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1 Objective

The objective of this lab is to understand how the principle of stationary potential energy can be applied to understand
the behavior of buckling phenomenon. Before treating the continous problem, i.e., buckling of beams, we will treat
the more simple discrete system consisting of rigid elements and springs.
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2 Exercise

2.1 Download files

1. Download the filebuckling.zip into yource130n/programs directory and unzip it.

2. Go to thece130n/programs/buckling/exercise/ directory, and execute the fileinit.m. This will
set the necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

2.2 Two rigid elements with by two springs

In this exercise you will investigate the buckling behaviorof a system consisting of two rigid elements with two springs
as shown in Figure 1. The nodes are labeled as shown. Rigid element 1 is pinned at node 1, and connected to rigid
element 2 at node 2 by a rotational springkr[Force·Length]. There is a lateral springkt[Force/Length] attached to
rigid element 2 at node 3. The two rigid elements have a lengthof L[Length]. Define the clockwise rotation of rigid
element 1 asθ1 and the clockwise rotation of rigid element 2 asθ2 as shown in Figure 2. A vertical load ofP [Force]
is applied at node 3 in the direction shown.
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Figure 1: Setup of mechanical system
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Figure 2: Deformed configuration and variables
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2.2.1 Compute the total potential energy of the system

Obtain the expression for the total potential energyΠ of the system as a function ofθ1 andθ2,

Π(θ1, θ2) .

As a hint, first obtain the expression for the lateral displacement∆x and vertical displacement∆y as is shown in the
Figure 2, in terms ofθ1 andθ2,

∆x(θ1, θ2),

∆y(θ1, θ2).

The displacement∆x and∆y is given as,

∆x = L sin θ1 + L sin θ2,

∆y = 2L − (L cos θ1 + L cos θ2) .

The total potential energy of the system is then obtained as,

Π(θ1, θ2) =
1

2
kr(θ2 − θ1)

2 +
1

2
kt∆

2

x − P∆y

=
1

2
kr(θ2 − θ1)

2 +
1

2
ktL

2(sin θ1 + sin θ2)
2 − PL(2 − cos θ1 − cos θ2) .
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2.2.2 Non-dimensionalization

In many problems, it is useful to non-dimensionalize expressions to remove redundant parameters from the problem
and to improve performance in numerical calculations. Here, let us non-dimensionalize the expression for the total
potential energy. To proceed, one must pick representativevalues for the “Length” and “Force” constants. Let us make
the choice,

cL := L,

cF := kt · L .

Since the potential energyΠ has units of energy [Force·Length], one must divide this expression bycF · cL. Define
the non-dimensionalized version of the energy as,

Π̂(θ1, θ2) := Π(θ1, θ2) ×
1

[cF · cL]
.

Note thatΠ̂ is dimensionless. Further, let us define,

e :=
kr

cF · cL
Non-dimensional version of the rotational spring stiffness

(or spring stiffness ratio)

λ :=
P

cF
Non-dimensional version of the load

Obtain the expression for̂Π.

The total potential energy of the system in non-dimensionalform Π̂ can be rewritten as,

Π̂(θ1, θ2) =
Π

cF · cL

=
1

2

kr

cF · cL
(θ2 − θ1)

2 +
1

2

ktL
2

cF · cL
(sin θ1 + sin θ2)

2 −
PL

cF · cL
(2 − cos θ1 − cos θ2)

=
1

2
e(θ2 − θ1)

2 +
1

2
(sin θ1 + sin θ2)

2 − λ(2 − cos θ1 − cos θ2) .
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2.2.3 Principle of stationary potential energy for equilibrium

Apply the principle of stationary potential energy tôΠ to find the equilibrium equations whichθ1 andθ2 must satisfy.
One should obtain two non-linear equations in the variables(θ1, θ2),

R1(θ1, θ2, λ) = 0,

R2(θ1, θ2, λ) = 0.

One should considerλ as a given value, not an unknown variable.

