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1 Objective

The objective of this lab is to implement the techniques introduced to analyze statically determinate and indeterminate
truss and frame structures. When the size of the structure issmall, i.e., the number of unknown quantities is small,
one can solve the problems by hand, but as the size of the problem increases, the complexity of hand solutions grows
exponentially. The systematic method introduced allows one to easily analyze large structures.

In this lab you will be asked to write some functions and procedures which will allow you to complete a program
which analyzes general truss and frame structures. The steps you will follow can be roughly organized as,

1. Truss structures

• Complete a function which applies boundary conditions,

• Solve for the displacements and forces of truss structures,

• Investigate the stability of a structure by analyzingKff , the stiffness matrix corresponding to the free
degrees-of-freedom.
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2 Truss structures

2.1 Governing equation

Let us define the following quantities,

ndim : Number of dimensions, for 2D(2), for 3D(3)
nnp : Number of node points
nel : Number of elements (bars)

The governing equations for a truss structure are the following,

• Equilibrium

F = A
T
R (1)

HereF ∈ R
ndim·nnp×1 is the vector of nodal forces,R ∈ R

nel×1 is the vector of bar forces, and
A ∈ R

nel×ndim·nnp is the compatibility matrix.

• Kinematics

ε = [1/L]∆L, (2)

∆L = Au, (3)

combined yield,

ε = [1/L]Au. (4)

Hereu ∈ R
ndim·nnp×1 is the vector of nodal displacements,ε ∈ R

nel×1 is the vector of bar
strains,∆L ∈ R

nel×1 is the vector of bar deformations, and[1/L] ∈ R
nel×nel is the diagonal

matrix relating∆L andε.

• Constitutive relation

σ = [E]ε (5)

Hereσ ∈ R
nel×1 is the vector of bar stresses and[E] ∈ R

nel×nel is the diagonal matrix of Young’s
moduli.

• Resultant definition

R = [A]σ (6)

Here[A] ∈ R
nel×nel is the diagonal matrix of the area of the bar cross sections.

In the lecture these four relations have been combined to obtain a single equation representing equilibrium in terms
of the vector of displacementsu,

F = Ku, (7)

where,

K := A
T [A][E][1/L]A,

= A
T [AE/L]A .
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and[AE/L] is a diagonal matrix representing the axial stiffness of thebars,

R = [AE/L]∆L .

By defining,

Ks := [AE/L] ,

V := ∆L ,

one can restate the governing equations in an alternate form,

• Equilibrium

F = A
T
R

• Kinematics

V = Au,

• Effective constitutive relation

R = KsV .

2.2 Boundary condition

To solve for the displacement vectoru, which has a total ofndim × nnp unknowns (degrees-of-freedom), one also
requires boundary conditions. This situation is identicalto the setup for the previously introduced mechanical problems
governed by differential equations. Let us denote theith entry ofF by Fi and theith entry ofu by ui. Recall that
where ever a displacement (degree-of-freedom)ui is specified or known in a certain direction, there is an unknown
reaction forceFi in the corresponding direction, and where ever a forceFi is specified or known in a certain direction,
the node is free to move in the corresponding direction with unknown displacementui. It is clear that in general, one
cannot simultaneously specify the force and displacement for a degree-of-freedom.

Thus one can completely separate the set of degrees-of-freedom of the nodes (a total ofndim × nnp) into two
disjoint groups,

• idf : The degrees-of-freedom which are (F)REE TO MOVE.

• idd: The degrees-of-freedom corresponding to (D)ISPLACEMENTS KNOWN.

We will put a subscriptf to specify that a degree-of-freedom is in the setidf , and a subscriptd to specify that the
degree-of-freedom is in the setidd. Using these two disjoint sets of indices, one can partitionthe vectorsF andu into,

F :=

[

Ff

Fd

]

,

u :=

[

uf

ud

]

where the vectorsFf anduf contain the degrees-of-freedomcorresponding to (F)REE TOMOVE degrees-of-freedom
andFd andud contain the degrees of freedom corresponding to (D)ISPLACEMENTS KNOWN. From this nomen-
clature it is clear thatuf , the displacement at the applied forces, andFd, the reaction forces, are the unknowns.

