UNIVERSITY OF CALIFORNIA AT BERKELEY CE 130N, Spring 2009

Department of Civil and Environmental Engineering ProfGBvindjee and Dr. T. Koyama
Structural Engineering, Mechanics and Materials Lab 14
Mechanics of Structures (CE130N)
Lab 14
1 Objective

The objective of this lab is to understand how one can solvelimear equations by using the Newton-Raphson
method. Though many classes of problems in mechanics careséied with linear equations, there are an even
larger class of interesting problems which are governeddlinear equations. The Newton-Raphson method is one
method which one can apply to solve these equations. ThedweRéphson method is motivated through 1 variables
and extended to multi-variables. The extension is stréogivard such that a well written MATLAB code should work
for both cases. Problems in 1 to 3 variables are treated wameles from mechanics to illustrate the method.

2 Newton-Raphson method in 1-variable

Let f(u) be a non-linear function in such that one would like to find the solution to the equation,

fu) = 0.

The idea behind Newton-Raphson is to iteratively approaelekact solution. Given an initial guessudf one would
like to fix this guess by addindu such thaw.® + Aw is the exact solution,

f® + Au) = 0.
Conducting a Taylor series expansion aroung u° one has,
0= f(u+ Au) = f(u°) + f'(u®)Au + (higher order terms in Au) .
This expansion is approximated as,
0= f(u® + Au) ~ f(u°) + f'(u*)Au

such that one solves,

0= f(u®) + f'(u’)Au,
to find the update\u by,

Au = —f'(W)7 f(u’).

This yields a new approximatian' for the solution,

u' = w4 Au

= W~ () ().

One can proceed to find better approximations by repeatiagthcedure above, replacing with «! and so on,
and continue untill one has found a solution which is goodugihoi.e.,|f(u™)| < tolerance. The steps can be
summarized as follows,

1. Guess initial solution = u°, and compute residugl(i).
2. While|f(a)| > abstol,

(a) Compute tangent stiffnesg:(a).

(b) Compute updateAu = —f’(a) =L f(4).

(c) Update solutionti < @ + Auw.

(d) Compute new residuafi(a).

There are two aspects of the Newton-Raphson method thahoddsalways keep in mind,

e The Newton-Raphson method li©O)CALLY convergent. This means that unless the initial gu€’ss close
enough to the exact solution, you may not converge to thdisalu

e The Newton-Raphson method is localQUADRATICALLY convergent. This means that when the solution
starts converging, the error (residual) decreases quadiigitwith increasing iteration, i.e., you get twice as
many digits of accuracy with each iteration.

3 Newton-Raphson method in N-variables

Let f;(u,...,un) (¢ =1,..., N)beN non-linear functions. Each function is a functiomifwariablesu, . .., uy.
One can use the compact notation,

f(u),
to denote this, where we have defined,
Uy
u =
UN
h
f=1:
In

We would like to find the solutiom to the equation,
f(uy=0.

We can approach this in the same way as the 1-variable cade tisat we would like to iteratively find the exact
solution. Given an initial guess af®, one would like to fix this guess by addingu so thatu® + Au is the exact
solution,

f(u’ +Au) =0,
or equivalently,
fi(ud + Auy, ... ul +Auy) =0 (i=1,...,N).
Conducting a Taylor series expansion aroung ug, one has for equation

ofi dfi

Oouy Jun

0= fi(ul +Aui,...,u} + Auy) = f;(u’) + () Aug + -+ + (u”)Auy + (higher order terms) .

Using the notation introduced in the Principle of Statign@otential Energy where,

af

(u®)
3u1
Uwy=| + |,
ou :
oL ()
8UN

one can write compactly,

0= fi(u’ 4+ Au) = f;(u°) + zfi (ug) - Au + (higher order terms) .
u
Additionally,
afl 0
Bu (1) - Au
0 =f(u’ + Au) = f(u) + + (higher order terms) .
aailiv(uo) -Au

Defining the matrix,

whose(i, 7) entry is,

Ofi

0
7 ()

one finally has the compact expression,

0 =f(u’ + Au) = f(u) + g—f(uo) -Au
u
+ (higher order terms) .
This expansion is approximated as,
0 0 of 0
0=f(u"+Au)~f(u")+ =—(u”) - Au,
Ou
such that one solves,
0=f(u’)+ %(uo) Au,
to find the updaté\u by,
Au = —%(uo)*1 (u?)
This yields a new approximatiam' for the solution,
ul = u’+Au
of
_ o_ 9L, 0y-1 0
= u 6u(u)T f(u”) .

