CE 130N, Spring 2009
ProfGavindjee and Dr. T. Koyama
Lab 10

UNIVERSITY OF CALIFORNIA AT BERKELEY
Department of Civil and Environmental Engineering
Structural Engineering, Mechanics and Materials

Mechanics of Structures (CE130N)
Lab 10

1 Objective

The objective of this lab is to understand how the princiglstationary potential energy can be applied to understand
the behavior of buckling phenomenon. Before treating th&inous problem, i.e., buckling of beams, we will treat

the more simple discrete system consisting of rigid elesiantl springs.



2 Exercise

2.1 Download files
1. Download the fildouckl i ng. zi p into yourcel130n/ pr ogr ans directory and unzip it.

2. Gotothecel30n/ prograns/ buckl i ng/ exerci se/ directory, and execute the fileni t . m This will
set the necessary paths to run the files.

YOU MUST RUN THE FILE init.m EVERYTIME YOU START UP MATLAB.

2.2 Two rigid elements with by two springs

In this exercise you will investigate the buckling behawiba system consisting of two rigid elements with two springs
as shown in Figure 1. The nodes are labeled as shown. Rigiteelel is pinned at node 1, and connected to rigid
element 2 at node 2 by a rotational sprihdForceLength]. There is a lateral spring[Force/Length] attached to
rigid element 2 at node 3. The two rigid elements have a leafjfijfLength]. Define the clockwise rotation of rigid
element 1 ag; and the clockwise rotation of rigid element 2@&sas shown in Figure 2. A vertical load éf[Force]

is applied at node 3 in the direction shown.

P A

Figure 1: Setup of mechanical system Figure 2: Deformed configuration and variables



2.2.1 Compute the total potential energy of the system

Obtain the expression for the total potential endriggf the system as a function 6f andé-,
I1(0,,62) .

As a hint, first obtain the expression for the lateral disptaentA, and vertical displacemeuk, as is shown in the
Figure 2, in terms of; andé-,

Ay (bh,02),
Ay (61,02).
The displacemem\, andA,, is given as,
AI = Lsin01 —|—LSiH92,

Ay 2L — (Lcosby + Lcosbs) .

The total potential energy of the system is then obtained as,
1 2 1 2
I(0,,602) = 5l<:r(92 —601)" + §/ftAz — PA,

1 1
= 5l<:r(92 —0,) + 5/{,5L2(sin 61 +sinfy)?> — PL(2 — cos ) — cos ) .




2.2.2 Non-dimensionalization

In many problems, it is useful to non-dimensionalize expi@ss to remove redundant parameters from the problem
and to improve performance in numerical calculations. Hiseus non-dimensionalize the expression for the total

potential energy. To proceed, one must pick representagivees for the “Length” and “Force” constants. Let us make

the choice,

clL = L,
cF = kL.

Since the potential enerdy has units of energy [Fordeength], one must divide this expression &l - cL. Define
the non-dimensionalized version of the energy as,

~ 1
I1(64,0 = TII(0,,0 _ .
(17 2) (17 Q)X[CF-CL]
Note thatll is dimensionless. Further, let us define,
k. . . . . . .
e = — Non-dimensional version of the rotational spring stiffees
C - C
(or spring stiffness ratio)
= F Non-dimensional version of the load
C

Obtain the expression fa.

The total potential energy of the system in non-dimensiéorah IT can be rewritten as,

a II
H(61,02) = cF -cL
_ 1 K o 1 kL? ., PL
= s ople— )"+ 5 (Sinb Fsinba)® — ——— (2 —cosfi —costs)
1

56(92 —01)% + %(sin 01 +sin63)% — A\(2 — cosf; — cosfy) .




2.2.3 Principle of stationary potential energy for equilitrium

Apply the principle of stationary potential energyffbto find the equilibrium equations whidh andé, must satisfy.
One should obtain two non-linear equations in the variaffled- ),

Ri(01,02,\) = 0,
Ry(61,62,\) =

One should consider as a given value, not an unknown variable.

