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1 Objective

The objective of this lab is to combine the use of hat functions with Principle of Virtual Work (Lab 13) and the
Newton-Raphson method (Lab 14) to solve mechanical phenomenon governed by a nonlinear differential equation.
The specific problem that is treated is the torsion bar. The same set up as Lab 13 is assumed but the material model is
replaced with a non-linear model.

Once the form of the ”residual” and ”tangent stiffness matrix” is defined, the rest is just an application of Newton-
Raphson to solve the non-linear equations.
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2 Steps in applying the Principle of Virtual Work: Non-linear case

The Principle of Virtual Work can be summarized by the following steps.

1. Form the expression for the virtual work.

Internal Virtual Work = External Virtual Work.

Depending on the problem one has,

Internal Virtual Work =















∫ L

0

δu′(x)R(x) dx (Tension-compression bar)
∫ L

0

δϕ′(z)T (z) dz (Torsion bar)
,

and depending on the loading one has different forms for the External Virtual Work. For example, the torsion
bar with a point torquēT at the endx = L and distributed torquet(z) takes the form,

External Virtual Work =

∫ L

0

δϕ(z)t(z) dz + δϕ(L)T̄ .

2. Determine the functionsu(x) in the solution spaceS (form for the approximate solution),

S :=

{

u(x)|
N

∑

i=1

uifi(x)

}

,

whereui are the coefficients to be determined andfi(x) are determined functions, and the functionsδu(x) in
the test function spaceV ,

V :=







δu(x)|
Nδ
∑

j=1

δujgj(x)







,

whereδuj are the arbitrary coefficients andgj(x) are determined functions.

3. Insert the from for the solutionu(x) ∈ S and the test functionδu(x) ∈ V into the expression for the virtual
work. In Lab 13, we assumed a linear constitutive relationship of the form,

R(u′(x)) = AEu′(x), (Tension compression bar),
T (ϕ′(z)) = GJϕ′(z), (Torsion bar) .

For this lab we consider a more general form of constitutive relation,

R = R(u′(x)), (Tension compression bar),
T = T (ϕ′(z)), (Torsion bar) .

This results in the expressions,

Nδ
∑

i=1

δui {FI,i(u)− FE,i} = 0

⇔
N

∑

i=1

δuihi = 0

⇔ δuT
h = 0 .
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Here we have definedh := FI − FE andδu as the vector with entriesδui. The entries of the vectorFI are
determined from the Internal Virtual Work and have the form,

FI,i(u) =































∫ L

0

g′iR





N
∑

j=1

ujf
′

j(x)



 dx (Tension− compression bar)

∫ L

0

g′iT





N
∑

j=1

ϕjf
′

j(x)



 dx (Torsion bar)

.

and the entries of the vectorFE are determined from the External Virtual Work and have the form,

FE,i =















∫ L

0

gibdx + term from point loads (Tension-compression bar)
∫ L

0

gitdz + term from point loads (Torsion bar)
.

For the last equation,δuT
h = 0, to hold for arbitraryδu, one must have,

h = FI(u)− FE = 0 ,

which determines thenon-linear system of equations one must solve foru, which are the undetermined coeffi-
cients.

4. Solve thenon-linear system of equations,

FI(u)− FE = 0 .

to obtain the approximation,

u(x) =

N
∑

i=1

uifi(x) .

One must employ the Newton-Raphson method inN variables to solve these system of equations for theN
unknowns.

It is important to note that when one has a linear constitutive material law,FI(u) = Ku whereK is the stiffness
matrix you have computed in the linear case which does not depend onu.

3 Application of the Newton-Raphson method in N-variables

Let fi(u1, . . . , uN ) (i = 1, . . . , N) beN non-linear functions. Each function is a function inN variables,u1, . . . , uN .
One can use the compact notation,

f(u),

to denote this, where we have defined,

u =







u1

...
uN







f =







f1

...
fN






.
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For the torsion problem this function is defined as,

f(u) := FI(u)− FE .