The stationarity of̂Π implies,

R1(θ1, θ2, λ) :=
∂Π̂(θ1, θ2)

∂θ1

= −e(θ2 − θ1) + (sin θ1 + sin θ2) cos θ1 − λ sin θ1 = 0,

R2(θ1, θ2, λ) :=
∂Π̂(θ1, θ2)

∂θ2

= e(θ2 − θ1) + (sin θ1 + sin θ2) cos θ2 − λ sin θ2 = 0 .
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One can actually solve for the solution to these two non-linear equations.
{
−e(θ2 − θ1) + (sin θ1 + sin θ2) cos θ1 − λ sin θ1 = 0,

e(θ2 − θ1) + (sin θ1 + sin θ2) cos θ2 − λ sin θ2 = 0

⇔

{
−e(θ2 − θ1) + (sin θ1 + sin θ2) cos θ1 − λ sin θ1 = 0,

(cos θ1 + cos θ2 − λ)(sin θ1 + sin θ2) = 0

⇔






−e(θ2 − θ1) + (sin θ1 + sin θ2) cos θ1 − λ sin θ1 = 0,




cos θ1 + cos θ2 − λ = 0

or

sin θ1 + sin θ2 = 0

⇔

{
−e(θ2 − θ1) + (sin θ1 + sin θ2) cos θ1 − λ sin θ1 = 0,

cos θ1 + cos θ2 − λ = 0

or{
−e(θ2 − θ1) + (sin θ1 + sin θ2) cos θ1 − λ sin θ1 = 0,

sin θ1 + sin θ2 = 0

⇔

{
sin(θ2 − θ1) = e(θ2 − θ1)

λ = cos θ1 + cos θ2

or{
−e(θ2 − θ1) − λ sin θ1 = 0,

θ1 = −θ2 + 2nπ or θ1 = θ2 + π + 2nπ

⇔






{
sin(θ2 − θ1) = e(θ2 − θ1)

λ = cos θ1 + cos θ2

or{
−e(θ2 − θ1) − λ sin θ1 = 0,

θ1 = θ2 + π or θ1 = θ2 − π since θ1, θ2 ∈ [−π, π]

or{
−e(θ2 − θ1) − λ sin θ1 = 0,

θ1 = −θ2 since θ1, θ2 ∈ [−π, π]

⇔






{
sin(θ2 − θ1) = e(θ2 − θ1)

λ = cos θ1 + cos θ2

or{
λ sin θ1 = eπ,

θ1 = θ2 + π

or{
λ sin θ1 = −eπ,

θ1 = θ2 − π

or{
λ sin θ1 = 2eθ1,

θ1 = −θ2
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2.2.4 Linearization of the equilibrium equations

When one is interested in the behavior of the onset of buckling, one can look at the behavior of the system for “small”
(θ1, θ2) near the initial equilibrium point of(θ1, θ2) = (0, 0). To obtain the linearized system for this problem, one
takes all the non-linear functions in the systems and constructs a Taylor series expansion around,(θ1, θ2) = (0, 0).

cos θ = 1 −
1

2
θ2 + · · · ,

sin θ = θ −
1

6
θ3 + · · · .

Depending on the problem, one may take a variable number of terms in the Taylor series expansion. For this problem,

cos θ ≈ 1,

sin θ ≈ θ,

is sufficient.
Obtain the “linearized” version of the equilibrium equations. Note that this expression should only have upto linear

terms, i.e., only constants and linear functions ofθ1 andθ2. Write this equilibrium equation in matrix form,

Kbθ = 0 ,

where,

θ :=

[
θ1

θ2

]
,

andKb(λ) is a 2-by-2 matrix with a dependence onλ.

From the 2 non-linear equations representing equilibrium,

−e(θ2 − θ1) + (sin θ1 + sin θ2) cos θ1 − λ sin θ1 = 0,

e(θ2 − θ1) + (sin θ1 + sin θ2) cos θ2 − λ sin θ2 = 0 ,

one can replace the non-linear functions with their linear approximations as stated in the explanation above, to obtain,

−e(θ2 − θ1) + (θ1 + θ2) − λθ1 = 0,

e(θ2 − θ1) + (θ1 + θ2)θ2 − λθ2 = 0 ,

which can be expressed in matrix form by,
([

1 + e 1 − e

1 − e 1 + e

]
− λ

[
1 0
0 1

]) [
θ1

θ2

]
= 0 .

