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Abstract

Hybrid simulation is a popular testing method for the experimental assessment of structural
systems. The primary notion is to test only part of the system physically while simulta-
neously simulating the rest of the system via computer. While the basic idea is simple to
understand, there is surprisingly little theoretical work targeted towards understanding the
behavior of the concept and in particular its theoretical limitations. Although much at-
tention has been devoted to reducing perceived error, little is actually known about what
the reduction targets should be. In this report an initial investigation of the theoretical
limitations of hybrid testing is presented in the context of a simple canonical setting: the
Kirchhoff-Love plate bending dynamic problem. The physical system is mathematically sep-
arated into two pieces whose motions are exactly integrated analytically in closed-form. At
the splitting interface, theoretical models associated with tracking and phase error of the
boundary motions and forces are introduced. A parametric study is then performed to as-
sess the resulting dependency of the error in the system response in terms of the interface
models. Errors are represented in terms of a variety of norms, including L2 norms, as well
as a collection of semi-norms representing a variety of physically relevant resultant force-like
quantities.

It is demonstrated that such systems are generally viable only below the first fun-
damental frequency of the system. At and above the fundamental frequency of the system,
there are significant and unpredictable errors. Furthermore, it is shown that there is a ten-
dency to accumulate global errors at the slightest introduction of any interface matching
error, but that these errors become insensitive to further increase in mismatch. Finally, it is
found that the different substructures are subject to excitation at their independent natural
frequencies in addition to the natural frequencies of the hybrid system. Thus, in general, one
needs to check both the natural frequencies of the whole as well as sub-systems in system
design.
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1. Introduction

1.1 Motivation

Simulation and testing are critical aspects of engineering for the assessment, design, and
production of efficient, economical, and safe structures, vehicles, engineering products, and
other physical entities that play a fundamental role in modern society. The need to accu-
rately and reliably simulate and predict the behavior of these entities is an ongoing challenge
that has sparked a wide spectrum of interdisciplinary research, with the aim of developing
robust, practical, and cost-efficient techniques and tools to achieve this goal. With the re-
cent unprecedented growth in computational capability, numerical simulation has become
the most widespread tool to solve the mathematical equations governing some of the be-
havior observed in the physical world. But these mathematical descriptions include inherent
assumptions that often leave their results in disagreement with the actual response observed.
Furthermore, there is not always a basis on which to validate these results, and the existence
of finite precision in computing can lead to unreliable results. Thus experimental testing,
the oldest and most fundamental technique of basic research, remains a necessary compo-
nent of most, if not all, of engineering and science research today. However, like numerical
modeling, experimentation faces many hindering challenges such as limitations due to cost,
size, availability of resources, and reliable data acquisition.

Hybrid simulation, formerly known as pseudodynamic testing, has come forward as
an analytical technique that serves to overcome the limitations of numerical simulation and
experimental testing by combining the two: the components of a particular system that
are difficult to accurately model mathematically are tested in the laboratory, while the
remainder of the system that may be too large or costly to test is simulated numerically.
As opposed to conventional testing, the specimen in the laboratory communicates with a
computational model to receive commands and send feedback of its response. Unfortunately,
hybrid simulation faces its own set of unique and inherent challenges, which leaves room
for vigorous research to establish the technique as widespread as numerical simulation and
experimental testing, not the least of which is the need for a well-defined theory. In the
nearly forty years since its inception in the form of “on-line testing” [Takanashi et al. 1975],
there has not been significant effort to define hybrid simulation in a theoretical framework.
Specifically, the following question should be asked: Is hybrid simulation guaranteed to
provide results representative of the actual behavior of what is being simulated?

One of the primary challenges of hybrid simulation is the impact of experimental,
numerical, and control errors on the results [Mosqueda 2003]. These errors have been thor-
oughly studied in the context of pseudodynamic testing; typically, problem-driven mitigation
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strategies have been proposed that may not hold in general [Shing and Mahin 1983; The-
walt and Mahin 1987]. For instance, the errors due to control become more significant in
real-time simulations where the time lag of the response of the servo-hydraulic system is
critical [Conte and Trombetti 2000; Horiuchi et al. 1999]. This, there is an obvious need
to develop a solid theoretical framework that will assess the effectiveness of hybrid testing
while providing bounds on the errors in an effort to shift the focus of research to increased
development of hybrid simulation techniques and applications as opposed to problem-driven
studies of errors with solutions of limited scope.

