
PACIFIC EARTHQUAKE ENGINEERING
RESEARCH CENTER

Hybrid Simulation Theory for a
Classical Nonlinear Dynamical System

Paul L. Drazin
Sanjay Govindjee

Department of Civil and Environmental Engineering 
University of California, Berkeley

PEER Report No. 2016/07
Pacifi c Earthquake Engineering Research Center 

Headquarters at the University of California, Berkeley

September 2016
PEER 2016/07

September 2016



Disclaimer

The opinions, fi ndings, and conclusions or recommendations 
expressed in this publication are those of the author(s) and 
do not necessarily refl ect the views of the study sponsor(s) 
or the Pacifi c Earthquake Engineering Research Center.



 

Hybrid Simulation Theory for a Classical Nonlinear 
Dynamical System 

Paul L. Drazin 

Sanjay Govindjee 

 
Department of Civil and Environmental Engineering 

University of California, Berkeley 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

PEER Report 2016/07 
Pacific Earthquake Engineering Research Center 

Headquarters at the University of California, Berkeley 

September 2016 



ii 

  



iii 

ABSTRACT 

Hybrid simulation is an experimental and computational technique that allows one to study the 
time evolution of a system by physically testing a subset of it while the remainder is represented 
by a numerical model that is attached to the physical portion via sensors and actuators. The 
technique allows the study of large or complicated mechanical systems while only requiring a 
subset of the complete system to be present in the laboratory. This results in vast cost savings as 
well as the ability to study systems that simply cannot be tested due to scale. However, the errors 
that arise from splitting the system in two requires careful attention if a valid simulation is to be 
guaranteed. To date, efforts to understand the theoretical limitations of hybrid simulation have 
been restricted to linear dynamical systems. The research reported herein considers the behavior 
of hybrid simulation when applied to nonlinear dynamical systems. The model problem focuses 
on the damped, harmonically-driven nonlinear pendulum. This system offers complex nonlinear 
characteristics, in particular periodic and chaotic motions. We are able to demonstrate that the 
application of hybrid simulation to nonlinear systems requires careful understanding of what one 
expects from such an experiment. In particular, when system response is chaotic we advocate using 
multiple metrics to characterize the difference between two chaotic systems via Lyapunov 
exponents and Lyapunov dimensions, as well as correlation exponents. When system response is 
periodic we advocate using L2 norms. Further, we demonstrate that hybrid simulation can falsely 
predict chaotic or periodic response when the true system has the opposite characteristic. In certain 
cases, control system parameters can mitigate this issue. 

  



iv 

  



v 

ACKNOWLEDGMENTS 

Any opinions, findings, and conclusions or recommendations expressed in this material are those 
of the authors and do not necessarily reflect those of the Pacific Earthquake Engineering Research 
Center (PEER). 

  



vi 

  



vii 

CONTENTS 

ABSTRACT .................................................................................................................................. iii 

ACKNOWLEDGMENTS .............................................................................................................v 

TABLE OF CONTENTS ........................................................................................................... vii 

LIST OF FIGURES ..................................................................................................................... ix 

1.  INTRODUCTION..............................................................................................................1 

2.  GENERAL THEORY OF HYBRID SIMULATION ......................................................3 

2.1  The Reference System............................................................................................3 

2.2  The Hybrid System ................................................................................................4 

3.  DAMPED, DRIVEN NONLINEAR PENDULUM .........................................................7 

3.1  The Reference System............................................................................................7 

3.2  The Hybrid System ................................................................................................8 

3.3  Non-Dimensionalization ......................................................................................10 

4.  ANALYSIS .......................................................................................................................13 

4.1  Periodic Reference and Hybrid Systems ............................................................14 

4.2  Chaotic Reference and Hybrid Systems ............................................................15 

4.2.1  Chaos Error Metrics ...................................................................................20 

4.3  One System Periodic and the Other Chaotic .....................................................23 

4.4  Study of Ki ............................................................................................................23 

5.  CONCLUSIONS ..............................................................................................................27 

REFERENCES .............................................................................................................................29 

APPENDIX  p  AND pd d   PLOTS .....................................................................31 



viii 

  



ix 

LIST OF FIGURES 

 

Figure 1.1  A simple diagram of a hybrid system set-up. ......................................................2 

Figure 2.1  (a) A general system with domain D   and state vector ( , )tu x ; and (b) a 

general system with imposed separation into two substructures for 
comparison to the hybrid system.  I CP D  and    IP C . .............3 

Figure 2.2  The hybrid system separated into the physical, P, and computational, 
C, sub- structures. ...................................................................................................4 

Figure 3.1  The damped, driven nonlinear pendulum with a rigid body rotating 
about O with applied moment M( t). .................................................................7 

Figure 3.2  The hybrid pendulum with the rigid body split into two pieces rotating 
about O with applied moment M (t). ...................................................................8 

Figure 4.1  The Lyapunov exponents for the reference, 1 , and hybrid systems, 

1̂  when 1 . .....................................................................................................14 

Figure 4.2  The L2 error for 1  for three values of  with only periodic 

responses................................................................................................................15 