We would like to find the solutionu to the equation,

f(u) = 0 .

We can approach this in the same way as the 1-variable case, such that we would like to iteratively find the exact
solution. Given an initial guess ofu0, one would like to fix this guess by adding∆u so thatu0 + ∆u is the exact
solution,

f(u0 + ∆u) = 0 ,

or equivalently,

fi(u
0

1
+ ∆u1, . . . , u

0

N + ∆uN) = 0 (i = 1, . . . , N) .

Conducting a Taylor series expansion aroundu = u0 and retaining only the linear terms one has,

0 = f(u0 + ∆u) ≈ f(u0) +
∂f

∂u
(u0) ·∆u ,

such that one solves,

0 = f(u0) +
∂f

∂u
(u0) ·∆u ,

to find the update∆u by,

∆u = − ∂f

∂u
(u0)−1

f(u0) .

For the torsion problem the tangent stiffness is defined as,

∂f

∂u
(u) = K(u) :=

∂

∂u
(FI(u)− FE)

=
∂FI(u)

∂u
.

The(i, j)th entry of this tangent stiffness matrix evaluated at the point u0 is given as,

Kij(u
0) =































∫ L

0

g′i
dR

ds





N
∑

j=1

u0

jf
′

j(x)



 f ′

jdx (Tension− compression bar)

∫ L

0

g′i
dT

ds





N
∑

j=1

u0

jf
′

j(x)



 f ′

jdx (Torsion bar)

.

Note that the derivative ofR andT above is respect to its arguments and the expressiondR/ds is evaluated with the
argument

∑N

j=1
u0

jf
′

j(x).
This yields a new approximationu1 for the solution,

u
1 = u

0 + ∆u

= u
0 − ∂f

∂u
(u0)−1

f(u0) .
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One can proceed to find better approximations by repeating the procedure above, replacingu0 with u
1 and so on,

and continue until one has found a solution which is good enough, i.e.,‖f(un)‖ < tolerance. The steps can be
summarized as follows,

1. Guess initial solution̂u = u
0, and compute residualf(û) = FI(û)− FE .

2. While‖f(û)‖ > abstol,

(a) Compute tangent stiffness:
∂f

∂u
(û) = K(û).

(b) Compute update:∆u = − ∂f

∂u
(û)−1

f(û).

(c) Update solution:̂u← û + ∆u.

(d) Compute new residual:f(û) = FI(û)− FE .

Thus in order to solve the non-linear torsion problem all that one must do is to supply the residual functionf(u) and

the tangent stiffness
∂f

∂u
.
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4 Exercise

4.1 Download files

1. Download the filepvw nonlinear.zip into yource130n/programs directory and unzip it.

2. Go to thece130n/programs/pvw nonlinear/exercise/ directory, and execute the fileinit.m.
This will set the necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

4.2 Study on material models

4.2.1 Complete the power law function

The power law material model is given as,

T (ϕ′) := Tc sign(ϕ′)

∣

∣

∣

∣

ϕ′

ϕ′

c

∣

∣

∣

∣

n

,

where the forceT depends on the derivative of a given quantityϕ. Tc, ϕ′

c, n are constants that can be adjusted to fit
the behavior of specific materials. The simplicity makes it attractive for hand calculations but as you will observe it
may not be optimal in terms of numerical properties.

Things to do:

• Complete the functionpowerlaw.m andpowerlaw stiff.m function.

• Compute the tangent
dT

dϕ′
.

• Try plotting the constitutive law for the parameters given in your homework. For this case wheren is larger than
1, what is the slope of the curve (tangent) at the origin? How do the parameters effect the curve? Draw a sketch
of the force and tangent for varyingϕ′.