By defining,

Kb(λ) :=

[
1 + e 1 − e

1 − e 1 + e

]
− λ

[
1 0
0 1

]
,

one has the desired expression ofKbθ = 0.
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2.2.5 Obtaining the buckling load

Given the equilibrium equation,Kb(λ)θ = 0, one can investigate the buckling behavior. Buckling occurs when,

• the buckling loadλ is a value which creates a non-trivialθ 6= 0 that satisfies the equilibrium equation.

A non-trivial θ occurs only whenKb(λ) is singular. Thus in order to find the buckling loadλ,

• one can look for theλ which makesKb(λ) singular ordet(Kb(λ)) = 0.

We can split the expression forKb into two parts, the part which is independent ofλ, and the part which is dependent
onλ,

Kb(λ)θ = (K− λB)θ = 0

⇒ Kθ = λBθ ,

whereK andB are 2-by-2 matrices independent ofλ. The problem of looking for combinations of a non-trivialθ

andλ which satisfy the equationKθ = λBθ is equivalent to the mathematical problem of finding the generalized
eigenvalues of the matrices(K,B). Note that whenB is equal to the identity matrixI, one has the equation,Kθ = λθ,
which is an ordinary eigenvalue problem. Thus,

• one can find the buckling loadλ and buckling modeθ by computing the eigenvalues of the generalized eigen-
value problem,Kθ = λBθ .

One can compute the generalized eigenvalues of(K,B) in MATLAB with the command,

>> [V,D] = eig(K,B);

The columns ofV contain the eigenvectors and the diagonal entries ofD contain the eigenvalues. Thus theith eigen-
vectorV(:,i) and eigenvalueD(i,i) satisfy the relationship,

K*V(:,i) = D(i,i)*B*V(:,i)

For the given problem,

1. Obtain the expressions forK andB.

2. By hand, compute the buckling loadλ by solvingdet(Kb(λ)) = 0.

3. By hand, determine buckling mode shapesθ for the correspondingλ, by solvingKb(λ)θ = 0. Draw the mode
shapes.

4. Fore = 0.5, compute the buckling loadsλ and buckling mode shapes using MATLAB. Compare them with
your hand solutions.

5. Obtain the dimensional versions of the buckling loadP . Recall thatP has dimensions of [Force] soP = λ · cF .
Depending on the value ofe, what is the critical buckling loadPcr (smalled load at which buckling occurs) and
corresponding mode shape. You should observe that for some scalar valuee0, whene > e0 you will have one
type of buckling mode and whene < e0 you will have another type of buckling mode.

1. Directly from the previous section on has the expressions,

K : =

[
1 + e 1 − e

1 − e 1 + e

]
,

B : =

[
1 0
0 1

]
.
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2. The buckling loadsλ can be computed by solving,

det(Kb(λ)) = (1 + e − λ)2 − (1 − e)2 = 0,

which implies that,

λ = (1 + e) ± (1 − e) = 2e, 2 .

3. The buckling mode shapes for each buckling loadλ can be computed as follows.

• λ = λ1 = 2e:

Kb(2e)θ = 0,

⇔

[
1 − e 1 − e

1 − e 1 − e

] [
θ1

θ2

]
= 0

⇔

{
θ2 = −θ1 (e 6= 1)

θ2, θ1 are arbitrary (e = 1) .

Thus whene 6= 1 the buckling mode shape is,
[
θ1

θ2

]
‖

[
1
−1

]
.

• λ = λ2 = 2:

Kb(2)θ = 0,

⇔

[
−1 + e 1 − e

1 − e −1 + e

] [
θ1

θ2

]
= 0

⇔

{
θ2 = θ1 (e 6= 1)

θ2, θ1 are arbitrary (e = 1) .

Thus whene 6= 1 the buckling mode shape is,
[
θ1

θ2

]
‖

[
1
1

]
.

For a figure of the eigenvectors and buckling mode shapes see the next problem where they are computed for a
specific case ofe = 0.5.

