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1 Objective

The objective of this lab is to see how the principle of stationary potential energy can be applied not only to mechanical
problems depending on 1 variable but to mechanical problemsin multi-variables. The problem of computing approx-
imations to the torsional stiffnesskT of rectangular bars is treated. One should observe that the procedure involved
in computing the approximation using the principle of stationary potential energy is no different from the previous
one-dimensional problems.
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2 Computing the torsional stiffness of bars

The torsional stiffnesskT is defined as

kT :=
T

θ
,

θ :=
dϕ

dz
,

whereT is the applied torque,ϕ is the twist angle, andθ is the twist angle per unit length.kT of a solid circular bar
with radiusa can be obtained as,

kT = GJ,

J =

∫

A

r2 dA =
π

2
a4,

whereG is the shear modulus andJ is the polar moment of inertia of the cross section. This formula is derived
under the assumption that cross sections which are plane remain plane after deformation. This assumption does not
necessarily hold for general solid cross sections such as rectangles. To fully derive the expression forkT for general
solid cross sections, one must employ the theory of elasticity (covered in CE131). Here the result is introduced and
a method employing the principle of stationary potential energy is used to compute approximations to the torsional
stiffnesskT . kT can be determined by the following steps,

1. Find a functionw defined over the cross sectionA, which satisfies the conditions,

• w = 0 on the perimeter of the cross sectionA.

• w is a function which makes the total potential energy,

Πtotal(w) =

∫

A

1

2
∇w · ∇w dA −

∫

A

2Gw dA,

stationary.

2. The torsional stiffness is determined as,

kT =

∫

A

2w dA .

The procedure of finding a good approximation to the functionw in Step 1 is identical to the type of problems that
have been treated in this course. This problem can be approached by employing the principle of stationary potential
energy. In this procedure one follows the familiar steps:

1. Form an approximation for the functionw,

w(x, y) =

N
∑

k=1

ckfk(x, y),

wherefk(x, y) are functions which satisfy the kinematic boundary conditions (in this case they are zero on the
boundary ofA) andck are the cofficients which must be determined. Compared to theone-dimensional case,
the functionsfk depend on two variables.

2. Substitute the approximationw into the potential energy,

Πtotal(w) ⇒ Πtotal(c) .
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3. Look for the stationary points of the potential energy,

∂Πt

∂c
= 0 = Kc − F.

The coefficientsc are determined by solving the linear system of equations,

Kc = F .

4. Once the approximation is obtained,

wa =

N
∑

k=1

ckfk(x, y),

the approximation for the torsional stiffness is obtained as,

kT,a =

∫

A

2wa dA .
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3 Exercise: Torsional stiffness of a bar with rectangular cross section

3.1 Download files

1. Download the filetorsion.zip into yource130n/programs directory and unzip it.

2. Go to thece130n/programs/torsion/exercise/ directory, and execute the fileinit.m. This will
set the necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

3.2 Functions used for the approximation

In this exercise you will compute approximations for the torsional stiffnesskT of bars with rectangular cross sections.
The cross section has a length of2a in the x-direction and a length of2b in they-direction. The shear modulus is
assumedG. To apply the principle of stationary potential energy to find approximations tokT , one must assume an
approximate form for the functionw(x, y) which satisfies the kinematic B.C., i.e., is zero on the boundary of the
rectangle. This can be achieved by assuming a cosine function in thex andy directions and taking their product. The
simplest function of this form is,

cos
(π

2

x

a

)

cos
(π

2

y

b

)

.

The more general form of such a function is,

gmn(x, y) := cos
{

(2m − 1)
π

2

x

a

}

cos
{

(2n − 1)
π

2

y

b

}

.

One can consider an approximate solution of the form,

w(x, y) =

Nx
∑

m=1

Ny
∑

n=1

wmngmn(x, y) ,

wherewmn are the coefficients which must be determined. Observe that atotal number ofN = Nx ·Ny functions are
being used for this approximation. By defining,

k := Ny(m − 1) + n,

we can identify,

wmn → ck, gmn(x, y) → fk(x, y),

where this is non-other than a relabeling. By introducing this notation, one can express the approximation by the
familiar single sum,

w(x, y) =

N
∑

k=1

ckfk(x, y) .

For example, assume the case ofNx = 2 andNy = 3. Then one has the following identification,

w11 ↔ c1,

w12 ↔ c2,

w13 ↔ c3,

w21 ↔ c4,

w22 ↔ c5,

w23 ↔ c6.
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Givenk, one can determine(m, n) by the following formulas,

n = [(k − 1) (mod Ny)] + 1,

m =
k − n

Ny

+ 1 .

Confirm that these relations hold.
The functions used for the approximation can be visualized with the following MATLAB code.