The primary focus of hybrid simulation has traditionally been in the prediction and
simulation of the response of structures (buildings, bridges, dams, tunnels, etc.) subjected
to seismic excitation [Elkhoraibi and Mosalam 2007; Igarashi et al. 1993; Takanashi and
Nakashima 1987]. The importance and merit of this goal continues to be a driving factor
for the continued development of hybrid simulation because structures are in general far too
large and costly to experimentally test, and hybrid simulation provides a cost-efficient and
effective solution. Furthermore, the guaranteed performance and safety of critical facilities
such as hospitals or power generation and distributions systems [Mosalam et al. 2012b] in
the face of disasters (including earthquakes, hurricanes, blasts, and fire) is a necessary ob-
jective of society, notwithstanding the guaranteed safety of the inhabitants in all structures.
However, it is important to note that the concept of hybrid simulation can be applied to
other disciplines as well as to structures subjected to forces other than earthquakes. This has
become increasingly important in light of recent events such as hurricanes and terrorist at-
tacks that have rendered many structures, facilities, and vehicles in a state of great disrepair
or inoperability. The problem-specific solutions proposed in previous and ongoing research
in general may not hold in other applications, and a theoretical evaluation is necessary to
validate the robustness of the technique across disciplines, as well as in the context of civil
and earthquake engineering.

1.2 Background

Hybrid simulation has built on the early concept of pseudodynamic testing by making it
possible to perform real-time and/or geographically-distributed simulations with more ad-
vanced control and communication methods, and including computational substructures of
varying sizes [Dermitzakis and Mahin 1985]. Traditionally, the computational substructure
is a finite element model, which communicates with the laboratory set-up via some sort
of middleware [Schellenberg 2008]. A prime example of a general-use middleware software
for hybrid simulation is the Open-source Framework for Experimental Setup and Control
(OpenFresco) [OpenFresco 2013].

For the object to be simulated, governing equations (in a continuum or discrete for-
mulation) are to be solved. The object is separated into computational and physical sub-
structures, where the physical substructure provides the necessary component response to
the driving (command) computational substructure via the measured laboratory response
(feedback). In the example shown in Figure 1.1, a framed multistory, multibay building
is subjected to an earthquake ground motion with a discrete finite element solution to the
equations of motion computed in the numerical substructure. One of the elements, a column,
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exists in the laboratory and provides a stiffness and measured force feedback to the compu-
tational model in response to imposed displacement commands sent from the computational
model to the actuators in the laboratory.

Figure 1.1: Schematic representation of hybrid simulation in seismic applications.

1.3 Problem Definition

The goal of this report is to present an initial investigation of the theoretical limitations of
hybrid testing in the context of simple canonical settings. Starting with classical problems,
corresponding “hybrid” problems can be formulated mathematically by arbitrarily separating
the domain. The respective motions are then exactly integrated analytically in a closed-form
while introducing a constraint at the interface of the two domains to capture the motion of
the single full body. Theoretical models associated with the tracking and phase error of the
boundary motions are introduced at the interface to simulate the effect of the incompatibility
between the laboratory set-up and the numerical model. An example of an incompatibility is
a time delay that results from the finite time it takes for an actuator to impose a displacement
on the test specimen, measure the force feedback, and communicate it back to the numerical
model [Horiuchi et al. 1999]. Note that this is not necessarily the most significant source of
error present in hybrid testing, but it is inherent in and characteristic of hybrid simulation
and is thus a focus of this study.

Some classical problems that could be studied are a one-dimensional rod subjected
to dynamic axial loading, a one-dimensional beam subjected to dynamic bending [Govindjee
2012], and a two-dimensional plate subject to a dynamic bending. The plate is the focus of
this report. The reader is referred to the work of Drazin for the bar and the beam [Drazin
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2013]. The problem is separated mathematically, and a parametric error analysis is per-
formed with respect to the “perfect” classical solution. The results presented herein are not
intended to provide an exhaustive theory for hybrid simulation, but to introduce a theoretical
investigation to be developed in continued endeavors.