Figure 4.3  The state space trajectories for the reference and hybrid systems with 
1.114  . .............................................................................................................16 

Figure 4.4  The angular velocity time series of the reference and hybrid systems 
for 1.2  . ............................................................................................................17 

Figure 4.5  A zoomed in plot of the angular velocity time series of the reference 
and hybrid systems for 1.2  . ...........................................................................17 
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1.   Introduction 

Hybrid simulation (or hybrid-testing) is a popular experimental method that is primarily used in 
civil engineering laboratories [Shing and Mahin 1984; Shing and Mahin 1987]. It originated 
roughly thirty years ago [Takanashi and Nakashima 1987] and has been used continuously and 
extensively as a methodology to experimentally assess structural systems under earthquake 
loadings. Occasionally the methodology has also been used in other disciplines to assess dynamic 
phenomena; see, e.g., Bursi et al. [2011]. The central problem that hybrid simulation addresses is 
that it is very difficult and expensive to test full-size civil structures for their structural capacities 
under seismic loads. The largest testing facility in world is the E-Defense facility [E-Defense], 
which can test structures with a 20 m × 15 m plan and 12MN weight. While this represents a large 
capacity, it precludes the testing of many types of structures, is very expensive due to the need to 
build full-size prototypes, has limited throughput, and does not easily allow for design exploration. 

At its heart, one can think of experimental testing of this variety as the use of an analog 
computer (algorithm) to simulate the behavior of a structure. Hybrid testing and its many variants 
(see, e.g., Schellenberg [2008]) tries to leverage this viewpoint in the following manner: 

1. The determination of the dynamic response of a structural system is thought of as the 
integration of the equations of motion for the structure; and 

2. The integration of the system of equations is done by a hybrid mix of numerical and 
analog computing. 

In practice, this means that part of the structural system is physically present in the laboratory and 
the remainder is represented by a computer model. Both parts of the structure are subjected to 
dynamic excitation, and they interact via a system of sensors and actuators in real- and/or pseudo-
time. Figure 1.1 provides a schematic of a typical set-up. Based on the confidence level in the 
model, a subset of structural response is relegated to a computer model; the physical part typically 
represents a subset of the structure that lacks a decent computer model; see, e.g., Mosalam and 
Gunay [2014]. 

Despite the long history of hybrid-testing, very little is understood about the errors involved 
when using this methodology to simulate the response of a structure. The bulk of the literature on 
hybrid testing has focused on improving the accuracy and speed of the numerical computation and 
the fidelity of the control system, with the implicit assumption that improvements in these aspects 
will provide a result that is more faithful to an untested physical reality. Recently, however, recent 
efforts by Bakhaty et al. [2014] and Drazin et al. [2015] have attempted to quantify the theoretical 
limitations of hybrid testing that are independent of the systematic and random errors that arise 
from numerical issues and sensor errors. Both research projects used a reference structural system 
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that was fully theoretical, split the system into fictitious physical and computational parts, and then 
explored the fidelity of the hybrid equations with respect to the reference equations. In this way, 
the true dynamical response of the reference system was known a priori in analytic form and could 
be compared to the hybrid-system response, which was also known in analytic form. The overall 
methodology thus illuminated directly the central feature of all hybrid simulation methodologies, 
i.e., the presence of a split system that is patched together with an imperfect interface. 

The works of Bakhaty et al. [2014] and Drazin et al. [2015] focused on two linear structural 
systems: Euler-Bernoulli beams (elastic and viscoelastic) and Kirchhoff-Love (elastic) plates. The 
research reported herein extends this analysis framework to a nonlinear dynamical system in order 
to understand the behavior of hybrid-simulation in the presence of kinematic nonlinearities. We 
considered only the theoretical performance of real-time hybrid simulation as an experimental 
method and ignored all of the numerical and random errors, as this leads to a best case scenario 
for a hybrid experiment; see e.g. Shing and Mahin [1987] and Voormeeren et al. [2010]. This 
approach eliminates the errors associated with time integration methods and signal noise, and 
focuses only on the errors that are generated by systematic interface mismatch errors–an element 
that is always present in hybrid simulations. To conduct an in depth analysis of the dynamics of 
this system, the model problem focused on the damped, driven nonlinear pendulum; see Baker and 
Blackburn [2005]. This system is one of the most basic nonlinear systems that has a clear physical 
representation. Despite the simplicity of this system, it is appropriate for this study as it exhibits a 
rich dynamical response with both periodic and chaotic trajectories. These two behaviors will 
facilitate studying how a hybrid split affects the overall dynamics of a nonlinear mechanical 
system. Also considered is a spring-mass-damper actuator system that is controlled by a PI 
controller. This set-up for the hybrid system gives a more advanced representation of the hybrid 
system in comparison to the constant error methodology used in Bakhaty et al. [2014] and Drazin 
et al. [2015]. 