The stationarity ofl implies,

o11(6y,0
R(01,02,\) = (8%2) = —e(fz — 01) + (sin b + sinfbs) cosf; — Asinfy = 0,
1
Ro(01,02,0) = %91’92) =e(f2 — 01) + (sinf; +sinf3) cosfa — Asinfy = 0.
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One can actually solve for the solution to these two nonaliregjuations.

—e(f2 — 01) + (sinf; + sinfy) cos 1 — Asin by = 0,
e(fz — 01) + (sinfy + sinfs) cosfy — Asinfy = 0
—e(f2 — 01) + (sinf; + sinf3) cos 1 — Asin by = 0,
(cos By + cosfy — A)(sinfy +sinfy) =0
—e(f2 — 01) + (sinf; +sinf3) cosf; — Asinfy = 0,

cosfi +cosfy —A=0

or
sinf; +sinfy; =0

e(fz —61) + (sin 01 + sinfy) cosf; — Asin by = 0,
00591 +cosby—A=0

sinf; +sinfy; =0

SlIl 92 — 91 = 8(92 — 91)
A = cos By + cos by

92—91 /\sin91=0
01 = —0s+2nm or 01 =60+ 7+ 2nm

{ 92 — 1) + (sin 61 + sin 02) cosf; — Asinfy = 0,

sm 6‘2 — 6‘1 = 6(92 — 6‘1)
A = cosfy + cosbs

92—91 /\Sln91—0
01 =0>+7 or 0y =060y — mwsinceby,05 € [—7T,7T]

92—91 /\Sln91—0

61 = —05 since 01,05 € [—7, 7]

{
i
{
e
o
s

A = cos b, —|— cos Oy

A 1n6‘1 =em,

Asin 91 = 2ef),
01 =




2.2.4 Linearization of the equilibrium equations

When one is interested in the behavior of the onset of bugkbne can look at the behavior of the system for “small”
(01,02) near the initial equilibrium point off,,62) = (0,0). To obtain the linearized system for this problem, one
takes all the non-linear functions in the systems and coatstia Taylor series expansion arou,, 62) = (0, 0).

1
0 = 1—=6%>+--.
cos 5 + ,
sin 6 o— Loy
311 = - =
6

Depending on the problem, one may take a variable numberrokta the Taylor series expansion. For this problem,

cosf =~ 1,

sinf ~ 6

3

is sufficient.
Obtain the “linearized” version of the equilibrium equatio Note that this expression should only have upto linear
terms, i.e., only constants and linear functiong-péindd,. Write this equilibrium equation in matrix form,

where,

andK,(\) is a 2-by-2 matrix with a dependence &n

From the 2 non-linear equations representing equilibrium,

—e(fz — 1) + (sinfy 4+ sinfhy) cosf; — Asinfy = 0,
e(fz — 01) + (sin 6y + sinbs) cos B3 — Asin Oy 0,

one can replace the non-linear functions with their linggoraximations as stated in the explanation above, to optain

—6(92 — 91) =+ (91 =+ 92) — /\91 = O,
6(92 - 91) + (91 + 92)92 — Ay = 0,

which can be expressed in matrix form by,
1+e 1-e 10 01
(e 2zl ) ) =o

_|1+e 1-e 10
Ku(3) := [1—e 1+e]_/\{0 1}’

By defining,

one has the desired expressioriaff = 0.




2.2.5 Obtaining the buckling load
Given the equilibrium equatiod§;(A)@ = 0, one can investigate the buckling behavior. Buckling osaeuhnen,
¢ the buckling load\ is a value which creates a non-triviak~ 0 that satisfies the equilibrium equation.
A non-trivial @ occurs only wherK; () is singular. Thus in order to find the buckling load
e one can look for the. which makesK,; () singular ordet(K(A)) = 0.

