
UNIVERSITY OF CALIFORNIA AT BERKELEY CE 130N, Spring 2009
Department of Civil and Environmental Engineering Prof. S.Govindjee and Dr. T. Koyama
Structural Engineering, Mechanics and Materials Lab 14

Mechanics of Structures (CE130N)
Lab 14

1 Objective

The objective of this lab is to understand how one can solve non-linear equations by using the Newton-Raphson
method. Though many classes of problems in mechanics can be treated with linear equations, there are an even
larger class of interesting problems which are governed by non-linear equations. The Newton-Raphson method is one
method which one can apply to solve these equations. The Newton-Raphson method is motivated through 1 variables
and extended to multi-variables. The extension is straightforward such that a well written MATLAB code should work
for both cases. Problems in 1 to 3 variables are treated with examples from mechanics to illustrate the method.

1

2 Newton-Raphson method in 1-variable

Let f(u) be a non-linear function inu such that one would like to find the solution to the equation,

f(u) = 0 .

The idea behind Newton-Raphson is to iteratively approach the exact solution. Given an initial guess ofu0, one would
like to fix this guess by adding∆u such thatu0 + ∆u is the exact solution,

f(u0 + ∆u) = 0.

Conducting a Taylor series expansion aroundu = u0 one has,

0 = f(u0 + ∆u) = f(u0) + f ′(u0)∆u + (higher order terms in ∆u) .

This expansion is approximated as,

0 = f(u0 + ∆u) ≈ f(u0) + f ′(u0)∆u ,

such that one solves,

0 = f(u0) + f ′(u0)∆u ,

to find the update∆u by,

∆u = −f ′(u0)−1f(u0) .

This yields a new approximationu1 for the solution,

u1 = u0 + ∆u

= u0 − f ′(u0)−1f(u0) .

One can proceed to find better approximations by repeating the procedure above, replacingu0 with u1 and so on,
and continue untill one has found a solution which is good enough, i.e.,|f(un)| < tolerance. The steps can be
summarized as follows,

1. Guess initial solution̂u = u0, and compute residualf(û).

2. While |f(û)| > abstol,

(a) Compute tangent stiffness:f ′(û).

(b) Compute update:∆u = −f ′(û)−1f(û).

(c) Update solution:̂u← û + ∆u.

(d) Compute new residual:f(û).

There are two aspects of the Newton-Raphson method that one should always keep in mind,

• The Newton-Raphson method isLOCALLY convergent. This means that unless the initial guessu0 is close
enough to the exact solution, you may not converge to the solution.

• The Newton-Raphson method is locallyQUADRATICALLY convergent. This means that when the solution
starts converging, the error (residual) decreases quadratically with increasing iteration, i.e., you get twice as
many digits of accuracy with each iteration.

2

3 Newton-Raphson method in N-variables

Let fi(u1, . . . , uN) (i = 1, . . . , N) beN non-linear functions. Each function is a function inN variables,u1, . . . , uN .
One can use the compact notation,

f(u),

to denote this, where we have defined,

u =







u1

...
uN







f =







f1

...
fN






.

We would like to find the solutionu to the equation,

f(u) = 0 .

We can approach this in the same way as the 1-variable case, such that we would like to iteratively find the exact
solution. Given an initial guess ofu0, one would like to fix this guess by adding∆u so thatu0 + ∆u is the exact
solution,

f(u0 + ∆u) = 0 ,

or equivalently,

fi(u
0

1
+ ∆u1, . . . , u

0

N + ∆uN) = 0 (i = 1, . . . , N) .

Conducting a Taylor series expansion aroundu = u0, one has for equationi,

0 = fi(u
0

1
+ ∆u1, . . . , u

0

N + ∆uN) = fi(u
0) +

∂fi

∂u1

(u0)∆u1 + · · ·+
∂fi

∂uN

(u0)∆uN + (higher order terms) .

Using the notation introduced in the Principle of Stationary Potential Energy where,

∂fi

∂u
(u0) =













∂fi

∂u1

(u0)

...
∂fi

∂uN

(u0)













,

one can write compactly,

0 = fi(u
0 + ∆u) = fi(u

0) +
∂fi

∂u
(u0) ·∆u + (higher order terms) .

Additionally,

0 = f(u0 + ∆u) = f(u0) +













∂f1

∂u
(u0) ·∆u

...
∂fN

∂u
(u0) ·∆u













+ (higher order terms) .

3

Defining the matrix,

∂f

∂u
(u0),

whose(i, j) entry is,

∂fi

∂uj

(u0),

one finally has the compact expression,

0 = f(u0 + ∆u) = f(u0) +
∂f

∂u
(u0) ·∆u

+(higher order terms) .