 

Figure 1.1 A simple diagram of a hybrid system set-up. 
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2.   General Theory of Hybrid Simulation 

2.1 THE REFERENCE SYSTEM 

First, we present the reference system to which the hybrid system will be compared. A mechanical 
system with domain D is considered; see Figure 2.1a. The mechanical response of the system is 
characterized by a state vector, 

( , ) fort xu x D  (2.1) 

where t represents time. In order to compare the reference system response to the hybrid-system 
response, we imagine that the reference system is split into two substructures: a “physical” 
substructure (P -side) and a “computational” substructure (C -side); see Figure 2.1b, where 

 I C DP  and   P IC . The state vector can now be separated into two parts: 

( , ) if
( , )

( , ) if
p

c

t x
t

t x


  

u x
u x

u x

P
C

 (2.2) 

This defines the true response for a given mechanical system. The precise expression for ( , )tu x  is 
found by determining the function that satisfies the governing equations of motion on D  and the 
imposed boundary conditions on D . 

 

  
(a) (b) 

Figure 2.1 (a) A general system with domain D   and state vector ( , )tu x ; and (b) a 

general system with imposed separation into two substructures for 
comparison to the hybrid system.  I CP D  and    IP C . 
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2.2 THE HYBRID SYSTEM 

The response of the hybrid system should be defined in a similar fashion to make the comparison 
between the two systems straight forward. Using the same boundary defined in Figure 2.1b, the 
hybrid system is separated into two substructures. To differentiate the reference system from the 
hybrid system, a superposed hat ( ˆ ) is used to indicate a quantity in the hybrid system. The 
mechanical response of the hybrid system is represented by the following state vector: 

ˆ ( , ) if
ˆ ( , )

ˆ ( , ) if
p

c

t x
t

t x


  

u x
u x

u x

P
C

 (2.3) 

In a hybrid system ˆ pu  and ˆ cu  are determined from the “solution” of the governing equations of 

motion for P  and C  subjected to the boundary conditions on P  and C . The boundary 
conditions on  D P  and  D C  naturally match those of the reference system. However, 
in the hybrid system one must additionally deal with boundary conditions on the two interface 
sides of pI  and cI , where p  I I P  and c  I I C . The boundary conditions on pI  and 

cI  are provided by the sensor and actuator system. 

 

Figure 2.2 The hybrid system separated into the physical, P, and computational, 

C, sub- structures. 

The hybrid split leads to more unknowns than equations. Resolving this issue requires a 
model of the actuator and sensor system. Drazin et al. [2015] developed a relatively general form 
for such a model, which is expressed as: 

   ˆ ˆ| |
c pc c p pD Du uI I , (2.4) 

where  cD   and  pD   are operators that generate the necessary equations at the interface from 

the state vectors ˆ u  As demonstrated later, a simple spring-mass damper system with a PI 

controller will be used to model the interface that will allow specifying precisely the form of  cD   

and  pD  . This model allows study of the effects of systematic hybrid system splitting errors, 

specifically boundary mismatch errors. Such errors directly correlate to errors seen in experimental 
hybrid systems; see e.g. Shing and Mahin [1987] or Ahmadizadeh et al. [2008]. 
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In an actual hybrid simulation, one only has the physical part, P , the sensor and actuator 
system, and the computational model for part C . This makes it challenging to know if the 
determined response û is correct to a sufficient degree. To circumvent this issue, this research 
considered an analytical model for part P  and part C  as well as for the sensor and actuator system. 
This allows robust computation of the error in the response quantity û  of the hybrid system by 
comparing it to the response quantity u  of the reference system. The error investigated is then 
limited to the error in the hybrid system associated with the splitting interface. 
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3.   Damped, Driven Nonlinear Pendulum 

3.1 THE REFERENCE SYSTEM 

The first system that is discussed herein is that of the reference damped, driven nonlinear 
pendulum; see Figure 3.1. The pendulum consists of a uniform rigid rod of mass m and length l 
that rotates about the point O. There is an applied moment M(t) at O, and there is linear viscous 
damping at O with damping constant c. The kinetic energy of the system is given by 

2
2 ,

6

m
T  l  (3.1) 

and the potential energy is given by 

 cos
2 2

U mg     
l l

 (3.2) 

 
 

Figure 3.1 The damped, driven nonlinear pendulum with a rigid body rotating 
about O with applied moment M( t). 
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Figure 3.2 The hybrid pendulum with the rigid body split into two pieces rotating 
about O with applied moment M (t). 

Using Lagrange’s prescription for finding the equations of motion (see, e.g., O’Reilly 
[2008]), one has 

,nc
d T T U

M
dt   

          
 (3.3) 

where 

( )ncM c M t   . (3.4) 

This gives 

 
2

sin ( ),
3 2

m
c mg M t     l l

 (3.5) 

which is the equation that determines the true motion of the system. 

3.2 THE HYBRID SYSTEM 

Next, we set-up the hybrid pendulum; see Figure 3.2. In this case, the rigid body is split into two 
distinct bodies that have distinct angles of rotation c  and p , with both bodies rotating about O. 

