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1 Objective

The objective of this lab is to implement the techniqueidiiced to analyze statically determinate and indeterminat
truss and frame structures. When the size of the structlsmall, i.e., the number of unknown quantities is small,
one can solve the problems by hand, but as the size of thegmnobkreases, the complexity of hand solutions grows
exponentially. The systematic method introduced allowestoreasily analyze large structures.

In this lab you will be asked to write some functions and pohaes which will allow you to complete a program
which analyzes general truss and frame structures. The gtapwill follow can be roughly organized as,

1. Trussstructures

e Complete a function which applies boundary conditions,
e Solve for the displacements and forces of truss structures,

¢ Investigate the stability of a structure by analyziKg ¢, the stiffness matrix corresponding to the free
degrees-of-freedom.



2 Trussstructures

2.1 Governing equation
Let us define the following quantities,

ndim : Number of dimensions, for 2D(2), for 3D(3)
nnp : Number of node points
nel : Number of elements (bars)

The governing equations for a truss structure are the fatigw

e Equilibrium
F = ATR (1)

HereF € Rndimnnpxl s the vector of nodal force®R € R"<!*1 js the vector of bar forces, and
A € Rretxndimnnp i the compatibility matrix.

e Kinematics

e = [1/L]AL, 2
AL = Au, 3)

combined yield,
e = [1/L]Au. 4)

Hereu € R»¥mmmpx1 s the vector of nodal displacements,c R™!*! s the vector of bar
strains, AL € R"¢!*1 is the vector of bar deformations, afit/ L] € R"¢*"¢! s the diagonal
matrix relatingAL ande.

e Constitutive relation

o = [Fle (5)

(%)

Hereo € R™*1 is the vector of bar stresses ajid € R"**"¢! is the diagonal matrix of Young
moduli.

e Resultant definition
R = [Alo (6)

Here[A] € Rrel*nel js the diagonal matrix of the area of the bar cross sections.

In the lecture these four relations have been combined &imhtsingle equation representing equilibrium in terms
of the vector of displacements

F = Ku, (7
where,
K = AT[A|[E)[1/L]A,
= AT[AE/L]A.



and[AE/L] is a diagonal matrix representing the axial stiffness oftthes,

R = [AE/L]AL.
By defining,
K, = [AE/L],
V = AL,

one can restate the governing equations in an alternate form

e Equilibrium

F = A'R
e Kinematics

V = Auy,
o Effective constitutive relation

R = K,V

2.2 Boundary condition

To solve for the displacement vectar which has a total ohdim x nnp unknowns (degrees-of-freedom), one also
requires boundary conditions. This situation is identioahe setup for the previously introduced mechanical potd
governed by differential equations. Let us denoteitheentry of F by F; and theith entry ofu by u;. Recall that
where ever a displacement (degree-of-freedajriy specified or known in a certain direction, there is an umkmo
reaction forceF; in the corresponding direction, and where ever a fdreis specified or known in a certain direction,
the node is free to move in the corresponding direction witknown displacement;. It is clear that in general, one
cannot simultaneously specify the force and displacenwera flegree-of-freedom.

Thus one can completely separate the set of degrees-afeireef the nodes (a total ofdim x nnp) into two
disjoint groups,

e ids: The degrees-of-freedom which are (F)REE TO MOVE.
e idy: The degrees-of-freedom corresponding to (D)ISPLACEMBNINOWN.

We will put a subscriptf to specify that a degree-of-freedom is in the &&t, and a subscript to specify that the
degree-of-freedomiis in the set;. Using these two disjoint sets of indices, one can partiti@vectord andu into,

F;
Fq |’
. - (2]
ug
where the vectorB' y anduy contain the degrees-of-freedom corresponding to (F)REBMBYE degrees-of-freedom
andF; anduy contain the degrees of freedom corresponding to (D)ISPLUAENTS KNOWN. From this nomen-

clature it is clear thati ¢, the displacement at the applied forces, &ydthe reaction forces, are the unknowns.
Let us also partition the stiffness matrix,

Krr Kya }
K = :
[de Kaa |’

F
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such that the Eqgn. (7), which must be solved, is,
Frp |l _ | Ky Kja || uy
F, Ky Kag ug |-
Employing the fact thati; is known, we can solve for the; andF 4 in the following two steps,

1. Solve for theuy. Define,

ry = Fy—Kypug=Kypuy,
and solve,
uy = KJTflrf .
2. EvaluateF,,
F; = Kgur+Kgug,
or by,
F = Ku,

since nowu is solved and a known quantity.

