UNIVERSITY OF CALIFORNIA AT BERKELEY Department of Civil and Environmental Engineering Structural Engineering, Mechanics and Materials CE 130N, Spring 2009 Prof. S. Govindjee and Dr. T. Koyama Lab 14

Mechanics of Structures (CE130N) Lab 14

1 Objective

The objective of this lab is to understand how one can solve non-linear equations by using the Newton-Raphson method. Though many classes of problems in mechanics can be treated with linear equations, there are an even larger class of interesting problems which are governed by non-linear equations. The Newton-Raphson method is one method which one can apply to solve these equations. The Newton-Raphson method is motivated through 1 variables and extended to multi-variables. The extension is straightforward such that a well written MATLAB code should work for both cases. Problems in 1 to 3 variables are treated with examples from mechanics to illustrate the method.

2 Newton-Raphson method in 1-variable

Let f(u) be a non-linear function in u such that one would like to find the solution to the equation,

$$f(u) = 0.$$

The idea behind Newton-Raphson is to iteratively approach the exact solution. Given an initial guess of u^0 , one would like to fix this guess by adding Δu such that $u^0 + \Delta u$ is the exact solution,

$$f(u^0 + \Delta u) = 0.$$

Conducting a Taylor series expansion around $u = u^0$ one has,

$$0 = f(u^0 + \Delta u) = f(u^0) + f'(u^0)\Delta u + (\text{higher order terms in } \Delta u) .$$

This expansion is approximated as,

$$0 = f(u^0 + \Delta u) \approx f(u^0) + f'(u^0)\Delta u ,$$

such that one solves,

$$0 = f(u^0) + f'(u^0)\Delta u ,$$

to find the update Δu by,

$$\Delta u = -f'(u^0)^{-1}f(u^0) \,.$$

This yields a new approximation u^1 for the solution,

$$u^{1} = u^{0} + \Delta u$$

= $u^{0} - f'(u^{0})^{-1} f(u^{0}) .$

One can proceed to find better approximations by repeating the procedure above, replacing u^0 with u^1 and so on, and continue untill one has found a solution which is good enough, i.e., $|f(u^n)| < \text{tolerance}$. The steps can be summarized as follows,

- 1. Guess initial solution $\hat{u} = u^0$, and compute residual $f(\hat{u})$.
- 2. While $|f(\hat{u})| > \text{abstol}$,
 - (a) Compute tangent stiffness: $f'(\hat{u})$.
 - (b) Compute update: $\Delta u = -f'(\hat{u})^{-1}f(\hat{u}).$
 - (c) Update solution: $\hat{u} \leftarrow \hat{u} + \Delta u$.
 - (d) Compute new residual: $f(\hat{u})$.

There are two aspects of the Newton-Raphson method that one should always keep in mind,

- The Newton-Raphson method is *LOCALLY* convergent. This means that unless the initial guess u^0 is close enough to the exact solution, you may not converge to the solution.
- The Newton-Raphson method is locally *QUADRATICALLY* convergent. This means that when the solution starts converging, the error (residual) decreases quadratically with increasing iteration, i.e., you get twice as many digits of accuracy with each iteration.

3 Newton-Raphson method in N-variables

Let $f_i(u_1, \ldots, u_N)$ $(i = 1, \ldots, N)$ be N non-linear functions. Each function is a function in N variables, u_1, \ldots, u_N . One can use the compact notation,

$$\mathbf{f}(\mathbf{u}),$$

 $\mathbf{u} = \begin{bmatrix} u_1 \\ \vdots \\ u_N \end{bmatrix}$

 $\mathbf{f} = \begin{bmatrix} f_1 \\ \vdots \\ f_N \end{bmatrix}.$

to denote this, where we have defined,

We would like to find the solution **u** to the equation,

$$\mathbf{f}(\mathbf{u}) = \mathbf{0}$$
 .

