HW 10: Due Thurday April 23

- 1. Derive, starting from dT/dz + t = 0, the weak equilibrium equation for a bar of length L in torsion that is subjected to a constant distributed torque $t(z) = t_o$, an applied end-rotation $\phi(0) = \overline{\phi}$, an applied torque T_L at z = L.
- 2. Consider a tension-compression bar with N applied forces F_i at x = iL/N for i = 1, 2, ..., N. What is the virtual work equation? Assume the bar is built in at x = 0.
- 3. Consider the case in Problem 2, assume that N = 3 and that $F_i = i\overline{F}$ for some constant \overline{F} . Find an approximate solution to the weak form by using a sub-space of functions that includes linear and quadratic terms. Compare your result to the exact answer.
- 4. Consider the potential energy for the system described in Problem 1. Compute the variational derivative of the energy. Your answer should match the result you got in Problem 1.
- 5. Consider the potential energy for a stretched membrane of domain Ω with tension S and applied transverse pressure p(x, y). Assume the membrane is fixed on its boundary $\partial \Omega$. Compute the variational derivative of the energy.