4. For the case ofe = 0.5 the buckling loads (eigenvalues )and buckling mode shapes (eigenvectors) computed
from MATLAB are,

λ1 = 1, λ2 = 2,

v1 =

[
−0.7071
0.7071

]
, v2 =

[
0.7071
0.7071

]
.

These values match the hand solutions exactly.

5. The dimensional versions of the buckling loads are,

P1 = λ1 · cF = 2
kr

L
,

P2 = λ2 · cF = 2ktL .
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Whene < 1,

λcr = min(λ1, λ2) = 2e,

Pcr = λcr · cF = 2
kr

L
,

with corresponding buckling mode shape where the two bars move in a scissor like fashion. Whene > 1,

λcr = min(λ1, λ2) = 2,

Pcr = λcr · cF = 2ktL ,

with corresponding buckling mode shape where the two bars move like one bar.
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2.2.6 Plot the points which satisfy equilibrium

Given a loadλ, one must find(θ1, θ2) which satisfy the two non-linear equations defining equilibrium obtained in
Section 2.1.4. This can be a fairly difficult task. Here we will plot the points which satisfy equilibrium, not by directly
solving the equations for a givenλ but by finding the points(θ1, θ2, λ) which satisfy,

∥∥∥∥

[
R1(θ1, θ2, λ)
R2(θ1, θ2, λ)

]∥∥∥∥ <= tol ,

wheretol is some desired tolerance. Ideally we would liketol = 0. One can use the functionplotequilibriumv2.m
to plot the points which satisfy equilibrium through the lines of MATLAB code,

>> e = 1.5; % -- Spring ratio
>> param.u1_range = [-1,1]*pi; % -- Range of theta_1
>> param.u2_range = [-1,1]*pi; % -- Range of theta_2
>> param.p_range = [ 0,1]; % -- Range of lambda
>> param.u1_ndiv = 201; % -- Number of divisions of theta_1
>> param.u2_ndiv = 201; % -- Number of divisions of theta_2
>> param.p_ndiv = 201; % -- Number of divisions of lambda
>> param.eq_tol = 1e-2; % -- Tolerance mentioned above
>> plotequilibrium2v(@(u,p)eqfunc(u,p,e),param);

To use this function one must define a functioneqfunc.m of the form,

% function [res] = eqfunc(u,p)
%
% Evaluates the residual of how much equilibrium is not
% satisfied, where u (2-by-1 vector) and p (scalar)
% is the applied load and res (2-by-1 vector)
% is a residual of how much equilibrium is not
% satisfied for the combination of u and p.

It is convenient to makeeqfunc.m variable with respect toe so that one can changee without having to modify the
function itself.

• How do the points which satisfy equilibrium look like in the plot. Comment on the character relating to what
has been mentioned in the lecture.

• How does the plot change by varyinge. At which value ofe is there a fundamental change in the plots? How
does the critical loadPcrit change?

• You will see that you get two branches of solutions. Are solutions along these branches stable? Explain why or
why not.

The equilibrium solutions with respect to a given loadλ for the given problem fore = 0.5 ande = 1.5 are shown
in Figures 4- 7. There is a fundamental change in the plot depending on whethere < 1 or e > 1. A representative
case for each is shown in the given figures withe = 0.5 ande = 1.5.

• e = 0.5: There are two branches, the red corresponding to the scissor buckling mode shape and the blue
corresponding to the single rigid bar buckling mode shape. For this case the buckling load corresponding to the
scissor is smallerλ1 = 1 and thus is the critical load. One can see in the plot that along the z axis, the red line
intersects at a smaller value than the blue. Interestingly the red line branches at four locations. The crosses in
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magenta denote the solutions which are stable. One observesthat though the red branch is stable near the origin,
it is not stable between the two branching points. The blue line is never stable. At(π, π) and(−π,−π) the
system exhibits behavior similar to the trivial solution branch at(0, 0) and is stable for loads greater than -1.