We can split the expression fég; into two parts, the part which is independentgfand the part which is dependent
onJ,

K,(\)0 = (K—\B)0 =0

= K6 =)\B@,

whereK andB are 2-by-2 matrices independentif The problem of looking for combinations of a non-trivial
and A which satisfy the equatioK# = AB@ is equivalent to the mathematical problem of finding the galized
eigenvalues of the matricéK, B). Note that wheB is equal to the identity matrix one has the equatioK 0 = )6,

which is an ordinary eigenvalue problem. Thus,

¢ one can find the buckling loatland buckling mod® by computing the eigenvalues of the generalized eigen-
value problemK®6 = \B6 .

One can compute the generalized eigenvalu¢¥&oB) in MATLAB with the command,

\>> [V,D = eig(K B);

The columns o/ contain the eigenvectors and the diagonal entrid3 @fntain the eigenvalues. Thus thh eigen-
vectorV(:, i) andeigenvalu®(i , i ) satisfy the relationship,

KeV(:,i) = D(i,i)*B«V(:,i)
For the given problem,
1. Obtain the expressions f&f andB.
2. By hand, compute the buckling loady solvingdet(K;(\)) = 0.

3. By hand, determine buckling mode shafdsr the corresponding, by solvingK;(\)# = 0. Draw the mode
shapes.

4. Fore = 0.5, compute the buckling loads and buckling mode shapes using MATLAB. Compare them with
your hand solutions.

5. Obtain the dimensional versions of the buckling IdadRecall thatP has dimensions of [Force] 90 = \ - ¢F.
Depending on the value ef what is the critical buckling load., (smalled load at which buckling occurs) and
corresponding mode shape. You should observe that for soater saluee, whene > ¢y you will have one
type of buckling mode and when< ¢ you will have another type of buckling mode.

1. Directly from the previous section on has the expressions

o |1+e 1-e¢
K: = |:1—€ 1+e}’
1 0

5o 1.



2. The buckling loada can be computed by solving,
det(Kp(\) = (1+e—-XN)*—(1—-¢)?*=0,
which implies that,

A= (I4+e)x(l—e€)=2e2.

3. The buckling mode shapes for each buckling laadn be computed as follows.

e\ =)\ =2e:
K,(20)0 = 0,
l—e 1—e| |0 _
[l—e l—e] [92} =0
N 0y = —04 (e#1)
02,01 are arbitrary (e=1).

Thus where # 1 the buckling mode shape is,

HEE

e A=)y =2:
Ky(2)6 =0,
—1+e 1—e | |61
o [0 A fa] -

92 = 91 & 1)
02,01 are arbitrary (e =1).

Thus where # 1 the buckling mode shape is,

61 I 1
02 1]
For a figure of the eigenvectors and buckling mode shapesagikt problem where they are computed for a

specific case of = 0.5.

4. For the case of = 0.5 the buckling loads (eigenvalues )and buckling mode shagigsrfvectors) computed
from MATLAB are,

A =1, Ao =2,
_ [-0.7071 _ [o.7071
Y= 1oror1| Y27 |o.7071

These values match the hand solutions exactly.

5. The dimensional versions of the buckling loads are,

Ky
P1 = /\1-CF=2f,
P2 = /\Q'CFZthL.
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Figure 3: Eigenvectors and buckling mode shapes for bughktiadsx
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Whene < 1,

Ao = min(Aq, Ag) = 2e,

k.
P, = )\Cr'CF:2fa

with corresponding buckling mode shape where the two bargeritoa scissor like fashion. When> 1,

/\0r = min()\l, /\2) = 2,
Py = Ao -cF =2kL,

with corresponding buckling mode shape where the two bargerilke one bar.
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2.2.6 Plot the points which satisfy equilibrium

Given a load\, one must find 6y, 62) which satisfy the two non-linear equations defining equillitn obtained in
Section 2.1.4. This can be a fairly difficult task. Here wel plibt the points which satisfy equilibrium, not by directly
solving the equations for a givenbut by finding the point$6,, 2, A) which satisfy,