>> a = 1; % -- Length of a
>> b = 2; % -- Length of b
>> Nx= 2;
>> Ny= 3;
>> G = 1; % -- Shear modulus
>> torsion = torsion_data(a,b,Nx,Ny,G); % -- Construct data structure
>> plotritzf(torsion); % -- Plots all functions
>> id= [3,5];
>> plotritzf(torsion,id); % -- Plots only k=3,5 functions

Things to check:

• Make sure you understand the correspondance betweenk and(m, n), i.e., how you can go from one notation to
the other.

• Make sure you can correlateNx andNy with the figures of the Ritz functionsfk(x, y) shown in the plots. (e.g.,
The number of times the functions oscillate in each direction).
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3.3 The stiffness matrix and forcing vector

Inserting the approximation into the potential energy yieldsΠtotal(c). The stationary condition implies,

∂Πtotal

∂ck

=

∫

A

1

2

[

∂∇w

∂ck

· ∇w + ∇w ·
∂∇w

∂ck

]

dA −

∫

A

2G
∂w

∂ck

dA

=

∫

A

∇w ·
∂∇w

∂ck

dA −

∫

A

2G
∂w

∂ck

dA = 0 .

The terms involved in the calculation are,

w(x, y) =

N
∑

l=1

clfl(x, y) ,

∂w

∂ck

= fk(x, y),

∇w(x, y) =

N
∑

l=1

cl∇fl(x, y) ,

∂∇w

∂ck

= ∇fk(x, y) .

Thus,

∂Πtotal

∂ck

=

∫

A

[

N
∑

l=1

cl∇fl(x, y)

]

· ∇fk(x, y) dA −

∫

A

2Gfk(x, y) dA

=

N
∑

l=1

[
∫

A

∇fk(x, y) · ∇fl(x, y) dA

]

cl −

∫

A

2Gfk(x, y) dA

=

N
∑

l=1

Kklcl − Fk,

where we have defined,

Kkl :=

∫

A

∇fk(x, y) · ∇fl(x, y) dA,

Fk :=

∫

A

2Gfk(x, y) dA .

These are the entries of the stiffness matrixK and forcing vectorF. For the given approximation involving cosine
functions, some algebra yields the following expressions,

Kkl =











π2ab

4

[

(

2m− 1

a

)2

+

(

2n − 1

b

)2
]

(k = l),

0 (k 6= l) .

,

Fk = 2G

[

16ab

π2(2m − 1)(2n− 1)
(−1)m+n

]

.

Here,(m, n) are determined fromk by the relations defined previously. For example in the case of Nx = 2 and
Ny = 3, to computeK33 for whichk = 3,

n = [(3 − 1) (mod 3)] + 1 = 3,

m =
3 − 3

3
+ 1 = 1 .
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Things to do:

• Go through the algebra and confirm that the expression forFk given above is correct. (Write this here).
(HINT: cos(iπ) cos(jπ) = (−1)i+j).

• Complete thefor loops in the two functions,
/core/computeK.m and/core/computeF.m to compute the stiffness matrixK and forcing vectorF.
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3.4 Computing and plotting the solution

Given the stiffness matrixK and forcing vectorF, one can compute the undetermined coefficientsc to obtain the
approximation,

wa =

N
∑

k=1

ckfk(x, y) .

Things to do:

• Compute the coefficientsc and visualize the solution with the following MATLAB code.

>> plotsol(torsion,c);

3.5 Computing the torsional stiffness

Given the approximation,

wa =

N
∑

k=1

ckfk(x, y) ,

one can compute the torsional stiffness by,

kT =

∫

A

2

[

N
∑

k=1

ckfk(x, y)

]

dA

= 2
N

∑

k=1

ck

∫

A

fk(x, y) dA

= 2

N
∑

k=1

ck

Fk

2G

=
1

G

N
∑

k=1

ckFk

=
1

G
c · F .

Things to do:

• Complete the function/core/compute kt.m, which computes the torsional stiffness of a rectangular bar.

• The exact solution for the torsional stiffness can be computed with the function/core/compute kt exact.m.

>> kte = compute_kt_exact(torsion);

Construct a plot of the relative error ofkT for the casea = b = 1 andG = 1 asNx andNy increase from 1 to
100. Draw this in Figure 1. (Note that this is alog− log plot.) What is the rate of convergence? (What is the
slope of the curve of this figure?).

• For a rectangular cross section with fixed areaA, what is the ratio ofa andb which gives the largest torsional
stiffnesskT ?

• Assume a rectangular cross section with the same areaA as a circular cross section. Which has a larger torsional
stiffness, the rectangular cross section or the circular cross section?
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Figure 1: Log-Log plot of relative error with respect toNx
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