One can proceed to find better approximations by repeatiagptbcedure above, replacing with u! and so on,
and continue until one has found a solution which is good ghoue.,||f(u")|| < tolerance. The steps can be
summarized as follows,

1. Guess initial solutiom = u®, and compute residué().

2. While ||f(1)|| > abstol,

(a) Compute tangent stiffnes% ().

(b) Compute updateAu = —g—i(ﬁ)—lf(ﬁ).

(c) Update solutionti «+ a + Au.

(d) Compute new residuaf(u).

As one observes, the steps are completely identical to tlagidble case.

4 Exercise

4.1 Download files
1. Download the filmewton _raphson.zip into yourcel30n/programs directory and unzip it.

2. Go to thece130n/programs/newton _raphson/exercise/ directory, and execute the filait.m
This will set the necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

4.2 1-variable case
4.2.1 Complete Newton-Raphson function

Complete the functionewton _raphson.m by filling in the appropriate lines.

4.2.2 1 variable example

Run the Newton-Raphson scheme to solve the non-linearieguat
1
fw)= (=1 -3

The derivative is computed as,
Flu)=2(u-1).

To solve for the solution tg (u) = 0 using the functiomewton _raphson.m , one must define the function handles
for the residualf (u) and tangent stiffnesg'(u). The example can be run with the following MATLAB code,

>> param.N = 1; % -- Number of variables

>> f resid = @(z) (z-1)"2-1/2; % -- Define residual

>> f stiff = @(2) 2 * (z-1); % -- Define stiffness

>> param.u0= 0; % -- Define starting value

>> param.history=1; % -- Save iteration history

>> nrsol = newton_raphson(f_resid,f_stiff,param); % -- Co mpute N-R

>> plot_history(nrsol); % -- Plot iteration vs. residual

>> plotld_history(f_resid,nrsol,param); % -- Plot conver gence of solution

You can also specify the range to plot the figures. Type

>> help plot_history
>> help plotld_history

for more details.

Things to check:

e Make sure you understand how the Newton-Raphson proceeds.
e Does the solution change with the initial guess? If so, foiclinitial guess do you get which solution?
e Are there values which you do not get a solution? Why?

e How does the residual get smaller with each iteration neafast few iterations? Do you see quadratic conver-
gence?

e Try some other functions fof («) and observe the behavior of obtaining a solution.

4.3 2 variable example
4.3.1 Simple example
Run the Newton-Raphson scheme to solve the non-lineariequat
f(u) = {fl(ul,uz)] _ [u% +u3 — 1] '
fa(uy, uz) up +ug —1

The derivative is computed as,

ofi 0fi
6f7 (i)—ul 8—’112 - 2U1 2UQ
ou |9f2 Ofz| T |1 1
8u1 811,2

To solve for the solution té(u) = 0 using the functiomewton _raphson.m , one must define the function handles

for the residuaf (u) and tangent stiffnesgg. The example can be run with the following MATLAB code,

>> param.N = 2; % -- Number of variables
>> f resid = @(2) [z(1)"2+z(2)"2-1;z(1)+z(2)-1;]; % -- Def ine residual

>> f stiff = @(2) [2 xz(1), 2 *z(2); 1, 1;]; % -- Define stiffness

>> param.u0= [1;2;]; % -- Define starting value
>> param.history=1; % -- Save iteration history
>> nrsol = newton_raphson(f_resid,f_stiff,param); % -- Co mpute N-R

>> plot_history(nrsol); % -- Plot iteration vs. residual

>> plot2d_history(f_resid,nrsol,param); % -- Plot conver gence of solution

You can also specify the range to plot the figures. Type

>> help plot_history
>> help plot2d_history

\%

for more details.

