UNIVERSITY OF CALIFORNIA AT BERKELEY CE 130N, Spring 2009

Department of Civil and Environmental Engineering ProfGBvindjee and Dr. T. Koyama
Structural Engineering, Mechanics and Materials Lab 13
Mechanics of Structures (CE130N)
Lab 13
1 Objective

The objective of this lab is to see how the Principle of ViitMWéork can be applied to solve mechanical problems
governed by differential equations in a similar way to thelagation of the Principle of Stationary Potential Energy.
The Principle of Virtual Work yields exactly the same resws the Principle of Stationary Potential Energy when one
has a conservative system and the solution sfsaaed test function spade are chosen to be the same. The Principle
of Virtual Work has the added flexibility that one can treahramnservative systems as well as the casé V.

In combination with the Principle of Virtual Work, a selemti of the solution spac§ and test function space
YV which consist of "hat functions” are made. This is esselytiah introduction to the finite element method. The
problem of torsion of bars is treated to illustrate the metho

2 Steps in applying the Principle of Virtual Work

The Principle of Virtual Work can be summarized by the follog/steps.
1. Form the expression for the virtual work.
Internal Virtual Work = External Virtual Work.
Depending on the problem one has,

L
/ du'(z)R(z) dz (Tension-compression bar
Internal Virtual Work = 0

)

/L 5¢'(2)T(z) dz (Torsion bay
0

and depending on the loading one has different forms for titeral Virtual Work. For example, the torsion
bar with a point torqué” at the endr = L and distributed torqug z) takes the form,

L
External Virtual Work = / Sp(2)t(z) dz + 0p(L)T .
0

2. Determine the functions(z) in the solution spacé (form for the approximate solution),

S = {u(x)| Zuifi(x)})

whereu; are the coefficients to be determined afyd:) are determined functions, and the functiongz) in
the test function space,

Ns
V= {5u(:c)l ZM%(@} ;

wheredu; are the arbitrary coefficients ang(x) are determined functions.

The proper selection a¥ andV is crucial in obtaining a good approximation. They mustsatihe following
conditions,

¢ fi(x) must satisfy the kinematic boundary conditiogg,z) must be equal to zero on the kinematic bound-
ary conditions.

e fi(z) (i=1,...,N) mustbe linearly independent to each othgfx) (j = 1, ..., N;) must be linearly
independent to each other.

e fi(x),g;(z) must be nonzero for enough derivatives to make sense iniffreess matrix.

3. Insert the from for the solution(z) € S and the test functiobu(z) € V into the expression for the virtual
work. One must employ the constitutive relations here,

R(u(xz)) = AFEu/(x), (Tension compression bar),
T(p(z)) = GJ¢'(z), (Torsion bar).

This results in the expressions,
Ns N
Zduz ZKijuj - Fz =0
i=1 j=1

N
<~ Zéulhz =0
i=1

< du'h=0.

Here we have defined := Ku — F anddu as the vector with entriedu;. The entries of the matriK are
determined from the Internal Virtual Work and have the form,

L
/ giAEfidz (Tension — compression bar)
K = O
/ 9;GJ fjdx (Torsion bar)
0

and,

L

/ g:bdzx + term from point loads (Tension-compression bar

F, = OL .
/ gitdz + term from point loads (Torsion bay
0
For the last equatiodu’h = 0, to hold for arbitrarydu, one must have,
h=Ku-F=0,

which determines the system of equations one must solve, fwhich are the undetermined coefficients.

. Solve the linear system of equations,

to obtain the approximation,

3 Exercise: Torsion bar solved with finite elements

3.1 Download files
1. Download the filgpvw.zip into yourcel30n/programs directory and unzip it.

2. Go to thecel130n/programs/pvw/exercise/ directory, and execute the fileitm . This will set the
necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

3.2 Functions used for the approximation

In this exercise you will compute approximate solutionsddrar in torsion using the Principle of Virtual Work. For
the solution spacé and test function spadé, one will select hat functions, which are defined as,

0 (x < a1)
oA (a1 <z < ag)
hi(a1,az,a3;7) = %23__%
(a2 <z < ag)
az — ag
0 (ag < x)

hat middle

N

aip az ag

X
L
Figure 1:hat _middle function

One should have the following Figure 1 of the function in mifitie function has a value of zero outside the inter-
val [a1, as], has a value of 1 aty, and behaves linearly. For a given, as, as one can plot this function in MATLAB
by using the MATLAB functiorhat _middle with the lines of code,

>> al = -3;

>> a2 = -1

>> a3 = 0.5

>> dorder = O; % -- Order of derivative

>> hm= @(z)hat_middle(z,dorder,al,a2,a3);
>> fplot(hm,[-4,2]);

At the ends of the domain (bar) one has special types of hatiims which have only "half’ of the hat as shown

hat right

-1

ap a2

X
L
Figure 2:hat _right function

in Figure 2. These are defined as,

0 (x < a1)
T—a

he(a1,a0;2) = - all (a1 <z < ag)
0 (ag <)

The function has a value of zero outside the intefwal a2}, has a value of 1 at,, and behaves linearly. For a given
a1, az one can plot this function in MATLAB by using the MATLAB funicin hat _right with the lines of code,

>> al = -3;
>> a2 = -1,
>> dorder = O; % -- Order of derivative

>> hm= @(z)hat_right(z,dorder,al,a2);
>> fplot(hm,[-4,2]);

\Y

There exists also the symmetric "left” version of this fupatwhich is callechat _left.m

Things to check:

e Try plotting the three types of hat functiornisat _middle.m , hat _rightm | hat _leftm , and observe
their behavior.

e What do the derivatives of the hat functions look like?

