
UNIVERSITY OF CALIFORNIA AT BERKELEY CE 130N, Spring 2009
Department of Civil and Environmental Engineering Prof. S.Govindjee and Dr. T. Koyama
Structural Engineering, Mechanics and Materials Lab 13

Mechanics of Structures (CE130N)
Lab 13

1 Objective

The objective of this lab is to see how the Principle of Virtual Work can be applied to solve mechanical problems
governed by differential equations in a similar way to the application of the Principle of Stationary Potential Energy.
The Principle of Virtual Work yields exactly the same results as the Principle of Stationary Potential Energy when one
has a conservative system and the solution spaceS and test function spaceV are chosen to be the same. The Principle
of Virtual Work has the added flexibility that one can treat non-conservative systems as well as the caseS 6= V .

In combination with the Principle of Virtual Work, a selection of the solution spaceS and test function space
V which consist of ”hat functions” are made. This is essentially an introduction to the finite element method. The
problem of torsion of bars is treated to illustrate the method.

1



2 Steps in applying the Principle of Virtual Work

The Principle of Virtual Work can be summarized by the following steps.

1. Form the expression for the virtual work.

Internal Virtual Work = External Virtual Work.

Depending on the problem one has,

Internal Virtual Work =















∫ L

0

δu′(x)R(x) dx (Tension-compression bar)
∫ L

0

δϕ′(z)T (z) dz (Torsion bar)
,

and depending on the loading one has different forms for the External Virtual Work. For example, the torsion
bar with a point torquēT at the endx = L and distributed torquet(z) takes the form,

External Virtual Work =

∫ L

0

δϕ(z)t(z) dz + δϕ(L)T̄ .

2. Determine the functionsu(x) in the solution spaceS (form for the approximate solution),

S :=

{

u(x)|

N
∑

i=1

uifi(x)

}

,

whereui are the coefficients to be determined andfi(x) are determined functions, and the functionsδu(x) in
the test function spaceV ,

V :=







δu(x)|

Nδ
∑

j=1

δujgj(x)







,

whereδuj are the arbitrary coefficients andgj(x) are determined functions.

The proper selection ofS andV is crucial in obtaining a good approximation. They must satisfy the following
conditions,

• fi(x) must satisfy the kinematic boundary conditions,gj(x) must be equal to zero on the kinematic bound-
ary conditions.

• fi(x) (i = 1, . . . , N) must be linearly independent to each other,gj(x) (j = 1, . . . , Nδ) must be linearly
independent to each other.

• fi(x), gj(x) must be nonzero for enough derivatives to make sense in the stiffness matrix.

3. Insert the from for the solutionu(x) ∈ S and the test functionδu(x) ∈ V into the expression for the virtual
work. One must employ the constitutive relations here,

R(u(x)) = AEu′(x), (Tension compression bar),
T (ϕ(z)) = GJϕ′(z), (Torsion bar) .

This results in the expressions,

Nδ
∑

i=1

δui







N
∑

j=1

Kijuj − Fi







= 0

⇔
N

∑

i=1

δuihi = 0

⇔ δuT
h = 0 .

2



Here we have definedh := Ku − F andδu as the vector with entriesδui. The entries of the matrixK are
determined from the Internal Virtual Work and have the form,

Kij =















∫ L

0

g′iAEf ′

jdx (Tension − compression bar)
∫ L

0

g′iGJf ′

jdx (Torsion bar)

.

and,

Fi =















∫ L

0

gibdx + term from point loads (Tension-compression bar)
∫ L

0

gitdz + term from point loads (Torsion bar)
.

For the last equation,δuT
h = 0, to hold for arbitraryδu, one must have,

h = Ku− F = 0 ,

which determines the system of equations one must solve foru, which are the undetermined coefficients.

4. Solve the linear system of equations,

Ku = F .

to obtain the approximation,

u(x) =

N
∑

i=1

uifi(x) .

3



3 Exercise: Torsion bar solved with finite elements

3.1 Download files

1. Download the filepvw.zip into yource130n/programs directory and unzip it.

2. Go to thece130n/programs/pvw/exercise/ directory, and execute the fileinit.m . This will set the
necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

3.2 Functions used for the approximation

In this exercise you will compute approximate solutions fora bar in torsion using the Principle of Virtual Work. For
the solution spaceS and test function spaceV , one will select hat functions, which are defined as,

hm(a1, a2, a3; x) :=



























0 (x < a1)
x − a1

a2 − a1

(a1 ≤ x ≤ a2)

a3 − x

a3 − a2

(a2 ≤ x ≤ a3)

0 (a3 < x)

x

a3a2a1

L

hat middle

Figure 1:hat middle function

One should have the following Figure 1 of the function in mind. The function has a value of zero outside the inter-
val [a1, a3], has a value of 1 ata2, and behaves linearly. For a givena1, a2, a3 one can plot this function in MATLAB
by using the MATLAB functionhat middle with the lines of code,

>> a1 = -3;
>> a2 = -1;
>> a3 = 0.5;
>> dorder = 0; % -- Order of derivative
>> hm= @(z)hat_middle(z,dorder,a1,a2,a3);
>> fplot(hm,[-4,2]);

At the ends of the domain (bar) one has special types of hat functions which have only ”half” of the hat as shown

4



x

a2a1

L

hat right

Figure 2:hat right function

in Figure 2. These are defined as,

hr(a1, a2; x) :=















0 (x < a1)
x − a1

a2 − a1

(a1 ≤ x ≤ a2)

0 (a3 < x)

The function has a value of zero outside the interval[a1, a2], has a value of 1 ata2, and behaves linearly. For a given
a1, a2 one can plot this function in MATLAB by using the MATLAB function hat right with the lines of code,

>> a1 = -3;
>> a2 = -1;
>> dorder = 0; % -- Order of derivative
>> hm= @(z)hat_right(z,dorder,a1,a2);
>> fplot(hm,[-4,2]);

There exists also the symmetric ”left” version of this function which is calledhat left.m .