(8)



3 Exercise

3.1 Download updatesfor thetruss program
1. Download the fild r uss_updat el. zi p into yourcel30n/ pr ogr ans/ directory and unzip it.

2. Goto the directorge130n/ pr ogr anms/ t r uss_updat el/ exer ci se and run thefild nit. m

YOU MUST RUN THE FILE init. m EVERYTIME YOU START UP MATLAB.

3.2 Construct the entire solution method

1. Complete the procedure
cel30n/ prograns/truss/ corel/ sol veresh. m
up to the line of code,

% -- COVPLETE PART OF THE FOLLOW NG FUNCTI ON
% [ KFf, Rf] = appl ybc(nesh, K, u, F);

2. Uncomment the line of the code,

% -- COVPLETE PART OF THE FOLLOW NG FUNCTI ON
[ Kff, Rf] = appl ybc(nesh, K, u, F);

and complete the function,
cel30n/ prograns/truss/ corel/ appl ybc. m

To test the function one must first load the mesh structuréhproblem and then run the function,

>> nesh_data_truss_exanpl e;
>> sol venesh;

Use the data structure absh_dat a_t r uss_exanpl e. mto test your function.

3. Complete the section after the line,

% -- COVPLETE PART OF THE FOLLOW NG FUNCTI ON
[ Kff, Rf] = appl ybc(nesh, K, u, F);

Remember to uncomment the last lines,
%-- Insert u into nesh structure
%resh. u = reshape_vect or 2dat a( nesh, u) ;

%resh. f = reshape_vect or 2dat a( nesh, F);

To test the function one must first load the mesh structuréh®problem and then run the function,

>> nesh_data_truss_exanpl e;
>> sol venesh;
>> pl ot def o( nesh, 1lel);

The functionpl ot def o plots the deformed truss magnifying the displacement byéiee 0.01. If you see
that the displacements are too small to observe then ineth@snumber.

The correct displacement for the top nod€(038, —0.0010).



4. Try running the Howe truss example. The data structurefimed in the code,
cel30n/ prograns/truss/ exerci se/ mnesh.dat a_howe. m

The correct displacement for the middle node (node 408, —0.0097).

CHECKPOINT: Show the plot for the deformed structures (Example strectmd Howe truss). Explain what
the reaction forces, bar forces, and bar stresses are angidwoean obtain them.



3.3 Check stability of truss structures

In this exercise you will be asked to check the stability abf structures by investigating the stiffness matrix corre
sponding to the free degrees-of-freeddsy,;.

Using the data structures given for 3 truss structures shioviAigures 1-3, check their stability. If there are any
modes in which the structure is stable, identify its shapece&you compute the eigenvaldexnd eigenvector of a
truss structure, you can use the following MATLAB function,

>> pl ot ei genvect or (nmesh, v, d, scal e); ‘

to show the shape of the eigenvectoe.al e denotes the magnifying parameter of the displacements.
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Figure 3: Filename: mestatatrussst3.m

HINT: The eigenvalues and eigenvectordof; can be computed in MATLAB with the command,

[>> TV, D = eig(full (Kif)); |

Typehel p ei g for details of the functionYOU MUST RUN THE FILE solvemesh.m BEFORE USING EIG TO SET
THE IDF IN THE MESH STRUCTURE.



CHECKPOINT: Show the plot for the modes of instability. Explain why yowsgact these modes are unstable.
How can you alter the structure so that they become stable?