This expansion is approximated as,

0 = f(u0 + ∆u) ≈ f(u0) +
∂f

∂u
(u0) ·∆u ,

such that one solves,

0 = f(u0) +
∂f

∂u
(u0) ·∆u ,

to find the update∆u by,

∆u = −
∂f

∂u
(u0)−1

f(u0) .

This yields a new approximationu1 for the solution,

u
1 = u

0 + ∆u

= u
0 −

∂f

∂u
(u0)−1

f(u0) .

One can proceed to find better approximations by repeating the procedure above, replacingu0 with u
1 and so on,

and continue until one has found a solution which is good enough, i.e.,‖f(un)‖ < tolerance. The steps can be
summarized as follows,

1. Guess initial solution̂u = u
0, and compute residualf(û).

2. While‖f(û)‖ > abstol,

(a) Compute tangent stiffness:
∂f

∂u
(û).

(b) Compute update:∆u = −
∂f

∂u
(û)−1

f(û).

(c) Update solution:̂u← û + ∆u.

(d) Compute new residual:f(û).

As one observes, the steps are completely identical to the 1 variable case.

4

4 Exercise

4.1 Download files

1. Download the filenewton raphson.zip into yource130n/programs directory and unzip it.

2. Go to thece130n/programs/newton raphson/exercise/ directory, and execute the fileinit.m .
This will set the necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

4.2 1-variable case

4.2.1 Complete Newton-Raphson function

Complete the functionnewton raphson.m by filling in the appropriate lines.

4.2.2 1 variable example

Run the Newton-Raphson scheme to solve the non-linear equation,

f(u) = (u− 1)2 −
1

2
.

The derivative is computed as,

f ′(u) = 2(u− 1) .

To solve for the solution tof(u) = 0 using the functionnewton raphson.m , one must define the function handles
for the residualf(u) and tangent stiffnessf ′(u). The example can be run with the following MATLAB code,

>> param.N = 1; % -- Number of variables
>> f_resid = @(z) (z-1)ˆ2-1/2; % -- Define residual
>> f_stiff = @(z) 2 * (z-1); % -- Define stiffness
>> param.u0= 0; % -- Define starting value
>> param.history=1; % -- Save iteration history
>> nrsol = newton_raphson(f_resid,f_stiff,param); % -- Co mpute N-R
>> plot_history(nrsol); % -- Plot iteration vs. residual
>> plot1d_history(f_resid,nrsol,param); % -- Plot conver gence of solution

You can also specify the range to plot the figures. Type

>> help plot_history
>> help plot1d_history

for more details.

Things to check:

• Make sure you understand how the Newton-Raphson proceeds.

• Does the solution change with the initial guess? If so, for which initial guess do you get which solution?

• Are there values which you do not get a solution? Why?

• How does the residual get smaller with each iteration near the last few iterations? Do you see quadratic conver-
gence?

• Try some other functions forf(u) and observe the behavior of obtaining a solution.

5

4.3 2 variable example

4.3.1 Simple example

Run the Newton-Raphson scheme to solve the non-linear equation,

f(u) =

[

f1(u1, u2)
f2(u1, u2)

]

=

[

u2

1
+ u2

2
− 1

u1 + u2 − 1

]

.

The derivative is computed as,

∂f

∂u
=







∂f1

∂u1

∂f1

∂u2

∂f2

∂u1

∂f2

∂u2






=

[

2u1 2u2

1 1

]

To solve for the solution tof(u) = 0 using the functionnewton raphson.m , one must define the function handles

for the residualf(u) and tangent stiffness
∂f

∂u
. The example can be run with the following MATLAB code,

>> param.N = 2; % -- Number of variables
>> f_resid = @(z) [z(1)ˆ2+z(2)ˆ2-1;z(1)+z(2)-1;]; % -- Def ine residual
>> f_stiff = @(z) [2 * z(1), 2 * z(2); 1, 1;]; % -- Define stiffness
>> param.u0= [1;2;]; % -- Define starting value
>> param.history=1; % -- Save iteration history
>> nrsol = newton_raphson(f_resid,f_stiff,param); % -- Co mpute N-R
>> plot_history(nrsol); % -- Plot iteration vs. residual
>> plot2d_history(f_resid,nrsol,param); % -- Plot conver gence of solution

You can also specify the range to plot the figures. Type

>> help plot_history
>> help plot2d_history

for more details.

Things to check:

• Does the solution change with the initial guess? (HINT: Tryu0=[1/2;0;];).

• Are there values which you do not get a solution? Why?