Let us also partition the stiffness matrix,

K :=

[

Kff Kfd

Kdf Kdd

]

,
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such that the Eqn. (7), which must be solved, is,
[

Ff

Fd

]

=

[

Kff Kfd

Kdf Kdd

] [

uf

ud

]

.

Employing the fact thatud is known, we can solve for theuf andFd in the following two steps,

1. Solve for theuf . Define,

rf := Ff − Kfdud = Kffuf ,

and solve,

uf = K
−1

ff rf . (8)

2. EvaluateFd,

Fd = Kdfuf + Kddud ,

or by,

F = Ku ,

since nowu is solved and a known quantity.
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3 Exercise

3.1 Download updates for the truss program

1. Download the filetruss update1.zip into yource130n/programs/ directory and unzip it.

2. Go to the directoryce130n/programs/truss update1/exercise and run the fileinit.m.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

3.2 Construct the entire solution method

1. Complete the procedure
ce130n/programs/truss/core/solvemesh.m
up to the line of code,

% -- COMPLETE PART OF THE FOLLOWING FUNCTION
% [Kff,Rf] = applybc(mesh,K,u,F);

2. Uncomment the line of the code,

% -- COMPLETE PART OF THE FOLLOWING FUNCTION
[Kff,Rf] = applybc(mesh,K,u,F);

and complete the function,
ce130n/programs/truss/core/applybc.m.

To test the function one must first load the mesh structure forthe problem and then run the function,

>> mesh_data_truss_example;
>> solvemesh;

Use the data structure ofmesh data truss example.m to test your function.

3. Complete the section after the line,

% -- COMPLETE PART OF THE FOLLOWING FUNCTION
[Kff,Rf] = applybc(mesh,K,u,F);

Remember to uncomment the last lines,

% -- Insert u into mesh structure
%mesh.u = reshape_vector2data(mesh,u);
%mesh.f = reshape_vector2data(mesh,F);

To test the function one must first load the mesh structure forthe problem and then run the function,

>> mesh_data_truss_example;
>> solvemesh;
>> plotdefo(mesh,1e1);

The functionplotdefo plots the deformed truss magnifying the displacement by thevalue 0.01. If you see
that the displacements are too small to observe then increase this number.

The correct displacement for the top node is(0.0038,−0.0010).
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4. Try running the Howe truss example. The data structure is defined in the code,
ce130n/programs/truss/exercise/mesh data howe.m.

The correct displacement for the middle node (node 4) is(0.0,−0.0097).

CHECKPOINT: Show the plot for the deformed structures (Example structure and Howe truss). Explain what
the reaction forces, bar forces, and bar stresses are and howyou can obtain them.
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3.3 Check stability of truss structures

In this exercise you will be asked to check the stability of truss structures by investigating the stiffness matrix corre-
sponding to the free degrees-of-freedom,Kff .

Using the data structures given for 3 truss structures shownin Figures 1-3, check their stability. If there are any
modes in which the structure is stable, identify its shape. Once you compute the eigenvalued and eigenvectorv of a
truss structure, you can use the following MATLAB function,

>> ploteigenvector(mesh,v,d,scale);

to show the shape of the eigenvector.scale denotes the magnifying parameter of the displacements.
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Figure 1: Filename: meshdatatrussst1.m
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Figure 2: Filename: meshdatatrussst2.m
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Figure 3: Filename: meshdatatrussst3.m

HINT: The eigenvalues and eigenvectors ofKff can be computed in MATLAB with the command,

>> [V,D] = eig(full(Kff));

Typehelp eig for details of the function.YOU MUST RUN THE FILE solvemesh.m BEFORE USING EIG TO SET
THE IDF IN THE MESH STRUCTURE.
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CHECKPOINT: Show the plot for the modes of instability. Explain why you suspect these modes are unstable.
How can you alter the structure so that they become stable?
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