R1(61,62, A
Ry(61,02, A

] <=t

wheretol is some desired tolerance. Ideally we would liké= 0. One can use the functign ot equi | i bri umv2. m
to plot the points which satisfy equilibrium through thedgof MATLAB code,

>> e = 1.5; %-- Spring ratio

>> paramul _range = [-1, 1] *pi; % -- Range of theta 1

>> param u2_range = [-1, 1] *pi; % -- Range of theta 2

>> paramp_range =] 0,1]; % -- Range of |anbda

>> paramul_ndiv = 201; % -- Nunber of divisions of theta_ 1
>> paramu2_ndiv = 201; % -- Nunber of divisions of theta_ 2
>> param p_ndi v = 201; % -- Nunber of divisions of |anbda
>> param eq_t ol = le-2; % -- Tol erance nentioned above

>> pl otequilibriunv(@u, p) eqfunc(u, p, e), param;

To use this function one must define a functexgf unc. mof the form,

% function [res] = eqfunc(u,p)

%

% Eval uates the residual of how much equilibriumis not
% satisfied, where u (2-by-1 vector) and p (scal ar)
%is the applied |l oad and res (2-by-1 vector)

% is a residual of how nmuch equilibriumis not

% satisfied for the conbination of u and p.

Itis convenient to makeqgf unc. mvariable with respect te so that one can changewithout having to modify the
function itself.

e How do the points which satisfy equilibrium look like in théiop Comment on the character relating to what
has been mentioned in the lecture.

e How does the plot change by varyiag At which value ofe is there a fundamental change in the plots? How
does the critical load’.,;; change?

¢ You will see that you get two branches of solutions. Are doha along these branches stable? Explain why or
why not.

The equilibrium solutions with respect to a given loaébr the given problem foe = 0.5 ande = 1.5 are shown
in Figures 4- 7. There is a fundamental change in the plotnidipg on whethee < 1 ore > 1. A representative
case for each is shown in the given figures witk 0.5 ande = 1.5.

e ¢ = 0.5: There are two branches, the red corresponding to the sdigskling mode shape and the blue
corresponding to the single rigid bar buckling mode shape this case the buckling load corresponding to the
scissor is smallek; = 1 and thus is the critical load. One can see in the plot thatggibe z axis, the red line
intersects at a smaller value than the blue. Interestirigdyréd line branches at four locations. The crosses in

13



magenta denote the solutions which are stable. One obsbatdbough the red branch is stable near the origin,
it is not stable between the two branching points. The bloe i never stable. Atr,7) and(—m, —) the
system exhibits behavior similar to the trivial solutiormbch at(0, 0) and is stable for loads greater than -1.

e = 1.5: There are two branches, the red corresponding to the sdismkling mode shape and the blue
corresponding to the single rigid bar buckling mode shape tis case the buckling load corresponding to the
single rigid bar mode is smalléy, = 2 and thus is the critical load. One can see in the plot thattetloa z axis,
the blue line intersects at a smaller value than the red. @oedgto the case ef = 0.5 the red line branches at
only two locations. At the origiri0, 0), the red line is not stable but becomes stable after the hiagpoints.
The blue line is never stable. &k, 7) and(—m, —7) the system exhibits behavior similar to the trivial solatio
branch a0, 0) and is stable for loads greater than -2.
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u2 axis

x Stable solutions
—Trivial branch 1
‘‘‘‘‘ -Trivial branch 2
--=-Trivial branch 3
O Buckling load 1
O Buckling load 2
—Buckling branch 1
—Buckling branch 2
—Buckling branch 3
— Buckling sub—branches
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—p ¢ 2
. -2 0
u2 axis ul axis