• What happens if you make the parametern smaller than 1 ? what is the slope of the curve (tangent) at theorigin
for this case? Draw a sketch of the force and tangent for varyingϕ′.
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4.2.2 Plot the Ramberg-Osgood function

The Ramberg-Osgood material model is given as,

ϕ′ :=
T

(GJ)e

+ K

(

T

(GJ)e

)n

,

where(GJ)e, K, n(≥ 1) are constants that can be adjusted to fit the behavior of specific materials. The parameter
(GJ)e defines the behavior of the function close to the origin and essentially represents the linear stiffness. Asϕ′

increases the term with the powern kicks in and one obtains a ”flattening” non-linear type of behavior.
The forceT and tangentdT

dϕ′
for a givenϕ′ is computed by the given functionsramosg.m andramosg stiff.m.

Things to do:

• Compute the tangent
dT

dϕ′
.

• Try plotting the constitutive law for the parameters(GJ)e = 1, K = 0.01, n = 5. For this case, what is the
slope of the curve (tangent) at the origin? Is it as badly behaved as the power low? Draw a sketch of the force
and tangent for varyingϕ′. How do the parameters effect the curve?

7



4.3 Gauss integration

To compute the integral on a fixed interval approximately, one can use a quadrature rule. The value of the integral
is computed as a weighted sum of function values at specified points within the domain of integration. Such that the
integral off(x) on the interval[a, b] is approximated as,

∫ b

a

f(x) dx ≈
N

∑

i=1

f(xi)Wi ,

wherexi (i = 1, . . . , N) ∈ [a, b] are points in the interval andWi (i = 1, . . . , N) are weights.
The Gauss quadrature rule is an effective way to compute integrals and depending on the size ofN , it can compute

polynomials of order2N − 1 exactly, i.e., a polynomialf(x) of order upto2N − 1 can be computed exactly with
N -point Gauss quadrature.

For our purposes a 2 point quadrature rule will suffice where,

N = 2,

x1 =
a + b

2
+

b− a

2

1√
3
,

x2 =
a + b

2
− b− a

2

1√
3
,

W1 = W2 =
b− a

2
.

This is implemented in the functionquad 2pg.m. This function can be used just like the functionquad.m.

Things to do:

• Confirm that this function integrates polynomials upto order 3 exactly.
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4.4 Torsion problem

In the filetorsion ex2.m the input file for running the torsion bar problem with one endfixed is given. There are
two materials that you can select, a linear material and a Ramberg-Osgood model. Additionally you will implement
your power law model.

A simple explanation of some functions you may need are summarized as follows,

computeK nlh.m : Computes the tangent stiffness matrixK(u)
computeFe nlh.m : Computes the external force vectorFE

computeFi nlh.m : Computes the internal force vectorFI

plotsol.m : Plots solution
plot history.m : Plots residual history of the Newton-Raphson scheme
plot hist.m : Plots deformation history of the Newton-Raphson for the bar
newton raphson.m : The Newton-Raphson algorithm

You have access to all the functions you used in the previous two Labs (13,14).

Things to do:

• Complete the functioncomputeFi nlh.m for computing the internal force vectorFI . Look at the function
computeK nlh.m for hints.

The way to check if your implementation is correct is by running the function using a linear material model.
Recall that for a linear material model,Fi(u) = Ku whereK does not depend onu. Check and confirm that
for a randomu, the quantitiesKu andFi(u) are equal to each other.

• Define appropriate functionsf resid andf stiff usingcomputeK nlh.m, computeFe nlh.m, and
computeFi nlh.m, which you can pass to the functionnewton raphson.m to compute the nonlinear
response of the torsion bar.

First make sure that your example runs with the linear material model. Then change the model to the power law
model. For initial guesses for the Newton-Raphson scheme, you can pick a linearly ramping function for the
fixed-free case, and a linear function peaking at the middle for the fixed-fixed case. DO NOT START WITH A
ZERO GUESS!!! WHY DO YOU THINK YOU SHOULDN’T?? This is related to how the slope of the power
law looks near the origin.
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