3.3 The solution space and test function space for a fixed-feetorsion bar

The torsion bar with governing differential equation,
GJ¢"(z)+t = 0,

with fixed boundary condition at = 0 is treated.

We will choose the solution function and test function to dmear combination of the hat functions mentioned
in the previous section. To define the hat functions, one rimgstefine location of intervals and nodes (elements) on
which the hat functions are to be defined, i.e., the locaticth@a,, as, a3 of the hat functions. Let us define a grid
on the domairi0, L] and break this intael equidistant intervals of sizé := L/nel which results innel + 1 nodes.
Label the node locations as,

T = d(k—l),

such thate; = 0 andz,¢;+1 = L. This defines théV = N = nel functions used for the solution functieriz) and
test functiord(z). These two functions are defined as,

N N-1
plz) = Zuifi(x) = Uil (Tis Tig1, Tig2; T) + UNP(Tnel, Tnet 415 T),
i=1 i=1
N N-1
dp(z) = Z5ujgj(x) = Z Sushm (T, Tjp1, Tjy2;) + OuNhy (Tnets Tner+15).
=1 =1

Observe how all functiong;(z) satisfy the kinematic boundary conditions, i.e., zero ldispment at: = 0, and how
all functionsg; (x) are equal to zero at the kinematic boundary condition. Asalte(0) = 0 andde(0) = 0.

These functions are defined in thew structure in the fildorsion _ex2.m . (The case for polynomials is given
intorsion _ex1.m .) The functions and their derivatives can be visualizedhgyMATLAB code,

>> torsion_ex2;

>> plotproblem(pvw); % -- Plot problem configuration
>> plotpvwf(pvw,’sf); % -- Plot solution functions

>> plotpvwf(pvw,tf"); % -- Plot test functions

Things to do:

e Plot the solution functions and test functions for variaas and observe their behavior.

e How can you modify the code so that you can treat the torsiombder fixed-fixed boundary conditions?
HINT: One must make sure that the functigfu) satisfies the kinematic boundary condition thdd) =
»(L) = 0 and that the functiodp(x) satisfiesdp(0) = dp(L) = 0. Save this configuration in a file
torsion _ex2b.m.

3.4 Solving for the approximate solution

To solve for the approximate solution to the rotatian(s:), one must determine the coefficients(i = 1,..

from the linear system of equations,

Ku=F.

., N)

The form of the selection for the solution function and testdtion affect the structure of the stiffness maiiixand
forcing vectorF'.

One can fornK andF, solve for the coefficienta, and plot the solution by the MATLAB code,

>>
>>
>>
>>
>>
>>
>>
>>
>>
>>

torsion_ex2;
K = computeK(pvw);
F = computeF(pvw);
u = K\F;
plotsol(pvw,u); % -- Plot solution
dorder = O;
evaldisp(pvw,u,[0.5,1],dorder) % -- Obtain rotation at x=0.5,1
dorder = 1;
evaldisp(pvw,u,[0.5,1],dorder) % -- Obtain derivative of
% rotation at x=0.5,1

Things to do:

e How do the nonzero entries appear in the stiffness m&x(Do you see any structure?)

e For the given case with two point torquesiat= 1/2L andx = L, how many elements (intervals) are required

to obtain an exact solution? Explain why?

Change the load to a distributed torquer@f) = 1. How many elements (intervals) do you need to get a good

approximation to the tip rotation at = L? How good is the approximate solution at the nadg$or varying

nel ?

HINT: The finite element solution with hat functions in 1D has theemiroperty of nodal exactness.

e Using the filetorsion _ex2b.m , compute for the rotations under a distributed torque sin(rz/L). What
is the slope of convergence of thé error for the rotation and its derivative as the number ofredats increases

from [1,25]. Numerically one can compute ti& error with the following MATLAB code.

>> X = linspace(0,1,1001);

>> ue = (/pi)"2 =*sin(pi *X); % -- Exact solution for rotation
>> ee = (/pi)"L *cos(pi *Xx); % -- Exact solution for derivative
>> ua = evaldisp(pvw,u,x,0); % -- Obtain approximation for r

>> ea = evaldisp(pvw,u,x,1); % -- Obtain approximation for d

>> [2e_u = norm(ua-ue)/norm(ue); % -- L2 error for rotation

>> [2e_e = norm(ea-ee)/norm(ee); % -- L2 error for derivativ

ot
er

ation
ivative