We can approach this in the same way as the 1-variable case, such that we would like to iteratively find the exact solution. Given an initial guess of \mathbf{u}^0 , one would like to fix this guess by adding $\Delta \mathbf{u}$ so that $\mathbf{u}^0 + \Delta \mathbf{u}$ is the exact solution,

$$\mathbf{f}(\mathbf{u}^0 + \Delta \mathbf{u}) = \mathbf{0} \; ,$$

or equivalently,

$$f_i(u_1^0 + \Delta u_1, \dots, u_N^0 + \Delta u_N) = 0 \quad (i = 1, \dots, N).$$

Conducting a Taylor series expansion around $\mathbf{u} = \mathbf{u}_0$, one has for equation *i*,

$$0 = f_i(u_1^0 + \Delta u_1, \dots, u_N^0 + \Delta u_N) = f_i(\mathbf{u}^0) + \frac{\partial f_i}{\partial u_1}(\mathbf{u}^0)\Delta u_1 + \dots + \frac{\partial f_i}{\partial u_N}(\mathbf{u}^0)\Delta u_N + (\text{higher order terms})$$

Using the notation introduced in the Principle of Stationary Potential Energy where,

$$\frac{\partial f_i}{\partial \mathbf{u}}(\mathbf{u}^0) = \begin{bmatrix} \frac{\partial f_i}{\partial u_1}(\mathbf{u}^0) \\ \vdots \\ \frac{\partial f_i}{\partial u_N}(\mathbf{u}^0) \end{bmatrix} ,$$

one can write compactly,

$$0 = f_i(\mathbf{u}^0 + \Delta \mathbf{u}) = f_i(\mathbf{u}^0) + \frac{\partial f_i}{\partial \mathbf{u}}(\mathbf{u}_0) \cdot \Delta \mathbf{u} + (\text{higher order terms}).$$

Additionally,

$$\mathbf{0} = \mathbf{f}(\mathbf{u}^0 + \Delta \mathbf{u}) = \mathbf{f}(\mathbf{u}^0) + \begin{bmatrix} \frac{\partial f_1}{\partial \mathbf{u}}(\mathbf{u}^0) \cdot \Delta \mathbf{u} \\ \vdots \\ \frac{\partial f_N}{\partial \mathbf{u}}(\mathbf{u}^0) \cdot \Delta \mathbf{u} \end{bmatrix} + (\text{higher order terms}) .$$

Defining the matrix,

$$\frac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{u}^0),$$

whose (i, j) entry is,

$$\frac{\partial f_i}{\partial u_j}(\mathbf{u}^0),$$

one finally has the compact expression,

$$\mathbf{0} = \mathbf{f}(\mathbf{u}^0 + \Delta \mathbf{u}) = \mathbf{f}(\mathbf{u}^0) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{u}^0) \cdot \Delta \mathbf{u} + (\text{higher order terms}).$$

This expansion is approximated as,

$$\mathbf{0} = \mathbf{f}(\mathbf{u}^0 + \Delta \mathbf{u}) \approx \mathbf{f}(\mathbf{u}^0) + \frac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{u}^0) \cdot \Delta \mathbf{u} \; ,$$

such that one solves,

$$\mathbf{0} = \mathbf{f}(\mathbf{u}^0) + rac{\partial \mathbf{f}}{\partial \mathbf{u}}(\mathbf{u}^0) \cdot \Delta \mathbf{u} \; ,$$

to find the update $\Delta \mathbf{u}$ by,

$$\Delta \mathbf{u} = -\frac{\partial \mathbf{f}}{\partial \mathbf{u}} (\mathbf{u}^0)^{-1} \mathbf{f} (\mathbf{u}^0) \,.$$

This yields a new approximation \mathbf{u}^1 for the solution,

$$\begin{aligned} \mathbf{u}^1 &= \mathbf{u}^0 + \Delta \mathbf{u} \\ &= \mathbf{u}^0 - \frac{\partial \mathbf{f}}{\partial \mathbf{u}} (\mathbf{u}^0)^{-1} \mathbf{f} (\mathbf{u}^0) \, . \end{aligned}$$

