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1 Objective

The objective of this lab is to combine the use of hat functierth Principle of Virtual Work (Lab 13) and the
Newton-Raphson method (Lab 14) to solve mechanical phenomgoverned by a nonlinear differential equation.
The specific problem that is treated is the torsion bar. Theesset up as Lab 13 is assumed but the material model is

replaced with a non-linear model.
Once the form of the "residual” and "tangent stiffness mdtis defined, the rest is just an application of Newton-

Raphson to solve the non-linear equations.



2 Steps in applying the Principle of Virtual Work: Non-linear case

The Principle of Virtual Work can be summarized by the follog/steps.

1. Form the expression for the virtual work.
Internal Virtual Work = External Virtual Work.

Depending on the problem one has,

L
/ Su'(x)R(x) dz (Tension-compression bar
Internal Virtual Work = 0

)

/L 5¢'(2)T(z) dz (Torsion bay
0

and depending on the loading one has different forms for titeral Virtual Work. For example, the torsion
bar with a point torqué” at the endr = L and distributed torqug z) takes the form,

L
External Virtual Work = / Sp(2)t(2) dz + dp(L)T .
0

2. Determine the functions(x) in the solution spacé (form for the approximate solution),

N
S = {u(:c)| Zulfl('r)} )

whereu; are the coefficients to be determined afyflz) are determined functions, and the functidngx) in
the test function spack,

Ns
V= {5u(:c)l ZM%(@} ;

wheredu; are the arbitrary coefficients amg(x) are determined functions.

3. Insert the from for the solution(z) € S and the test functionu(z) € V into the expression for the virtual
work. In Lab 13, we assumed a linear constitutive relatigmshfithe form,

R(v'(z)) = AFEuW'(z), (Tension compression bar),
T(¢'(2)) = GJ¢'(z), (Torsion bar).

For this lab we consider a more general form of constitutalation,

R = R(u/(z)), (Tension compression bar),
T =T(¢'(2)), (Torsion bar) .

This results in the expressions,
Ns
> oui {Fyi(u) = Fgi} =0
=1

N
i=1

& du'h=0.



Here we have definell := F; — Fg anddu as the vector with entrie®u;. The entries of the vectdr; are
determined from the Internal Virtual Work and have the form,

L N
/ giR Z ujfi(x) | dv  (Tension — compression bar)
0 =1
Fri(u) = L JN
/ ! .
/ 9.7 Z @ fj(x) | dz (Torsion bar)
0 =

and the entries of the vectbz are determined from the External Virtual Work and have theifo

L
/ gibdx + term from point loads (Tension-compression bar
Fg,=4"70

)

L
/ gitdz + term from point loads  (Torsion baj
0

For the last equatiodu”h = 0, to hold for arbitrarydu, one must have,
h:F[(u)—FE:O,

which determines theon-linear system of equations one must solve fgiwhich are the undetermined coeffi-
cients.

4. Solve thenon-linear system of equations,
F[(U.) — FE =0.

to obtain the approximation,

N
u(@) = Y wifi(x).
i=1

One must employ the Newton-Raphson methodvirvariables to solve these system of equations forthe
unknowns.

It is important to note that when one has a linear constieutiaterial lawF;(u) = Ku whereK is the stiffness
matrix you have computed in the linear case which does natnzprnu.

3 Application of the Newton-Raphson method in N-variables

Let f;(u1,...,un) (¢ =1,..., N)beN non-linear functions. Each function is a functiomifariablesu, . .., uy.
One can use the compact notation,
f(u),
to denote this, where we have defined,
(3
u=
UN
fi
f= 1
fn



For the torsion problem this function is defined as,

|f(u) = F;(u) - Fp .|

We would like to find the solutiom to the equation,
f(uy=0.

We can approach this in the same way as the 1-variable cade tlsat we would like to iteratively find the exact
solution. Given an initial guess af®, one would like to fix this guess by addingu so thatu® + Au is the exact
solution,

f(u’ +Au) =0,
or equivalently,
fi(ud + Auy, ..., ud +Auy) =0 (i=1,...,N).
Conducting a Taylor series expansion aroung u, and retaining only the linear terms one has,

of

0= f(u’ + Au) ~ f(u’) + 8_u(u0) -Au,
such that one solves,
0=f(u" %(UO) Au,
to find the updaté\u by,
Au = —g—i(uo)*lf(uo) .
For the torsion problem the tangent stiffness is defined as,
of 0
FoW =K@ = o-(Fi(u)-Fp)
_ 0F(u)
ou

The (i, j)th entry of this tangent stiffness matrix evaluated at thietpa® is given as,

N

L

dR

/0 g;E Z u) fi(z) | fjdz (Tension — compression bar)
j=1

Kij(u’) =
L N
dr
/OQQE Zug)f;(:c) fidx  (Torsion bar)
=1

Note that the derivative aR andT" above is respect to its argumenand the expressiofhR/ds is evaluated with the
arguments" Y, ud f/(x).
This yields a new approximatiam' for the solution,

u = u'+Au
of
0 _ 9L 0\v—1g/..0
= u 8u(u) f(u”).
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One can proceed to find better approximations by repeatiagptbcedure above, replacing with u! and so on,
and continue until one has found a solution which is good ghpue.,||f(u™)|| < tolerance. The steps can be
summarized as follows,

1. Guess initial solutiom = u®, and compute residuéi(a) = F;(a) — Fg.

2. While ||f()]| > abstol,

(a) Compute tangent stiffnes%(ﬁ) =K(u).