Figure 4: Equilibrium solutions,= 0.5

—Trivial branch 1
‘‘‘‘‘ -Trivial branch 2
----Trivial branch 3
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O Buckling load 2
—Buckling branch 1
—Buckling branch 2
—Buckling branch 3
—Buckling sub—branches
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Figure 5: Equilibrium solutions; = 0.5; top view
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x Stable solutions
—Trivial branch 1
‘‘‘‘‘ -Trivial branch 2
--=-Trivial branch 3
O Buckling load 1
O Buckling load 2
—Buckling branch 1
—Buckling branch 2
Buckling branch 3
Buckling sub—branches

load

u2 axis -2 0 2
ul axis

Figure 6: Equilibrium solutions,= 1.5
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Figure 7: Equilibrium solutions,= 1.5; top view
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2.2.7 Plot of potential energy for varying loads

Given a load), one can plot the potential ener@(@l, f2) as a function of; andf,. This can be done with the
function,pl ot ener gy2v. m

>>
>>
>>
>>
>>
>>
>>

e = 1.5 %-- Spring ratio

am = 0. 0; % -- Load

param ul range = [-1, 1] *pi; % -- Range of theta 1

param u2_range = [-1, 1] *pi: % -- Range of theta 2

paramul ndiv = 201; % -- Nunber of divisions in theta 1
param u2_ndiv = 201; % -- Nunber of divisions in theta 2
pl ot ener gy2v( @u, p) efunc(u, | ame), param ;

To use this function one must define a functefrunc. mof the form,

%

% function [E] = efunc(u,p)

% Eval uates the potential energy E (scalar) for a system
% where u (2-by-1 vector) and p (scal ar)
%is the applied | oad.

It is convenient to makef unc. mvariable with respect te so that one can changewithout having to modify the
function itself.

e Takee = 0.5 and slowly increase from a value ofd. What do you observe about the energy plots and points

of equilibrium. (Recall that the stationary points are tigaigbrium points). Depending on the value bfare
there multiple equilibrium points? Are these equilibriuwiqts stable?

Takee = 1.5 and slowly increasa from a value ofd. What do you observe about the energy plots and points
of equilibrium. (Recall that the stationary points are tigaigbrium points). Depending on the value bfare
there multiple equilibrium points? Are these equilibriumints stable?

e = 0.5: The contour plots of the potential energy are shown for wayyoadsx = 0.0, 1.2, 2.2 in Figures 8-
10. These can be considered constant laadices of the Figure 4. The circles correspond to the statipn
points of the potential energy. Through this plot, one casilgaee whether a stationary point is stable or not
by the arrows. The colors correspond to the branches in Eigur

In Figure 8 the 3 black dots are stable solutions. The blug @@ local maximum, and the green dots are saddle
points.

In Figure 9 the 2 black dots at the edges are stable solutigrthé black dot in the middle is a saddle point and
thus not a stable solution. The two red dots are stable solsitiThe two blue dots are local maximum and not
stable solutions.

In Figure 10 the 2 black dots at the edges are stable solutigrthe black dot in the middle is a local maximum
and thus not a stable solution. The two red dots are stahléi@o$. The four green dots are saddle points and
not stable solutions.

e = 1.5: The contour plots of the potential energy are shown for wayyoadsi = 0.0, 3.5, 7.0 in Figures 11-
13. These can be considered constant laadices of the Figure 6. The circles correspond to the statipn
points of the potential energy. Through this plot, one casilgaee whether a stationary point is stable or not
by the arrows. The colors correspond to the branches in Ei§ur

One can make similar arguments about the stationary paintsthe case of = 0.5.
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Contour plot of the Potential Energy and its Gradients
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Figure 8: Equilibrium solutions,= 0.5,A = 0.0
Contour plot of the Potential Energy and its Gradients
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Figure 9: Equilibrium solutions,= 0.5,A
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Figure 10: Equilibrium solutions,= 0.5\ = 2.2
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Contour plot of the Potential Energy and its Gradients
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Figure 11: Equilibrium solutions,= 1.5,A = 0.0
Contour plot of the Potential Energy and its Gradients
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Figure 12: Equilibrium solutions,= 1.5,A\ = 3.5
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Contour plot of the Potential Energy and its Gradients
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Figure 13: Equilibrium solutiong,= 1.5,A = 7.0
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