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1 Objective

The objective of this lab is to see how the principle of staiy potential energy can be applied not only to mechanical
problems depending on 1 variable but to mechanical problemmulti-variables. The problem of computing approx-
imations to the torsional stiffnegs- of rectangular bars is treated. One should observe thatrtseegdure involved

in computing the approximation using the principle of statiry potential energy is no different from the previous
one-dimensional problems.



2 Computing the torsional stiffness of bars

The torsional stiffnes&r is defined as

T
kT = 51
dy
g = LI
dz’

whereT is the applied torquey is the twist angle, and is the twist angle per unit lengttk of a solid circular bar
with radiusa can be obtained as,

kr = GJ,

J = /TQdA:E(fl,
A 2

whereG is the shear modulus andl is the polar moment of inertia of the cross section. This faaris derived
under the assumption that cross sections which are plangimgrtane after deformation. This assumption does not
necessarily hold for general solid cross sections suchaarrgles. To fully derive the expression for for general
solid cross sections, one must employ the theory of elasiicovered in CE131). Here the result is introduced and
a method employing the principle of stationary potentiatrgy is used to compute approximations to the torsional
stiffnesskr. k- can be determined by the following steps,

1. Find a functionuv defined over the cross sectigh which satisfies the conditions,

e w = 0 on the perimeter of the cross sectidn
e w is a function which makes the total potential energy,

Htotal (U}) = / %VU} -VwdA — / 2Gw dA,
A A

stationary.

2. The torsional stiffness is determined as,

kT = /2wdA
A

The procedure of finding a good approximation to the functioim Step 1 is identical to the type of problems that
have been treated in this course. This problem can be apgpeddry employing the principle of stationary potential
energy. In this procedure one follows the familiar steps:

1. Form an approximation for the functian

N

wzy) = 3 efulzy),

k=1

wheref(z,y) are functions which satisfy the kinematic boundary coodsi(in this case they are zero on the
boundary ofA) andcy are the cofficients which must be determined. Compared totieedimensional case,
the functionsf; depend on two variables.

2. Substitute the approximatieninto the potential energy,

Htotal(w) = Htotal(c) .



3. Look for the stationary points of the potential energy,

oIl

' - 0=Kc-F.
oc ¢

The coefficients are determined by solving the linear system of equations,

Kc = F.
4. Once the approximation is obtained,
N
Wy = chfk(xvy)a
k=1

the approximation for the torsional stiffness is obtainsed a

kT,a = / 2wa dA .
A



3 Exercise: Torsional stiffness of a bar with rectangular coss section

3.1 Download files
1. Download the filé¢ or si on. zi p into yourcel30n/ pr ogr ans directory and unzip it.

2. Goto thecel30n/ prograns/torsi on/ exerci se/ directory, and execute the fileni t . m This will
set the necessary paths to run the files.

YOU MUST RUN THE FILE init. m EVERYTIME YOU START UP MATLAB.

3.2 Functions used for the approximation

In this exercise you will compute approximations for thestonal stiffness:r of bars with rectangular cross sections.
The cross section has a length2af in the xz-direction and a length dtb in the y-direction. The shear modulus is
assumed-. To apply the principle of stationary potential energy talfapproximations t&r, one must assume an
approximate form for the function(x, y) which satisfies the kinematic B.C., i.e., is zero on the bamaf the

rectangle. This can be achieved by assuming a cosine furiatibex andy directions and taking their product. The

simplest function of this form is,
(E f) (Z Q)
COS 24 COS 2D .

The more general form of such a function is,

Gmn(®,y) = cos {(Qm — 1)%%} cos {(2n -1)

1)

|

One can consider an approximate solution of the form,

N, Ny
U}(ZC, y) = Z Z wmngmn(xa y) )

m=1n=1

wherew,,,, are the coefficients which must be determined. Observe ttedabnumber ofV = N, - IV, functions are
being used for this approximation. By defining,

k= Ny(m—1)+n,
we can identify,

Wmn — Ck, gmn(xay)_)fk(xvy)a

where this is non-other than a relabeling. By introducinig tiotation, one can express the approximation by the
familiar single sum,

N

w(z,y) = chfk(xay)'

k=1

For example, assume the case\of = 2 and N, = 3. Then one has the following identification,

w11 < Ci,
w12 < Ca,
w1z < C3,
w21 < C4,
w22 < Cs,
W23 — Cg.