One can proceed to find better approximations by repeating the procedure above, replacing \mathbf{u}^0 with \mathbf{u}^1 and so on, and continue until one has found a solution which is good enough, i.e., $\|\mathbf{f}(\mathbf{u}^n)\| < \text{tolerance}$. The steps can be summarized as follows,

Guess initial solution û = u⁰, and compute residual f(û).
 While ||f(û)|| > abstol,
 (a) Compute tangent stiffness: ∂f/∂u(û).
 (b) Compute update: Δu = -∂f/∂u(û)⁻¹f(û).
 (c) Update solution: û ← û + Δu.
 (d) Compute new residual: f(û).

As one observes, the steps are completely identical to the 1 variable case.

4 Exercise

4.1 Download files

- 1. Download the file newton_raphson.zip into your cel30n/programs directory and unzip it.
- 2. Go to the cel30n/programs/newton_raphson/exercise/ directory, and execute the file init.m. This will set the necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

4.2 1-variable case

4.2.1 Complete Newton-Raphson function

Complete the function newton_raphson.m by filling in the appropriate lines.

4.2.2 1 variable example

Run the Newton-Raphson scheme to solve the non-linear equation,

$$f(u) = (u-1)^2 - \frac{1}{2}$$
.

The derivative is computed as,

$$e'(u) = 2(u-1)$$
.

1

To solve for the solution to f(u) = 0 using the function newton_raphson.m, one must define the function handles for the residual f(u) and tangent stiffness f'(u). The example can be run with the following MATLAB code,

```
>> param.N = 1; % -- Number of variables
>> f_resid = @(z) (z-1)^2-1/2; % -- Define residual
>> f_stiff = @(z) 2*(z-1); % -- Define stiffness
>> param.u0= 0; % -- Define starting value
>> param.history=1; % -- Save iteration history
>> nrsol = newton_raphson(f_resid,f_stiff,param); % -- Compute N-R
>> plot_history(nrsol); % -- Plot iteration vs. residual
>> plot1d_history(f_resid,nrsol,param); % -- Plot convergence of solution
```

You can also specify the range to plot the figures. Type

```
>> help plot_history
>> help plot1d history
```

for more details.

Things to check:

- Make sure you understand how the Newton-Raphson proceeds.
- Does the solution change with the initial guess? If so, for which initial guess do you get which solution?
- Are there values which you do not get a solution? Why?
- How does the residual get smaller with each iteration near the last few iterations? Do you see quadratic convergence?
- Try some other functions for f(u) and observe the behavior of obtaining a solution.

4.3 2 variable example

4.3.1 Simple example

Run the Newton-Raphson scheme to solve the non-linear equation,

$$\mathbf{f}(\mathbf{u}) = \begin{bmatrix} f_1(u_1, u_2) \\ f_2(u_1, u_2) \end{bmatrix} = \begin{bmatrix} u_1^2 + u_2^2 - 1 \\ u_1 + u_2 - 1 \end{bmatrix}$$

The derivative is computed as,

$$\frac{\partial \mathbf{f}}{\partial \mathbf{u}} = \begin{bmatrix} \frac{\partial f_1}{\partial u_1} & \frac{\partial f_1}{\partial u_2}\\ \frac{\partial f_2}{\partial u_1} & \frac{\partial f_2}{\partial u_2} \end{bmatrix} = \begin{bmatrix} 2u_1 & 2u_2\\ 1 & 1 \end{bmatrix}$$