• How does the residual get smaller with each iteration near the last few iterations? Do you see quadratic conver-
gence?

• Try some other functions forf(u) and observe the behavior of obtaining a solution.

6

4.3.2 2-bar truss example

Consider the 2-bar truss in Figure 1. It is assumed thatLx = Ly = 1 andAE = 1. In the previous lectures you have
learned how to compute the displacement under the given load, under the assumption ofSMALL DISPLACEMENTS.
As long as the material is elastic, under this assumption ofSMALL DISPLACEMENTS, the truss is stable. This is not
true in reality. Consider a rubber truss. You can imagine that if you apply enough load, the rubber truss will buckle
and flip. This can be treated by including the effect of non-linear geometry.

Lx

Ly

Lx

F1

F2

u1

u2

Figure 1: 2 bar truss configuration

Compare the governing equations for the two different cases. For the linear case,

F = N1n1 + N2n2 ,

n1 =
1

L0

[

Lx

Ly

]

,

n2 =
1

L0

[

−Lx

Ly

]

,

L0 =
√

(Lx)2 + (Ly)2,

N1(u) = AE
n

T
1
u

L0

,

N2(u) = AE
n

T
2
u

L0

,

and thus one defines,

f(u) :=

[

n1n
T
1

AE

L0

+ n2n
T
2

AE

L0

]

u− F = 0 ,

K :=
∂f

∂u
=

[

n1n
T
1

AE

L0

+ n2n
T
2

AE

L0

]

.

7

These are implemented in functions,l2bar resid.m andl2bar stiff.m . For the non-linear case,

F = N1n1 + N2n2,

n1(u) =
1

L1

[

Lx + u1

Ly + u2

]

,

n2(u) =
1

L2

[

−Lx + u1

Ly + u2

]

,

L1 =
√

(Lx + u1)2 + (Ly + u2)2,

L2 =
√

(−Lx + u1)2 + (Ly + u2)2,

N1(u) = AE
L1 − L0

L0

,

N2(u) = AE
L2 − L0

L0

,

and thus one defines,

f(u) := N1n1 + N2n2 − F ,

K(u) :=
∂f

∂u
=

[

n1n
T
1

AE

L0

+ n2n
T
2

AE

L0

]

+
N1

L1

{[

1 0
0 1

]

− n1n
T
1

}

+
N2

L2

{[

1 0
0 1

]

− n2n
T
2

}

.

These are implemented in functions,nl2bar resid.m andnl2bar stiff.m . Observe how for the non-linear
case, the axial forceN and vectorsn depend on the displacementu in a non-linear fashion.

To solve for the solution tof(u) = 00 using the functionnewton raphson.m , one must define the function

handles for the residualf(u) and tangent stiffness
∂f

∂u
. The example can be run with the following MATLAB code,

>> param.N = 2; % -- Number of variables
>> param.u0= [1;2;]; % -- Define starting value
>> param.history=1; % -- Save iteration history
>> F = [0;-0.1;]; % -- Define loading
>> f_resid = @(z)nl2bar_resid(z,F); % -- Nonlinear residua l
>> f_stiff = @(z)nl2bar_stiff(z); % -- Nonlinear stiffness
>> nrsol = newton_raphson(f_resid,f_stiff,param); % -- Co mpute N-R
>> plot_history(nrsol); % -- Plot iteration vs. residual
>> plot2d_history(f_resid,nrsol,param); % -- Plot conver gence of solution

One can also run the case for varying load and plot the results,

>> param.N = 2; % -- Number of variables
>> Fs = [zeros(1,40); % -- Loading in minus y
>> linspace(0.0,-0.185 * 2,40);]; % direction
>> plot2bartruss(Fs);

One plot gives you a pictorial view of the structure under loading and the other gives you the load (F2) vs. deflection
u2 curve. The loading is assumedF1 = 0.

8

Things to check:

• When you run the functionplot2bartruss.m what happens after the load reaches close to a value of−0.2?
Try to explain what is occuring.

• Look at the expressions for residualf(u) and tangent stiffnessK(u) for the linear and non-linear case and
distinguish the differences.

• Completefunc/l2bar resid.m andfunc/l2bar stiff.m and modify the codefunc/plot2bartruss.m
so that it runs the case with linear trusses. How does the load-displacement curve differ from the non-linear case?

9

4.4 3 variable example

4.4.1 Simple example

Run the Newton-Raphson scheme to solve the non-linear equation,

f(u) =





f1(u1, u2, u3)
f2(u1, u2, u3)
f3(u1, u2, u3)



 =





u2

1
+ u2

2
+ u2

3
− 1

u2

1
− 0.5

u3 − 0.25



 .

10