Givenk, one can determin@n, n) by the following formulas,

n = [(k—1) (mod Ny)]+1,
k—n+1

m = .
Ny

Confirm that these relations hold.
The functions used for the approximation can be visualizitd thie following MATLAB code.

>> a = 1; % -- Length of a

>> b = 2; %-- Length of b

>> Nx= 2;

>> Ny: 3;

>> G = 1; % - - Shear nodul us

>> torsion = torsion_data(a,b,Nx,Ny,35; %-- Construct data structure
>> plotritzf(torsion); %-- Plots all functions

>> jd= [3,5];

>> plotritzf(torsion,id); %-- Plots only k=3,5 functions
Things to check:

e Make sure you understand the correspondance betivaed(m, n), i.e., how you can go from one notation to
the other.

e Make sure you can correlafé, and NV, with the figures of the Ritz functiong; (z, y) shown in the plots. (e.g.,
The number of times the functions oscillate in each diregtio



3.3 The stiffness matrix and forcing vector

Inserting the approximation into the potential energydsdl;...i(c). The stationary condition implies,

OMliotal 1 [oVw OVw ow
= - : : dA— | 2G=— dA
6ck /A 2 { 6ck Vw + Vw 6ck } /A Gack

- /Vw~avw dA—/2Ga—wdA:O.
A dcy 4 Ocy

The terms involved in the calculation are,

N
wiz,y) = Y afilzy),
=1
0
e = @),
N
Vu(z,y) = Y aViiz,y),
=1
ov

Thus,

N
agtc(:_al /A LZ; cszl(:v,y)] -V fi(z,y) dA—/A2Gfk(:c,y) A

- lﬁ;{/Aka(x,y)-Vfl(x,y) dA} cl—/A2Gfk(:c,y) dA

N
> Kue - F,
=1
where we have defined,

Ky

/A Vi(a.y) - V(e y) dA,

Ey

/ 2G fr(x,y) dA .
A

These are the entries of the stiffness malixand forcing vectoi'. For the given approximation involving cosine
functions, some algebra yields the following expressions,

. 7r24ab [<2ma—1)2+ (2nb—1)2] (b=,
0 (k#1). |
B = 20 LTQ(Qm —1616312271— 1)(_1)m+n} '

Here, (m,n) are determined fronk by the relations defined previously. For example in the cds&,0= 2 and
N, = 3, to computel(ss for whichk = 3,

n

[(B3—1) (mod 3)]+1=3,
m = %—i—l:l.



Things to do:

e Go through the algebra and confirm that the expressioifrfagiven above is correct. (Write this here).
(HINT: cos(im) cos(jm) = (—1)+9).

e Complete thd or loops in the two functions,
/ cor e/ conput eK. mand/ cor e/ conput eF. mto compute the stiffness matrl and forcing vectoF'.



3.4 Computing and plotting the solution

Given the stiffness matriX and forcing vectoiF, one can compute the undetermined coefficients obtain the
approximation,

N
Wy = chfk(xvy) .
k=1

Things to do:

e Compute the coefficientsand visualize the solution with the following MATLAB code.

|>> pl ot sol (torsion,c);

3.5 Computing the torsional stiffness

Given the approximation,

N

wa =y efrl@y),

k=1
one can compute the torsional stiffness by,

N
kr = /A2[;Ckfk(%y)
= Qch/fk(a:,y) dA

dA

Things to do:
e Complete the functiohcor e/ conput e _kt . m which computes the torsional stiffness of a rectangular ba

e The exact solution for the torsional stiffness can be comgbwiith the functior cor e/ conput e _kt _exact. m

>> kte = conpute_kt exact(torsion); ‘

Construct a plot of the relative error &f for the case: = b = 1 andG = 1 asN,, andN,, increase from 1 to
100. Draw this in Figure 1. (Note that this id@; — log plot.) What is the rate of convergence? (What is the
slope of the curve of this figure?).

e For a rectangular cross section with fixed arkavhat is the ratio of: andb which gives the largest torsional
stiffnessk?

e Assume a rectangular cross section with the same/esaa circular cross section. Which has a larger torsional
stiffness, the rectangular cross section or the circuldsssection?
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Figure 1: Log-Log plot of relative error with respect 29,
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