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1 Objective

The objective of this lab is to implement the techniques introduced to analyze statically determinate and indeterminate
truss structures. When the size of the structure is small, i.e., the number of unknown quantities is small, one can solve
the problems by hand, but as the size of the problem increases, the complexity of hand solutions grows exponentially.
The systematic method introduced allows one to easily analyze large structures.

In this lab you will be asked to write some functions and procedures which will allow you to complete a program
which analyzes general truss structures. The steps you willfollow can be roughly organized as,

• Understand the data structure which describes the problem,including the truss structure and boundary condi-
tions,

• Complete a function which computes the compatibility matrix of the structureA, which relates the nodal dis-
placementsu with the element deformations∆L,

• Complete functions which compute the matrices relating, resultant forces and bar stresses, bar stresses and bar
strains, and bar strain and element deformation, which are necessary in forming the stiffness matrix,
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Figure 1: Howe truss
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2 Truss structures

2.1 Governing equation

Let us define the following quantities,

ndim : Number of dimensions, for 2D(2), for 3D(3)
nnp : Number of node points
nel : Number of elements (bars)

The governing equations for a truss structure are the following,

• Equilibrium

F = A
T
R (1)

HereF ∈ R
ndim·nnp×1 is the vector of nodal forces,R ∈ R

nel×1 is the vector of bar forces, and
A ∈ R

nel×ndim·nnp is the compatibility matrix.

• Kinematics

ε = [1/L]∆L, (2)

∆L = Au, (3)

combined yield,

ε = [1/L]Au. (4)

Hereu ∈ R
ndim·nnp×1 is the vector of nodal displacements,ε ∈ R

nel×1 is the vector of bar
strains,∆L ∈ R

nel×1 is the vector of bar deformations, and[1/L] ∈ R
nel×nel is the diagonal

matrix relating∆L andε.

• Constitutive relation

σ = [E]ε (5)

Hereσ ∈ R
nel×1 is the vector of bar stresses and[E] ∈ R

nel×nel is the diagonal matrix of Young’s
moduli.

• Resultant definition

R = [A]σ (6)

Here[A] ∈ R
nel×nel is the diagonal matrix of the area of the bar cross sections.

In the lecture these four relations have been combined to obtain a single equation representing equilibrium in terms
of the vector of displacementsu,

F = Ku, (7)

where,

K := A
T [A][E][1/L]A,

= A
T [AE/L]A .
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and[AE/L] is a diagonal matrix representing the axial stiffness of thebars,

R = [AE/L]L .
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2.2 Data structure
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Figure 2: Truss example

To solve the truss problem numerically, one needs more than apicture. One requires an abstract representation of
the truss structure along with the boundary conditions. Various representations are possible and below we present the
data structure we will be using in our implementation. The data structure represents the truss shown in Figure 2. This
is identical to the problem you have treated in the lecture.
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2.3 Element-by-element assembly of the compatibility matrix A

It has been introduced in the lecture that theA can be formed systematically. Consider the compatibility matrix of
Figure 2,

A =

[

e
T
31

0 e
T
13

0 e
T
32

e
T
23

]

,

which relates the bar deformations∆L with the nodal displacementsu,

∆L = Au,
[

∆L1

∆L2

]

=

[

e
T
31

0 e
T
13

0 e
T
32

e
T
23

]





u1

u2

u3



 .

The rows ofA correspond to the bars, and the columns correspond to the nodes. Each bar only links to two nodes, so
there are only two entries per row. In order to assembleA, one can iterate through the bars starting from bar 1 to bar
nel, inserting one row at a time.

In our implementation, you will be asked to complete a function,

function [Ae] = assembleAe_truss(mesh,ie)

where given the element numberie andmesh data structure, returnAe, the element contribution to the compatibility
matrix, defined as

∆Lie = Ae

[

uA

uB

]

,

Ae :=
[

e
T
BA, eT

AB

]

.

Here is is assumed that the element connects to nodesA andB. Once you have theAe, you will have to insert it into
the correct location of the compatibility matrixA in the function,

function [A] = assembleA(mesh)
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3 Exercise

3.1 Download material and set initial path

1. Download the filetruss.zip into yource130n/programs/ directory and unzip it.

2. Go to thece130n/programs/truss/exercise/ directory, and execute the fileinit.m. This will set
the necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

3.2 Understanding the data structure

In this exercise you will be asked to construct data structures which represents some truss structures to get familiar
with the data structure.

1. Load the sample data structure and plot the truss structure.

>> mesh_data_truss_example;
>> plotmesh(mesh);

The filemesh data truss example.m contains the data structure for this truss stored in the variablemesh,
and the functionplotmesh.m plots the data structuremesh.

2. Construct data structures for the following two truss structures shown in the Figures 3 and 4.

using the filemesh data truss example.m as a starting point.
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Figure 3: Truss Exercise 1
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Figure 4: Truss Exercise 2

The boundary conditions are,

• Figure 3: The structure is pinned at both supports and has a load of(−1, 0) at the top left node.

• Figure 4: The structure is pinned at the left support and roller at the right support, and has a load of(−1, 1)
at the top left node.

CHECKPOINT: Show the data structure for the two trusses and the generatedplots. Explain how you made
the structures satisfy the boundary conditions.
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3.3 Construct compatibility matrix A

1. Complete the routine
ce130n/programs/truss/element/assembleAe truss.m. To test the function one must first load
the mesh structure for the problem and then run the function,

>> mesh_data_truss_example;
>> [Ae] = assembleAe_truss(mesh,1);

Use the data structure in Figure 2 to test your function. Should the function be complete and correct,Ae should
give you the element1’s contribution to the compatibility matrix. Check this with the results in your lecture.

2. Complete the routine
ce130n/programs/truss/core/assembleA.m. To test the function one must first load the mesh
structure for the problem and then run the function,

>> mesh_data_truss_example;
>> [A] = assembleA(mesh);

Use the data structure in Figure 2 to test your function. Should the function be complete and correct,A should
give you the compatibility matrix. Check this with the results in your lecture.

CHECKPOINT: Show the obtained compatibility matrixA and explain how you completed the code.

3.4 Construct diagonal matrices [E], [A], [1/L]

1. Complete the routines
ce130n/programs/truss/core/assembleKe.m,
ce130n/programs/truss/core/assembleKa.m,
ce130n/programs/truss/core/assembleKl.m.
These construct the[E],[A], and[1/L] matrices.

To test the function one must first load the mesh structure forthe problem and then run the function,

>> mesh_data_truss_example;
>> [Kl] = assembleKl(mesh);

Use the data structure in Figure 2 to test your function.

CHECKPOINT: Explain what you had to do to make the code work.
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