Things to check:

• Try plotting the three types of hat functions,hat middle.m , hat right.m , hat left.m , and observe
their behavior.

• What do the derivatives of the hat functions look like?

5



3.3 The solution space and test function space for a fixed-free torsion bar

The torsion bar with governing differential equation,

GJϕ′′(x) + t = 0,

with fixed boundary condition atx = 0 is treated.
We will choose the solution function and test function to be alinear combination of the hat functions mentioned

in the previous section. To define the hat functions, one mustfirst define location of intervals and nodes (elements) on
which the hat functions are to be defined, i.e., the location of the a1, a2, a3 of the hat functions. Let us define a grid
on the domain[0, L] and break this intonel equidistant intervals of sized := L/nel which results innel + 1 nodes.
Label the node locations as,

xk := d(k − 1) ,

such thatx1 = 0 andxnel+1 = L. This defines theN = Nδ = nel functions used for the solution functionu(x) and
test functionδ(x). These two functions are defined as,

ϕ(x) =

N
∑

i=1

uifi(x) =

N−1
∑

i=1

uihm(xi, xi+1, xi+2; x) + uNhr(xnel, xnel+1; x),

δϕ(x) =

N
∑

j=1

δujgj(x) =

N−1
∑

j=1

δujhm(xj , xj+1, xj+2; x) + δuNhr(xnel, xnel+1; x).

Observe how all functionsfi(x) satisfy the kinematic boundary conditions, i.e., zero displacement atx = 0, and how
all functionsgj(x) are equal to zero at the kinematic boundary condition. As a resultϕ(0) = 0 andδϕ(0) = 0.

These functions are defined in thepvw structure in the filetorsion ex2.m . (The case for polynomials is given
in torsion ex1.m .) The functions and their derivatives can be visualized by the MATLAB code,

>> torsion_ex2;
>> plotproblem(pvw); % -- Plot problem configuration
>> plotpvwf(pvw,’sf’); % -- Plot solution functions
>> plotpvwf(pvw,’tf’); % -- Plot test functions

Things to do:

• Plot the solution functions and test functions for variousnel and observe their behavior.

• How can you modify the code so that you can treat the torsion bar under fixed-fixed boundary conditions?
HINT: One must make sure that the functionϕ(x) satisfies the kinematic boundary condition thatϕ(0) =
ϕ(L) = 0 and that the functionδϕ(x) satisfiesδϕ(0) = δϕ(L) = 0. Save this configuration in a file
torsion ex2b.m .

6



3.4 Solving for the approximate solution

To solve for the approximate solution to the rotationsϕ(x), one must determine the coefficientsui (i = 1, . . . , N)
from the linear system of equations,

Ku = F.

The form of the selection for the solution function and test function affect the structure of the stiffness matrixK and
forcing vectorF.

One can formK andF, solve for the coefficientsu, and plot the solution by the MATLAB code,

>> torsion_ex2;
>> K = computeK(pvw);
>> F = computeF(pvw);
>> u = K\F;
>> plotsol(pvw,u); % -- Plot solution
>> dorder = 0;
>> evaldisp(pvw,u,[0.5,1],dorder) % -- Obtain rotation at x=0.5,1
>> dorder = 1;
>> evaldisp(pvw,u,[0.5,1],dorder) % -- Obtain derivative of
>> % rotation at x=0.5,1

Things to do:

• How do the nonzero entries appear in the stiffness matrixK? (Do you see any structure?)

• For the given case with two point torques atx = 1/2L andx = L, how many elements (intervals) are required
to obtain an exact solution? Explain why?

• Change the load to a distributed torque oft(x) = 1. How many elements (intervals) do you need to get a good
approximation to the tip rotation atx = L? How good is the approximate solution at the nodesxk for varying
nel ?
HINT: The finite element solution with hat functions in 1D has the nice property of nodal exactness.

• Using the filetorsion ex2b.m , compute for the rotations under a distributed torquet = sin(πx/L). What
is the slope of convergence of theL2 error for the rotation and its derivative as the number of elements increases
from [1, 25]. Numerically one can compute theL2 error with the following MATLAB code.

>> x = linspace(0,1,1001);
>> ue = (1/pi)ˆ2 * sin(pi * x); % -- Exact solution for rotation
>> ee = (1/pi)ˆ1 * cos(pi * x); % -- Exact solution for derivative
>> ua = evaldisp(pvw,u,x,0); % -- Obtain approximation for r otation
>> ea = evaldisp(pvw,u,x,1); % -- Obtain approximation for d erivative
>> l2e_u = norm(ua-ue)/norm(ue); % -- L2 error for rotation
>> l2e_e = norm(ea-ee)/norm(ee); % -- L2 error for derivativ e

7