Also, there are lengths p c l l l , and masses p pm m l l  and c pm m l l ; thus .p cm m m   

The kinetic energy is given by 

2 2 22
2 2ˆ ,

6 6 2
p p c p p cc c

c p

m m mm
T  

 
   

 
 l l ll

 (3.6) 

and the potential energy is given by 

   ˆ cos cos ,
2 2 2 2

p pc c
c c p c c pU m g m g 

                     

l ll l
l l  (3.7) 
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where the hat, ̂ , represents a quantity in the hybrid system. We applied Lagrange’s prescription 
with respect to c  and p , which is 

ˆ ˆ ˆ
ˆ

nci
i i i

d T T U
M

dt   
   

   
   

 (3.8) 

for ,i c p , where 

ˆ ˆ( ) , .ncc c c ncp pM c M t M M M      (3.9) 

Here, cM  is the moment at Ic, and pM  is the moment at Ip. In this set-up, cM  is an input to 

the computational model, and pM  is measured by sensors. Expanding Equation (3.8), we obtain 

 
2

sin ( ) ,
3 2
c c c

c c c c c
m

c m g M t M      l l
 (3.10) 

and 

 
2

2 2 sin .
3 2
p p p

c p p c p p c p p

m
m m m g M 

          
  

l l
l l l  (3.11) 

Note: in the ideal setting with no sensor error, c pM M  . We made this assumption to focus on 

the systematic errors rather than sensor errors. In doing so, Equations (3.10) and (3.11) are then 
combined into a single equation, given by 

   

22
2 2

3 3

sin sin ( ).
2 2

p pc c
c c p p c p c

pc
c c p c p

mm
m m c

m g m g M t

  

 

 
     
 

    
 

  ll
l l

ll
l

 (3.12) 

However, at this point, we only have one equation, Equation (3.12), and two unknowns, c  and 

p . To obtain a second equation requires a model for the sensor and actuator system that connects 

the two bodies. Herein, this is modeled as a spring-mass-damper system controlled by a PI 
controller; see, e.g., Nise [2008]. This model follows the definition from the previous section for 
internal boundary conditions, or 

   ˆ ˆ| |
c pc c p pD Du uI I  (3.13) 

Here, ˆ cu  and ˆ pu  are given by 

   ˆ ˆ, ,c c p p  u u  (3.14) 

and the operators  ˆc cD u  and  ˆp pD u  have the following definitions: 

 
2

2
ˆ ˆ( ) ,c c a i a p a i a p c

d d
D k k k k c k c k

dt dt

 
    
 

u u  (3.15) 
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and 

     
2 3

2 3
ˆ ˆ(1 ) (1 ) ,p p a i a p a i a p a p

d d d
D k k k k c k c k m

dt dt dt

 
       
 

u u  (3.16) 

where the parameters ma, ca, and ka are the mass, damping constant, and stiffness, respectively, of 
the spring-mass-damper system used to model the actuator. Parameters kp and ki are the 
proportional and integral gains of the PI controller. Applying these definitions ultimately leads to 

 
( )

[ (1 )] (1 ) .

a p c a p a i c a i c

a p a p p a p a i p a i p

c k k k c k k k

m c k k k c k k k

  

   

   

     

 

    (3.17) 

Thus, the equations of motion for the hybrid system are given by Equations (3.12) and (3.17). Note 
that the PI controller is used herein, but the entire exercise is easily repeatable with alternate control 
methodology; see, e.g., Elkhoraibi and Mosalam [2007] and Mosalam and Günay [2014]. 

3.3 NON-DIMENSIONALIZATION 

For further analysis, it is beneficial to non-dimensionalize Equations (3.5), (3.12), and (3.17). In 
order to do this, we define the following non-dimensional quantities: 

g
t 
l

  (3.18a) 

, ,pc
c pL L 

ll
l l

 (3.18b) 

, ,pc
c c p p

mm
M L M L

m m
     (3.18c) 

,
c

m g
 

l l
 (3.18d) 

( )

M t
g

mg


 

 
 

 

l

l
 (3.18e) 

a a a
a a a

m c k
M K

m m g mg
  

l l
 (3.18f) 

p p i iK k K k
g

 
l

 (3.18g) 

Using Equation (3.18) allows us to rewrite Equations (3.5), (3.12), and (3.17) as, 

2

2

3
3 sin( ) 3 ( ),

2

d d

d d

    
 

    (3.19) 
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3 23 2

2 2

22

3 3

sin( ) sin( ) ( )
3 2

p pc c c
c p

pc
c c p p

L dL d d
L L

d d d

LL
L L

 
  

   

 
    
 

 
   
 

 (3.20) 

and 

   

2

2

3 2

3 2

( )

(1 ) (1 ) .

c c
a p a p a i a i c

p p p
a a p a p a i a i p

d d
K K K K K K

d d

d d d
M K K K K K K

d d d

   
 

  
  

  

   

     

 (3.21) 

This gives us the non-dimensionalized equations of motion for the reference and hybrid systems. 
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4.   Analysis 

For the analysis, the applied moment is given by 

( ) cos( )t     (4.1) 

where   is the non-dimensional magnitude of the applied moment, and Ω is the non-dimensional 
frequency of the applied moment. To start, the constants in the system are set as follows: Lc = 0.6, 
Lp = 0.4, Ma = 0.5, γ = 0.1, γa = 25, Ka = 12.5, Ki = 3, and Kp = 10. 