To solve for the solution to f(u) = 0 using the function newton_raphson.m, one must define the function handles for the residual f(u) and tangent stiffness $\frac{\partial f}{\partial u}$. The example can be run with the following MATLAB code,

```
>> param.N = 2;  % -- Number of variables
>> f_resid = @(z) [z(1)^2+z(2)^2-1;z(1)+z(2)-1;]; % -- Define residual
>> f_stiff = @(z) [2*z(1), 2*z(2); 1, 1;]; % -- Define stiffness
>> param.u0= [1;2;]; % -- Define starting value
>> param.history=1; % -- Save iteration history
>> nrsol = newton_raphson(f_resid,f_stiff,param); % -- Compute N-R
>> plot_history(nrsol); % -- Plot iteration vs. residual
>> plot2d_history(f_resid,nrsol,param); % -- Plot convergence of solution
```

You can also specify the range to plot the figures. Type

>> help plot_history
>> help plot2d history

for more details.

Things to check:

- Does the solution change with the initial guess? (HINT: Try u0=[1/2;0;];).
- Are there values which you do not get a solution? Why?
- How does the residual get smaller with each iteration near the last few iterations? Do you see quadratic convergence?
- Try some other functions for f(u) and observe the behavior of obtaining a solution.

4.3.2 2-bar truss example

Consider the 2-bar truss in Figure 1. It is assumed that $L_x = L_y = 1$ and AE = 1. In the previous lectures you have learned how to compute the displacement under the given load, under the assumption of *SMALL DISPLACEMENTS*. As long as the material is elastic, under this assumption of *SMALL DISPLACEMENTS*, the truss is stable. This is not true in reality. Consider a rubber truss. You can imagine that if you apply enough load, the rubber truss will buckle and flip. This can be treated by including the effect of non-linear geometry.

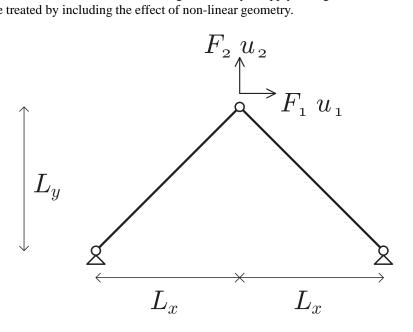


Figure 1: 2 bar truss configuration

Compare the governing equations for the two different cases. For the linear case,

$$\begin{aligned} \mathbf{F} &= N_1 \mathbf{n}_1 + N_2 \mathbf{n}_2 ,\\ \mathbf{n}_1 &= \frac{1}{L_0} \begin{bmatrix} L_x \\ L_y \end{bmatrix},\\ \mathbf{n}_2 &= \frac{1}{L_0} \begin{bmatrix} -L_x \\ L_y \end{bmatrix},\\ L_0 &= \sqrt{(L_x)^2 + (L_y)^2},\\ N_1(\mathbf{u}) &= AE \frac{\mathbf{n}_1^T \mathbf{u}}{L_0},\\ N_2(\mathbf{u}) &= AE \frac{\mathbf{n}_2^T \mathbf{u}}{L_0}, \end{aligned}$$

and thus one defines,

$$\mathbf{f}(\mathbf{u}) := \begin{bmatrix} \mathbf{n}_1 \mathbf{n}_1^T \frac{AE}{L_0} + \mathbf{n}_2 \mathbf{n}_2^T \frac{AE}{L_0} \end{bmatrix} \mathbf{u} - \mathbf{F} = \mathbf{0} ,$$

$$\mathbf{K} := \frac{\partial \mathbf{f}}{\partial \mathbf{u}} = \begin{bmatrix} \mathbf{n}_1 \mathbf{n}_1^T \frac{AE}{L_0} + \mathbf{n}_2 \mathbf{n}_2^T \frac{AE}{L_0} \end{bmatrix} .$$

