HW 2: Due Thurday Feb 12

1. Consider the system shown in probelm SG 2.24. Assume that $L=1 \mathrm{~m}, E=$ 200 GPa , and that the bar is round with radius 5 cm . Let the spring constant be $k=1500 \mathrm{kN} / \mathrm{mm}$. Assume a distributed load $b(x)=100 \exp [x / L](\mathrm{kN} / \mathrm{mm})$. Use your program from the lab to determine the displacement at $x=L$ and the maximum stress in the bar.
2. Consider the system shown in problem SG 8.20. Assume that $L=3 \mathrm{ft}, a=1 \mathrm{ft}$, and that $E I=120 \times 10^{6} \mathrm{lbf} / \mathrm{in}^{2}$. Utilize your program from the lab to determine the torsional stiffness at the point of application of the load; i.e. determine $k_{T}=S / \theta(a)$.
3. Consider the truss shown below. Write out the governing equilibrium equations for the truss in $\boldsymbol{A}^{T} \boldsymbol{F}=\boldsymbol{F}_{\text {applied }}$ form.