• e = 1.5: There are two branches, the red corresponding to the scissor buckling mode shape and the blue
corresponding to the single rigid bar buckling mode shape. For this case the buckling load corresponding to the
single rigid bar mode is smallerλ2 = 2 and thus is the critical load. One can see in the plot that along the z axis,
the blue line intersects at a smaller value than the red. Compared to the case ofe = 0.5 the red line branches at
only two locations. At the origin(0, 0), the red line is not stable but becomes stable after the branching points.
The blue line is never stable. At(π, π) and(−π,−π) the system exhibits behavior similar to the trivial solution
branch at(0, 0) and is stable for loads greater than -2.
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Figure 4: Equilibrium solutions,e = 0.5
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Figure 5: Equilibrium solutions,e = 0.5; top view
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Figure 6: Equilibrium solutions,e = 1.5
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Figure 7: Equilibrium solutions,e = 1.5; top view
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2.2.7 Plot of potential energy for varying loads

Given a loadλ, one can plot the potential energŷΠ(θ1, θ2) as a function ofθ1 andθ2. This can be done with the
function,plotenergy2v.m.

>> e = 1.5; % -- Spring ratio
>> lam = 0.0; % -- Load
>> param.u1_range = [-1,1]*pi; % -- Range of theta_1
>> param.u2_range = [-1,1]*pi: % -- Range of theta_2
>> param.u1_ndiv = 201; % -- Number of divisions in theta_1
>> param.u2_ndiv = 201; % -- Number of divisions in theta_2
>> plotenergy2v(@(u,p)efunc(u,lam,e),param);

To use this function one must define a functionefunc.m of the form,

% function [E] = efunc(u,p)
%
% Evaluates the potential energy E (scalar) for a system
% where u (2-by-1 vector) and p (scalar)
% is the applied load.

It is convenient to makeefunc.m variable with respect toe so that one can changee without having to modify the
function itself.

• Takee = 0.5 and slowly increaseλ from a value of0. What do you observe about the energy plots and points
of equilibrium. (Recall that the stationary points are the equilibrium points). Depending on the value ofλ are
there multiple equilibrium points? Are these equilibrium points stable?

• Takee = 1.5 and slowly increaseλ from a value of0. What do you observe about the energy plots and points
of equilibrium. (Recall that the stationary points are the equilibrium points). Depending on the value ofλ are
there multiple equilibrium points? Are these equilibrium points stable?

• e = 0.5: The contour plots of the potential energy are shown for varying loadsλ = 0.0, 1.2, 2.2 in Figures 8-
10. These can be considered constant loadλ slices of the Figure 4. The circles correspond to the stationary
points of the potential energy. Through this plot, one can easily see whether a stationary point is stable or not
by the arrows. The colors correspond to the branches in Figure 4.

In Figure 8 the 3 black dots are stable solutions. The blue dots are local maximum, and the green dots are saddle
points.

In Figure 9 the 2 black dots at the edges are stable solutions but the black dot in the middle is a saddle point and
thus not a stable solution. The two red dots are stable solutions. The two blue dots are local maximum and not
stable solutions.

In Figure 10 the 2 black dots at the edges are stable solutionsbut the black dot in the middle is a local maximum
and thus not a stable solution. The two red dots are stable solutions. The four green dots are saddle points and
not stable solutions.

• e = 1.5: The contour plots of the potential energy are shown for varying loadsλ = 0.0, 3.5, 7.0 in Figures 11-
13. These can be considered constant loadλ slices of the Figure 6. The circles correspond to the stationary
points of the potential energy. Through this plot, one can easily see whether a stationary point is stable or not
by the arrows. The colors correspond to the branches in Figure 6.

One can make similar arguments about the stationary points as in the case ofe = 0.5.
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Figure 8: Equilibrium solutions,e = 0.5,λ = 0.0
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Figure 9: Equilibrium solutions,e = 0.5,λ = 1.2
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Figure 10: Equilibrium solutions,e = 0.5,λ = 2.2
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Figure 11: Equilibrium solutions,e = 1.5,λ = 0.0
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Figure 12: Equilibrium solutions,e = 1.5,λ = 3.5
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Figure 13: Equilibrium solutions,e = 1.5,λ = 7.0
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