Things to check:
e Does the solution change with the initial guess? (HINT: @y[1/2;0;];).
e Are there values which you do not get a solution? Why?

e How does the residual get smaller with each iteration neafast few iterations? Do you see quadratic conver-
gence?

e Try some other functions fdi(u) and observe the behavior of obtaining a solution.

4.3.2 2-bar truss example

Consider the 2-bar truss in Figure 1. Itis assumed fhat L, = 1 andAE = 1. In the previous lectures you have
learned how to compute the displacement under the given loater the assumption 8MALL DISPLACEMENTS
As long as the material is elastic, under this assumptidaMALL DISPLACEMENTS the truss is stable. This is not
true in reality. Consider a rubber truss. You can imaging ifigpou apply enough load, the rubber truss will buckle
and flip. This can be treated by including the effect of naredir geometry.

F2u2

L,

F1u1

L, L,

Figure 1: 2 bar truss configuration

Compare the governing equations for the two different caSesthe linear case,

F = Nin;+ Nong,
n, = L L
1 - L() Ly)
n, = L |-La
2 — LO Ly)
Ly = (Lw)2 + (Ly)27
T
Nl (u) = AEM,
Lo
T
NQ(u) = AEM ’
Lo
and thus one defines,
AFE
f = —_— r— —-F=0
(u) [nln1 T + nony T } u)
of AF AFE

These are implemented in functiot&har _resid.m andl2bar _stifftm . Forthe non-linear case,

F = Ninj + Nony,
_ 1 L, +u
l'll(u) - Ll |:Ly —|—’LL2:|)
. 1 —Lw + uy
mw = |0
L= (Lot w)2+ (L +ua)?
Ly = \J(-Lo+uw)?+ (L +ua)?
Ly —-L
Ni(u) = AE=L =0
Lo
Ly—L
NQ(u) = AFE 2 2)
Lo
and thus one defines,
f(u) = N1n1 + N2n2 -F y
of T AE rAE
K(u) = 8_11 = |:n11'11 L—O + non, L—O:|
Nl 1 O T N2 1 O T
o et Bl o] e}
These are implemented in functiomd2bar _resid.m andnl2bar _stifftm . Observe how for the non-linear

case, the axial forc& and vectorsx depend on the displacemantn a non-linear fashion.
To solve for the solution td(u) = 00 using the functiomewton _raphson.m , one must define the function

handles for the residud(u) and tangent stiffnesgf. The example can be run with the following MATLAB code,
u

>> param.N = 2; % -- Number of variables
>> param.u0= [1;2;]; % -- Define starting value
>> param.history=1; % -- Save iteration history
>> F = [0;-0.1;]; % -- Define loading

>> f resid = @(z)nl2bar_resid(z,F); % -- Nonlinear residua I
>> f _stiff = @(z)nl2bar_stiff(z); % -- Nonlinear stiffness

>> nrsol = newton_raphson(f_resid,f_stiff,param); % -- Co mpute N-R

>> plot_history(nrsol); % -- Plot iteration vs. residual

>> plot2d_history(f_resid,nrsol,param); % -- Plot conver gence of solution

One can also run the case for varying load and plot the results

>> param.N = 2; % -- Number of variables
>> Fs = [zeros(1,40); % -- Loading in minus y
>> linspace(0.0,-0.185 *2,40);]; % direction

>> plot2bartruss(Fs);

One plot gives you a pictorial view of the structure undediog and the other gives you the loak,j vs. deflection
uo curve. The loading is assuméd = 0.

Things to check:

e When you run the functioplot2bartruss.m what happens after the load reaches close to a valu® af?
Try to explain what is occuring.

e Look at the expressions for residu&u) and tangent stiffnesK(u) for the linear and non-linear case and
distinguish the differences.

e Completdunc/I2bar _resid.m andfunc/I2bar _stiftm and modify the cod&unc/plot2bartruss.m
so that it runs the case with linear trusses. How does thedismlacement curve differ from the non-linear case?

4.4 3variable example
4.4.1 Simple example

Run the Newton-Raphson scheme to solve the non-lineariequat

fl(ul,UQ,U3) ’U/%—f—u%—f—u%_l
f(u) = fg(ul, Uz, U3) = u% —05
f3(u11 U2, U3) ug — 0.25

10

