition code array
%
% mesh.bc -- An array of size
% (ndof)-by-(number of nodes)
%
% The entries of this array take either a value of 0 or 1.
% For the i-th degree of freedom for the j-th node,
%
% mesh.bc(i,j) = 0 -- Implies Known Force BC
% mesh.bc(i,j) = 1 -- Implies Known Displacement BC
%
mesh.bc = zeros(mesh.ndof,size(mesh.node,2));

% -- Initally assume all Known Force BC
mesh.bc(:,1) = [1;

1;
1;];

mesh.bc(:,2) = [1;
1;
1;];

% -- Nodal displacement value array
%
% mesh.u -- An array of size
% (ndof)-by-(number of nodes)
%
% The entries of this array store the value of the nodal displacements
% The displacement in the direction of the i-th degree of freedom
% for the j-th node
% is mesh.u(i,j)
%
% One must preset the nodal displacement values for
% the KNOWN DISPLACEMENT BCs
%
mesh.u = zeros(mesh.ndof,size(mesh.node,2));
mesh.u(:,1) = [0.0;

0.0;
0.0];

mesh.u(:,2) = [0.0;
0.0;
0.0];

% -- Nodal force value array
%
% mesh.f -- An array of size
% (ndof)-by-(number of nodes)
%

12



% The entries of this array store the value of the nodal forces
% The force in the direction of the i-th degree of freedom
% for the j-th node
% is mesh.f(i,j)
%
% One must preset the nodal force values for
% the KNOWN FORCE BCs
%
mesh.f = zeros(mesh.ndof,size(mesh.node,2));
mesh.f(:,3) = [1.0;

0.0;
0.0;];

13



5.3 Element-by-element assembly of the compatibility matrix A

It has been introduced in the lecture that theA can be formed systematically. Consider the compatibility matrix of
Figure 2,

A =

[
E

T
31a 0 E

T
13b

0 E
T
32b E

T
23a

]

,

which relates the beam deformationsV, with the nodal displacementsu,

V = Au,
[

v1

v2

]

=

[
E

T
31a 0 E

T
13b

0 E
T
32b E

T
23a

]




u1

u2

u3



 .

Here the matricesEABa andEABb are 3-by-3 matrices which have the form,

EABa :=

[
eAB

nAB

L
nAB

L

0 1 0

]

,

EABb :=

[
eAB

nAB

L
nAB

L

0 0 1

]

,

andeAB is the unit vector point from nodeA to nodeB andnAB is the unit vector orthogonal toeAB obtained by
rotatingeAB clockwise by 90 degrees. The rows ofA correspond to the beams, and the columns correspond to the
nodes. Each beam only links to two nodes, so there are only twoentries per row. In order to assembleA, one can
iterate through the beams starting from beam 1 to beamnel, inserting one row at a time.

In our implementation, there is a function,

function [Ae] = assembleAe_beam(mesh,ie)

which given the element numberie andmesh data structure, returnsAe, the element contribution to the compatibility
matrix, defined as

vie = Ae

[
uA

uB

]

,

where,

Ae :=
[
E

T
BAa,ET

ABb

]
,

vie :=





∆Lie

θie,A

θie,B



 ,

uA :=





uA,x

uA,y

uA,θ



 ,

Here it is assumed that the element connects to nodesA andB. Once theAe is computed, it can be inserted into the
correct location of the compatibility matrixA using the information frommesh.conn. This is done in the function,

function [A] = assembleA(mesh)

REMARK: This procedure is identical to the procedure for constructing the compatibility matrix for the truss
structure where the compatibility matrix has the form,

A =

[
e

T
31 0 e

T
13

0 e
T
32

e
T
23

]

.

In this case theeAB ’s are 2-by-1 matrices, i.e., vectors.

14



6 Exercise

6.1 Download updates for thetruss program

1. Go to the directoryce130n/week4/lab/matlab/truss/coredirectory and rename the following files.

assembleA.m→ assembleA week5.m
solvemesh.m→ solvemesh week5.m

2. Download the filetruss update week6.zip into yource130n/week4/lab/matlab/ directory and
unzip it.

3. Copy the files in the directorytruss update week6 into the appropriate locations in your
ce130n/week4/lab/matlab/truss directory, overwriting some previous files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

6.2 Modify the truss program for 3D analysis

1. Load the sample data structure and plot the 3D truss structure.

>> mesh_data_truss_example3d;
>> plotmesh(mesh);

The filemesh data truss example3d.m contains the data structure for this truss stored in the variable
mesh, and the functionplotmesh.m plots the data structuremesh.

2. Make sure the function
ce130n/week4/lab/matlab/truss/element/assembleAe truss.m
works for the 3D truss case. You may have to modify the way you compute the unit vector so that it applies for
both the 2D and 3D case.

To test the function for the 3D case, one must first load the mesh structure for the problem and then run the
function,

>> mesh_data_truss_example3d;
>> [Ae] = assembleAe_truss(mesh,1);

Make sure the function still works for the 2D case by running,

>> mesh_data_truss_example;
>> [Ae] = assembleAe_truss(mesh,1);

15



3. Complete the function
ce130n/week4/lab/matlab/truss/core/determine rcind.m
which computes the row and column indices of the compatibility matrixA into which the element compatibility
matrixAe is inserted.

To test the function you can run for example,

>> ie = 3;
>> ia = 2;
>> ib = 5;
>> num_ev = 2;
>> ndof = 3;
>> [rid,cidA,cidB] = determine_rcind(num_ev,ndof,ie,ia,ib);

For this case, one should obtain the results,

rid = [5, 6];
cidA = [4, 5, 6];
cidB = [13, 14, 15];

4. Complete the function
ce130n/week4/lab/matlab/truss/core/assembleA.m
This version will implement the function you have constructed abovedetermine rcind.m and will be more
general in its applicability. You will be able to form theA matrices for 2D/3D trusses and 2D frames.

To test the function one must first load the mesh structure forthe problem and then run the function,

>> mesh_data_truss_example3d;
>> solvemesh;
>> plotdefo(mesh,1e1);

The correct displacement for the top node is(0.0038,−0.0010,−0.0010).

CHECKPOINT: Show the plot for the deformed structures. Explain what the reaction forces, bar forces, and
bar stresses are and how you can obtain them. Compare this 3D analysis with the 2D case that you have already
analyzed in themesh data truss example.m. Why does the top node have a negative displacement in the
y direction? Why is it not zero?

16



6.3 Analyze frame structures

1. Load, plot, and solve the example frame structure shown inFigure 2.

>> mesh_data_frame_example;
>> plotmesh(mesh);
>> solvemesh(mesh);
>> plotdefo(mesh,1e3);

2. Construct the data structure for the irregular frame structure shown in Figure 3. Then load, plot, and solve for
the displacements and forces. The applied force at the middle node is(0,−25, 0) and at the top right node is
(20, 0, 0).

0 5 10 15 20

0

5

10

15

Figure 3: Irregular frame structure

CHECKPOINT: What are the displacements at the nodes? What are the reaction forces at the supports? What
are the beam forces (axial force, moments, shear force)? Howcan one obtain the element compatibility matrixAe for
one of the beams in the frame structure?

The configuration of the frame structuremesh data frame example.m is identical to themesh data truss example.m.
Try to relate the results you obtain from the two structures.(HINT: Make theI for the frame example structure smaller
and observe how the displacement at the top node changes).

17