(b) Compute updateAu = —g—i(ﬁ)—lf(ﬁ).

(c) Update solutionti «+ @ + Au.
(d) Compute new residuaf(a) = F;(u) — Fg.

Thus in order to solve the non-linear torsion problem alt three must do is to supply the residual functigfm) and

the tangent stiffnesgj.
u



4 Exercise

4.1 Download files
1. Download the filgpvw.nonl i near . zi p into yourcel30n/ pr ogr ans directory and unzip it.

2. Go to thecel30n/ progr ans/ pvw.nonl i near/ exerci se/ directory, and execute the fileni t . m
This will set the necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

4.2 Study on material models
4.2.1 Complete the power law function

The power law material model is given as,

n

T(¢') = Tesign(y’)

)

/
Ll

/

C

where the forc&” depends on the derivative of a given quantityT., ., n are constants that can be adjusted to fit
the behavior of specific materials. The simplicity makedtitaative for hand calculations but as you will observe it
may not be optimal in terms of numerical properties.

Things to do:

e Complete the functiopower | aw. mandpower | aw_st i f f . mfunction.
qr
e Compute the tange%.

e Try plotting the constitutive law for the parameters givetyour homework. For this case wherés larger than
1, what is the slope of the curve (tangent) at the origin? Howhe parameters effect the curve? Draw a sketch
of the force and tangent for varying.

e What happens if you make the parametemaller than 1 ? what is the slope of the curve (tangent) ariigen
for this case? Draw a sketch of the force and tangent for mgryi.



4.2.2 Plot the Ramberg-Osgood function

The Ramberg-Osgood material model is given as,

¢ = gt (@)

where(GJ)., K, n(> 1) are constants that can be adjusted to fit the behavior offapetaterials. The parameter
(GJ). defines the behavior of the function close to the origin arsesially represents the linear stiffness. &'s
increases the term with the powekicks in and one obtains a "flattening” non-linear type of &abr.

The forcel” and tangen% fora giveny’ is computed by the given functionanpsg. mandr anosg.sti ff. m

Things to do:
e Compute the tanger«f}lzl.
2
e Try plotting the constitutive law for the parametés.J). = 1, K = 0.01, n = 5. For this case, what is the

slope of the curve (tangent) at the origin? Is it as badly betias the power low? Draw a sketch of the force
and tangent for varying’. How do the parameters effect the curve?



4.3 Gauss integration

To compute the integral on a fixed interval approximatelye oan use a quadrature rule. The value of the integral
is computed as a weighted sum of function values at specifigdgwithin the domain of integration. Such that the
integral of f(x) on the intervala, b] is approximated as,

b N
[ @ ~ 3w
@ i=1
wherez; (i =1,...,N) € [a,b] are points in the interval and’; (i = 1,..., N) are weights.

The Gauss quadrature rule is an effective way to computgrialieand depending on the sizeléf it can compute
polynomials of ordeRN — 1 exactly, i.e., a polynomiaf(x) of order upto2N — 1 can be computed exactly with
N-point Gauss quadrature.

For our purposes a 2 point quadrature rule will suffice where,

N = 2
~a+b b-al
no= Tt
~a+b b-al
e R
b—a
Wy = W= 7 -

This is implemented in the functiaquad_2pg. m This function can be used just like the functigmad. m

Things to do:

e Confirm that this function integrates polynomials upto or@lexactly.



4.4 Torsion problem

In the filet or si on_ex2. mthe input file for running the torsion bar problem with one dxéd is given. There are
two materials that you can select, a linear material and atiRagrOsgood model. Additionally you will implement
your power law model.

A simple explanation of some functions you may need are suirathas follows,

conput eKnl h. m : Computes the tangent stiffness mafifXu)

conput eFe_.nl h. m : Computes the external force veciBg;

conput eFi .nl h. m : Computes the internal force vect®y

pl ot sol . m : Plots solution

pl ot _hi story. m : Plots residual history of the Newton-Raphson scheme

pl ot _hist. m : Plots deformation history of the Newton-Raphson for the ba
newt on_r aphson. m : The Newton-Raphson algorithm

You have access to all the functions you used in the previsod tibs (13,14).
Things to do:

e Complete the functiosonput eFi _nl h. mfor computing the internal force vect®t;. Look at the function
conput eK.nl h. mfor hints.

The way to check if your implementation is correct is by rungnthe function using a linear material model.
Recall that for a linear material modd,(u) = Ku whereK does not depend on. Check and confirm that
for a randomu, the quantitiedu andF;(u) are equal to each other.

e Define appropriate functiorfs_r esi d andf _sti f f usingconput eK.nl h. m conmput eFe_nl h. m and
conput eFi _nl h. m which you can pass to the functierewt on_r aphson. mto compute the nonlinear
response of the torsion bar.

First make sure that your example runs with the linear materbdel. Then change the model to the power law
model. For initial guesses for the Newton-Raphson scheme cgn pick a linearly ramping function for the
fixed-free case, and a linear function peaking at the miduiéhfe fixed-fixed case. DO NOT START WITH A
ZERO GUESS!! WHY DO YOU THINK YOU SHOULDN'T?? This is relatito how the slope of the power
law looks near the origin.