Since the reference forced pendulum is a two-state non-autonomous system, the system 
will exhibit either periodic motion or chaotic motion depending on the values of the parameters; 
see Parker and Chua [1989]. The hybrid forced pendulum is a five-state non-autonomous system 
and will also exhibit either periodic or chaotic motion. If the motion is periodic, the period of the 
steady-state motion will be an integer multiple of the forcing period, nT, where n = 1, 2, 3... and 

2T    if n > 1; this corresponds to an excited sub-harmonic of period nT; see Guckenheimer 
and Holmes [1983]. In order to determine the character of the motion of the systems, we used 
Lyapunov exponents; see Nayfeh and Balachandran [1995]. If the largest Lyapunov exponent is 
positive, then the system will exhibit chaotic motion. If the largest Lyapunov exponent is 0, then 
the system will experience periodic motion; see Baker and Gollub [1996]. Also, as long as the sum 
of all of the Lyapunov exponents is negative, then we know that the system is stable in the sense 
of Lyapunov. The Lyapunov exponents are found using the QR method for small continuous 
nonlinear systems as outlined by Dieci et al. [2010] and the FORTRAN code provided by 
“Software: LESLIS/LESLIL and LESNLS/LESNLL”. We modified the LESNLS routine to 
calculate the Lyapunov exponents for our systems. 

To begin, we examine how the magnitude of the applied moment determines the behavior 
of the responses of both the reference and hybrid systems for a fixed frequency of the applied 
moment. Setting Ω = 1 for multiple values of  , we can determine when the systems are either 
periodic or chaotic. Figure 4.1 shows the largest Lyapunov exponent for the reference and hybrid 
systems as a function of the forcing magnitude; for the most part, the reference and hybrid systems 
exhibit the same type of behavior. However, there are a few instances where one system is periodic 
and the other is chaotic. This indicates that there are three separate cases that one needs to consider 
when performing an error analysis of a nonlinear hybrid simulation system: both responses are 
periodic, both responses are chaotic, and one response is periodic while the other is chaotic. 
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Figure 4.1 The Lyapunov exponents for the reference, 1 , and hybrid systems, 

1̂  when 1 . 

4.1 PERIODIC REFERENCE AND HYBRID SYSTEMS 

First, we analyze the case when both the reference and hybrid systems are periodic. For this 
case, we utilized L2 error to gauge how well the hybrid system matches the reference system 
per Drazin et al. [2015]. The L2 error is given by 
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


 (4.2) 

Note that (1) the L2 error used for the analysis is normalized with respect to the reference system; 
(2) the difference in angles is always taken to be the smallest angular distance between 0 and 2π. 
We calculated the L2 error at three different values of  :   = 0.7, 1.114, and 2.6. 

A careful examination of Figure 4.1 shows that all three of these values will produce 
periodic motion in both systems. The L2 error time series for these three values of   are shown in 
Figure 4.2. This figure shows that when the transients are still present, i.e., small  , the error varies 
rapidly. However, as   increases, the error approaches a steady-state value. This make sense 
because both systems are approaching a periodic solution; thus the difference between the two 
solutions should be approximately contant. However, as shown in Figure 4.2 where 1.114,   the 
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L2 error approaches a value near 1.3 (or 130%), indicating that the hybrid system is not tracking 
the reference system well. Further study reveals that the reference system is traveling in a 
clockwise direction, while the hybrid system is traveling in a counter-clockwise direction. Thus, 
the hybrid system is matching the response of the reference system, just in the opposite direction, 
which caused the large L2 error. To more fully study the dynamical response, we look at the state 
space of the two systems, which is shown in Figure 4.3. Note, only c  and cd d   are plotted for 

clarity in the figures; see the Appendix for similar plots for p  and pd d  ;. This figure shows 

that although the state-space trajectories are similar in shape, they vary by a rotation in state space. 
Thus, as long as the exact trajectory is not required, the hybrid response can be useful in 
understanding the dynamics of the reference system. Note that Figure 4.3 also clearly shows that 
sub-harmonics are being excited in this case. 

 

Figure 4.2 The L2 error for 1  for three values of  with only periodic responses. 

4.2 CHAOTIC REFERENCE AND HYBRID SYSTEMS 

Next, we analyze the case when both systems are chaotic. For the chaotic systems, the L2 error is 
no longer a good metric for determining the error in the system. Instead, we compare multiple 
aspects of the dynamics to fully understand the relationship between the reference and hybrid 
systems. First, we compare the systems visually before comparing them with error metrics. The 
time series—specifically, the angular velocity time series—is used to make a visual comparison 
of the reference and hybrid systems. We then compare the Poincaré Sections of the reference and 
hybrid systems. Note, for the plotting the Poincaré Sections, the time series was calculated out to 
τ = 10,000, with Ω = 1. This provides just under 1600 points per Poincaré Section, allowing us to 
compare the nature of the response on a more fundamental level. Two values of   are chosen for 
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the chaotic case: 1.2   and 2.2  . Again, Figure 4.1 shows that these values will produce 
chaotic responses in both systems. 