These are implemented in functions, 12bar_resid.m and 12bar_stiff.m. For the non-linear case,

$$\begin{aligned} \mathbf{F} &= N_1 \mathbf{n}_1 + N_2 \mathbf{n}_2, \\ \mathbf{n}_1(\mathbf{u}) &= \frac{1}{L_1} \begin{bmatrix} L_x + u_1 \\ L_y + u_2 \end{bmatrix}, \\ \mathbf{n}_2(\mathbf{u}) &= \frac{1}{L_2} \begin{bmatrix} -L_x + u_1 \\ L_y + u_2 \end{bmatrix}, \\ L_1 &= \sqrt{(L_x + u_1)^2 + (L_y + u_2)^2}, \\ L_2 &= \sqrt{(-L_x + u_1)^2 + (L_y + u_2)^2}, \\ N_1(\mathbf{u}) &= AE \frac{L_1 - L_0}{L_0}, \\ N_2(\mathbf{u}) &= AE \frac{L_2 - L_0}{L_0}, \end{aligned}$$

and thus one defines,

$$\begin{aligned} \mathbf{f}(\mathbf{u}) &:= N_1 \mathbf{n}_1 + N_2 \mathbf{n}_2 - \mathbf{F} ,\\ \mathbf{K}(\mathbf{u}) &:= \frac{\partial \mathbf{f}}{\partial \mathbf{u}} = \begin{bmatrix} \mathbf{n}_1 \mathbf{n}_1^T \frac{AE}{L_0} + \mathbf{n}_2 \mathbf{n}_2^T \frac{AE}{L_0} \end{bmatrix} \\ &+ \frac{N_1}{L_1} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \mathbf{n}_1 \mathbf{n}_1^T \right\} + \frac{N_2}{L_2} \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \mathbf{n}_2 \mathbf{n}_2^T \right\} .\end{aligned}$$

These are implemented in functions, nl2bar_resid.m and nl2bar_stiff.m. Observe how for the non-linear case, the axial force N and vectors n depend on the displacement u in a non-linear fashion.

To solve for the solution to f(u) = 00 using the function newton_raphson.m, one must define the function handles for the residual f(u) and tangent stiffness $\frac{\partial f}{\partial u}$. The example can be run with the following MATLAB code,

>	>> param.N = 2;	% Number of variables
>	>> param.u0= [1;2;];	% Define starting value
>	>> param.history=1;	<pre>% Save iteration history</pre>
>	>> F = $[0; -0.1;];$	% Define loading
>	>> f_resid = @(z)nl2bar_resid(z,F);	% Nonlinear residual
>	>> f_stiff = @(z)nl2bar_stiff(z);	% Nonlinear stiffness
>	<pre>>> nrsol = newton_raphson(f_resid,f_stiff,param);</pre>	% Compute N-R
>	>> plot_history(nrsol); % Plot	iteration vs. residual
>	>> plot2d_history(f_resid,nrsol,param); % Plot	convergence of solution

One can also run the case for varying load and plot the results,

>> param.N = 2;	% Number of variables
>> Fs = [zeros(1,40);	% Loading in minus y
>> linspace(0.0,-0.185*2,40);];	% direction
>> plot2bartruss(Fs);	

One plot gives you a pictorial view of the structure under loading and the other gives you the load (F_2) vs. deflection u_2 curve. The loading is assumed $F_1 = 0$.

Things to check:

- When you run the function plot2bartruss.m what happens after the load reaches close to a value of -0.2? Try to explain what is occuring.
- Look at the expressions for residual f(u) and tangent stiffness K(u) for the linear and non-linear case and distinguish the differences.
- Complete func/l2bar_resid.mand func/l2bar_stiff.mand modify the code func/plot2bartruss.m so that it runs the case with linear trusses. How does the load-displacement curve differ from the non-linear case?

4.4 3 variable example

4.4.1 Simple example

Run the Newton-Raphson scheme to solve the non-linear equation,

$$\mathbf{f}(\mathbf{u}) = \begin{bmatrix} f_1(u_1, u_2, u_3) \\ f_2(u_1, u_2, u_3) \\ f_3(u_1, u_2, u_3) \end{bmatrix} = \begin{bmatrix} u_1^2 + u_2^2 + u_3^2 - 1 \\ u_1^2 - 0.5 \\ u_3 - 0.25 \end{bmatrix}.$$