Figures 4.4 and 4.5 show the time series (of the angular velocities) for the systems with 
1.2  ; see the Appendix for pd d   plots. It is clear that the two system do not track each other 

very well. However, Figure 4.6 shows the Poincaré Sections for both the reference and hybrid 
systems with 1.2  , and we can easily see the similarity between the two Poincaré Sections. 
This indicates that even when both systems are chaotic, the fundamental nature of the responses 
are nearly identical. 

Next, we look at the case when 2.2  . The angular velocity time series are shown in 
Figures 4.7 and 4.8, whereby the time series of the reference and hybrid systems match each other 
fairly well. However, the corresponding Poincaré Sections—see Figure 4.9—show very little 
correlation. Similar conclusions can be drawn from the plots of p  and pd d  ; see the 

Appendix. In conclusion, even though the time series match well, their Poincaré Sections do not, 
thus confirming the need to examine multiple aspects of the dynamics. 

 

 

Figure 4.3 The state space trajectories for the reference and hybrid systems with 
1.114  . 
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Figure 4.4 The angular velocity time series of the reference and hybrid systems 
for 1.2  . 

 

 

Figure 4.5 A zoomed in plot of the angular velocity time series of the reference 
and hybrid systems for 1.2  . 
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Figure 4.6 The Poincaré Sections of the reference and hybrid systems for 1.2  . 

 

 

Figure 4.7 The angular velocity time series of the reference and hybrid systems 
for 2.2  . 
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Figure 4.8 A zoomed in plot of the angular velocity time series of the reference 
and hybrid systems for 2.2  . 

 

 

Figure 4.9 The Poincaré Sections of the reference and hybrid systems 2.2  . 
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4.2.1 Chaos Error Metrics 

In addition to the visual error analysis, we computed three different error metrics used to give a 
numerical value to the error between two chaotic systems. First, we compared Lyapunov exponents 
of the two systems. This allowed us to directly compare the level of chaos in each system as the 
Lyapunov exponent defines how quickly trajectories will diverge from each other due to small 
variations in the trajectories; see Gilmore and Lefranc [2011]. The second value we compared was 
the Lyapunov dimension, dL, which defines the dimension of the strange attractor and is calculated 
by 

1 2

1

j
L

j

d j
  

 

 
 


 (4.3) 

where j is the largest integer for which 1 2 0j     , see Frederickson et al. [1983]. The 

Lyapunov dimension can be used to classify the complexity of a strange attractor, since a strange 
attractor will have a fractional dimension, whereas a non-strange attractor will have an integer 
dimension. For our systems, j = 2. Third, we employed the correlation exponent,  , as described 
by Grassberger and Procaccia [1983a]. The correlation exponent is used to measure the local 
structure of a strange attractor or Poincaré Section; see Grassberger and Procaccia [1983b]. The 
correlation exponent is based on how close the points on a strange attractor or Poincaré Section 
are to one another, which is another measure for the complexity of a strange attractor or Poincaré 
Section. Herein, the correlation exponent was calculated using the points in the Poincaré Section. 
The errors with respect to these three metrics are calculated as follows: 
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
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where the hat, •̂ , again, represents quantities for the hybrid system. Figures 4.10, 4.11, and 4.12 
show these error measures versus applied moment magnitude. Note, points are only calculated for 
values of   for which both the reference and hybrid system are chaotic. 
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Figure 4.10 The error between 1  and 1̂  as a function of  . 

Examination of Figure 4.10 shows a wide variety of errors in the largest Lyapunov 
exponents; however, about half of all errors are less than 0.2 (or less than 20 %). This shows that 
about half the time the levels of chaos in both systems are equivalent; however, there are times 
when the two systems vary greatly. Figure 4.11 shows that all of the errors are below 0.4, and a 
significant portion, more than nine-tenths, are less than 0.2. Thus, there is much less deviation 
between the Lyapunov dimension of the reference and hybrid systems, indicating that the 
dimension of their strange attractors stay near one another. 

Examination of Figure 4.12 shows that there is a high density of points below 0.2, with 
about two-thirds of all points below 0.2. Thus, most of the time the Poincaré Sections of the two 
systems match fairly well; however, there are still instances in which the two systems do not match 
well. For the cases visually examined above, 

1
err  = 0.1203, 

Lderr  = 0.1552, and err  = 0.0526 

when  = 1.2, and 
1

err  = 0.3680, 
Lderr  = 2.810 × 10-4 , and err  = 0.2792 for 2.2  . These 

values again fit with our conclusion that multiple quantities are needed to properly assess the error 
between two chaotic responses. 
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Figure 4.11 The error in the Lyapunov dimension as a function of  . 

 

 

Figure 4.12 The error in the correlation exponent of the Poincaré Sections as a 
function of  . 
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4.3 ONE SYSTEM PERIODIC AND THE OTHER CHAOTIC 

The third case is when one system has a chaotic response and the other system has a periodic 
response. In this situation it is not possible to compare the two systems as the L2 error breaks down 
for chaotic systems, and the Poincaré Section for a periodic system will be a single point, whereas 
the Poincaré Section for a chaotic system will be Cantor-like; see Rao [2004] or Parker and Chua 
[1989]. For these reasons, it is clear the correlation between the two responses will be nonexistent. 

4.4 STUDY OF KI 

All of the above analysis was done with specific values of the control parameters. If we use Ki = 
10 instead, which was arbitrarily chosen, we can see how the Lyapunov exponents of the hybrid 
system match those of the reference system much better, as seen by comparing Figures 4.1 and 
4.13. This potentially indicates that increasing the integral gain, Ki, results in better matching 
between the reference and hybrid systems. To investigate this further, we now look at the effects 
of changing the integral gain, Ki. We studied three specific values of , : 1.114  , 1.2, and 3.0. 
The first value was chosen because although both the hybrid and reference systems were periodic 
at Ki = 3, the hybrid system was going the opposite direction of the reference system. The second 
value was chosen because the response is chaotic for both systems at Ki = 3. And the third value 
was chosen because the reference response is periodic, while the hybrid response is chaotic at Ki 
= 3. For analyzing the effect of changing Ki, we looked at the hybrid L2 error once the transients 
had died out and the error had reached steady state: 
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 (4.7) 

Note the 2
hE  is normalized to the top piece of the hybrid pendulum. The hybrid L2 error 

determines how well the two pieces of the hybrid pendulum are matching each other and is an 
error measure we can apply independent of the chaotic or periodic nature of either system. As 
shown in Figure 4.14, as Ki is increased, the hybrid L2 error decreases for all three values of ,  
which makes sense because Ki affects the steady-state response; thus the two pieces should match 
better for larger values of Ki; see Nise [2008]. However, if we look at the steady-state L2 error in 
Figure 4.15, the L2 error does not decrease as Ki is increased; in fact, all three values of   have 
different responses to increasing Ki. 
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Figure 4.13 The Lyapunov exponents for the reference and hybrid systems 

when 10iK  . 

 

 

Figure 4.14 The 2
hE  error as a function of iK  for multiple values of  . 
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Figure 4.15 The 2E  error as a function of iK  for multiple values of  . 

 

For 1.114  , the error approximately goes between three values as Ki increases. This 
indicates that even though the hybrid pieces are matching each other better, the hybrid pendulum 
does not always match the reference pendulum better. In fact, the highest value represents the 
hybrid pendulum spinning in the opposite direction of the reference pendulum, the middle value 
represents the hybrid pendulum spinning in the same direction as the reference pendulum but takes 
a long time to reach the steady-state solution, and the low value represents the hybrid pendulum 
spinning in the same direction as the reference pendulum and reaching the steady-state solution 
more quickly. 

For 1.2  , the L2 error is not a good metric for analyzing the error. Instead, we again 

look at the Poincaré Sections, as shown in Figure 4.16; see the Appendix for θp and pd d   plots. 

From a close comparison of Figures 4.6 and 4.16, we can see that with Ki = 10, the Poincaré 
Sections match better than when Ki = 3. This indicates that the hybrid response is better for larger 
values of Ki. Evaluating the error metrics from before, we find that 

1
err  = 0.5722, 

Lderr  = 0.0919, 

and err  = 0.0332. Comparing these values to those found earlier, we find that the Lyapunov 

dimension error and correlation exponent error have decreased, while the Lyapunov exponent error 
has increased. Again, this indicates the need for multiple metrics to gauge the chaotic response; 
although it appears that increasing Ki resulted in improved hybrid response, there is a metric in 
which it became worse. 

Finally, for 3.0  , the L2 error sharply dropped around Ki = 4. This occurred because the 
hybrid system changed from chaotic to periodic, while the reference system was periodic 
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throughout. After the transition, the hybrid system had the same response type as the reference 
system. The L2 error remained low because the hybrid system was traveling in the same direction 
as the reference system, and did not change direction—unlike the case of 1.114  . This 
confirms, for the most part, the conclusion regarding Ki reached as determined from Figure 4.13. 

 

Figure 4.16 The Poincaré Sections of the reference and hybrid systems for 1.2 
and 10iK  . 
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5.   Conclusions 

This paper focused on the fundamental interface mismatch error that occurs during a nonlinear 
hybrid simulation experiment. To study this intrinsic error, we examined the behavior of a 
kinematically nonlinear hybrid system with a spring-mass-damper actuator system, controlled by 
a PI controller. This is a relatively simple model, but it provided considerable control over the 
study of this system discussed herein. We chose to use a single forcing frequency, which is a 
parameter that can be applied in future work. Most importantly, the set-up was entirely theoretical, 
thus providing a true reference against which to compare hybrid results. 

Analysis of the reference and hybrid systems found that there are three unique cases that 
need to be identified when discussing the responses of the reference and hybrid systems: (1) both 
responses are periodic, (2) both responses are chaotic, and (3) one response is periodic while the 
other is chaotic. 

1. For the periodic-periodic case, we discovered that sometimes the hybrid system tracks 
the reference system well, resulting in a low L2 error; however, at other times it did not 
track the reference system well, resulting in a high L2 error. In the case of high L2 error, 
we noted that the two systems experienced similar motions, despite not tracking well; 
see Figure 4.3. This leads to a fundamental question regarding hybrid simulation: what 
does one expect to get from hybrid simulation? Hybrid simulation loses its utility if 
perfect tracking is the goal given that even with adjustment of the control parameters, 
perfect tracking is not to be expected or assumed when testing a nonlinear system. 
However, if one wishes to understand the general response of the dynamical system in 
that the same parts of the phase space are traversed and at the same frequency, then 
hybrid simulation can still be useful, and the hybrid system can provide a good 
representation of the reference system response. Put another way, if one is content that 
the hybrid system experiences the same states as the true system, independent of 
temporal ordering, then hybrid simulation retains its utility in the nonlinear setting. 

2. This trend carries into the second case where both systems were chaotic. The first 
example where 1.2  resulted in poor time series matching but a good matching of 
Poincaré Sections, indicating a clear correlation in the dynamics of the two systems. 
The second example where 2.2   resulted in good time series matching, but little 
correlation between the two Poincaré sections. Given these results, it was necessary to 
compare more than one aspect of the dynamics. Herein, the largest Lyapunov 
exponents, the Lyapunov dimension, and the correlation exponent were used to analyze 
the correspondence between the responses. As shown in Figure 4.6, it was clear that 
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responses were similar. Even though the time series of the reference and hybrid systems 
did not follow each other closely, the allowable motions for each system were closely 
related. As shown in Figures 4.7 and 4.8, it was clear that the time series matched well 
even though the Poincaré Sections were not similar, which still indicated that responses 
of the reference and hybrid systems were correlated in the example. Thus, knowing the 
response of the hybrid system will give an approximation of how the reference system 
will respond. Again, as long as the exact trajectory is not required, i.e., one is satisfied 
that the system moves through the correct states at the correct sampling frequency, then 
hybrid simulation is still useful for understanding the response of the reference system. 
This information linked with the numerical error metrics agrees with the conclusion 
made in the first case: one needs to be fully aware of what one wants from hybrid 
simulation; exact matching may not be possible. It is possible for hybrid simulation to 
properly reproduce certain dynamical quantities, which can be just as useful. 

3. Finally, for the third case where one system was periodic and the other chaotic, it 
proved not worth trying to compare the two responses. For the periodic system, the 
response will approach a periodic steady-state, whereas in the chaotic system, the 
response will be an aperiodic solution, indicating large differences in the behavior of 
the response. 

All of the above analysis was concerned with a single value of the integral gain, Ki, 
specifically Ki = 3. Upon changing Ki, we now understand more about the nature of the hybrid 
response. In all cases, the error internal to the hybrid system, 2 ( 1000)hE   , decreased as Ki was 
increased. Unfortunately, this does not directly translate to better tracking between the hybrid and 
reference systems, as shown in a comparison of Figures 4.14 and 4.15. In the case when both 
systems are periodic, as Ki increases it is possible for the hybrid system to change from a counter-
clockwise rotation to a clockwise rotation and back. Notwithstanding, in almost all other instances, 
increasing Ki produces a better hybrid result. However, one cannot simply increase the value of 
Ki; there are stability and physical constraints that determine the feasible range of Ki. 
Understanding how to effectively use the control parameters is of great importance. The research 
reported herein examined one very simple control system since the underlying set of outcomes is 
independent of this choice; better controllers will not obviate the need to understand chaotic 
trajectories in the nonlinear case. 

In conclusion, the application of hybrid simulation to nonlinear systems requires an 
understanding of what one wishes to achieve, a knowledge of the three possible outcomes, and the 
application of multiple metrics to ensure fidelity. 
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Appendix p  and pd d   Plots 

In the main body of the text we consistently compare the dynamical response of the C part of the 
hybrid system to the reference system. For completeness, sake, this appendix provides comparison 
plots using the dynamical response of the P part. All conclusions made from the plots in the main 
body of the text remain true. 

 

Figure A.1 The state space trajectories for the reference and hybrid systems with 
1.114  ; compare to Figure 4.3. 
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Figure A.2 The angular velocity time series of the reference and hybrid systems for 
1.2  ; compare to Figure 4.4. 

 

Figure A.3 A zoomed in plot of the angular velocity time series of the reference 
and hybrid systems for 1.2  ; compare to Figure 4.5. 



33 

 

Figure A.4 The Poincaré Sections of the reference and hybrid systems for 1.2  ; 

compare to Figure 4.6. 

 

Figure A.5 The angular velocity time series of the reference and hybrid systems for 
2.2  ; compare to Figure 4.7. 
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Figure A.6 A zoomed in plot of the angular velocity time series of the reference 
and hybrid systems for 2.2  ; compare to Figure 4.8. 

 
 

Figure A.7 The Poincaré Sections of the reference and hybrid systems for 2.2  ; 

compare to Figure 4.9. 
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Figure A.8 The Poincaré Sections of the reference and hybrid systems for 1.2 
and 10iK  ; compare to Figure 4.16. 
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