With the emphasis of hybrid simulation to date being on skeletal structures that are
dominated by flexural response, the beam is an appropriate starting point. The plate, how-
ever, plays a key role in structural engineering in the form of floor slabs and out-of-plane
behavior of shear walls. These structural components tend to be large and very difficult to
test due to complex boundary conditions and interaction with the rest of the structural sys-
tem: this makes them ideal for hybrid testing. Moreover, outside the field of civil engineering,
plates and shells comprise many critical components of vehicles, machinery, micro-electrical
mechanical devices, and countless other objects that play an important role in modern so-
ciety. With few hybrid simulation efforts being dedicated to these continuum elements, it
becomes important to study them as part of the development of the next generation hybrid
simulation methods.

1.4 Report Layout

Chapter 2 presents the theoretical formulation of hybrid simulation. First, the concept is
introduced abstractly with a demonstration of the incompatibility of the substructures in
a hybrid test. The Kirchhoff-Love dynamic plate bending problem is then formulated, and
the hybrid concepts are applied. Chapter 3 introduces a method for studying the errors due
to these incompatibilities relative to the true solution. A detailed study of these errors over
a range of varying conditions is presented. Observations are noted, and their significance,
limitations, and implications are discussed. Chapter 4 summarizes these findings and outlines
the continued study and development of the theoretical framework of hybrid simulation.
Appendix A through C present some mathematical details discussed in Chapter 2. Finally,
Appendix D summarizes an experimental program carried out as part of an earlier stage of the
project on the investigation of hybrid simulation with numerically intensive computational
substructures. The results of this study are corroborated with the findings of the theoretical
investigation in Chapter 3.
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2. Theoretical Development of Hybrid
Simulation

2.1 Introduction

The concept of hybrid simulation can be considered as a substructuring type analysis in which
the domain is separated into various substructures that are analyzed or tested independently
but accounts for interface conditions to render the response equivalent to that of a single
global system [Dermitzakis and Mahin 1985]. Typically, there is a substructure intended
for the laboratory or the “physical” substructure and a substructure intended for numerical
analysis or the “computational” substructure. In general, hybrid simulation can involve
any number of substructures, each being physical or computational with the possibility of
being either all physical and all computational. These substructures may be geographically
distributed [Campbell and Stojadinovic 1998] and may utilize different computational drivers
for each computational substructure, as is possible with OpenFresco [Schellenberg 2008].

For simplicity, the theoretical treatment herein will involve only two separate domains,
both of which have closed-form analytical solutions with the only error in the system coming
from the imposed error at the interface and errors arising from finite machine precision in
the evaluation of these solutions. The choice of separation is arbitrary in location; but at
the risk of losing some generality, the orientation is selected to guarantee a well-behaving,
closed-form mathematical expression. To avoid confusion, imposed error at the interface
will generally be referred to as the “gap,” while the overall error of the hybrid formulation
relative to the analytical solutions will be referred to as the “error.”

2.2 General Picture

Consider an arbitrary body B (Figure 2.1), with governing dynamic equation and boundary
conditions given by Equation (2.1):

F [u(r, t)] = 0 r ∈ ΩB, (2.1a)

u(r, t) = ū r ∈ ∂ΩB, (2.1b)

where u is a characteristic quantity (e.g., displacements, velocities, accelerations, etc.), ū is
an imposed value of that quantity on the boundary, r is the position in space, and t is the
position in time.
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Figure 2.1: Arbitrary physical body.

B is now split into two subdomains, P and C, as seen in Figure 2.2, referred to as
the P-domain and C-domain, respectively. Each domain is governed by the same equations
but subjected to separate boundary conditions and local coordinate systems:

F [ûp(rp, t)] = 0 rp ∈ ΩP , (2.2a)

ûp(rp, t) = ūp rp ∈ ∂ΩP , (2.2b)

F [ûc(rc, t)] = 0 rc ∈ ΩC, (2.2c)

ûc(rc, t) = ūc rc ∈ ∂ΩC. (2.2d)

The following relations hold:

Ω̂B = ΩP ∪ ΩC, (2.3a)

û = ûp ∪ ûc, (2.3b)

∂ΩB = ∂ΩP ∪ ∂ΩC − ∂ΩP ∩ ∂ΩC, (2.3c)

where Ω̂B is introduced as the corresponding hybrid domain of ΩB, and û is the corresponding
unified response in the joint hybrid domain. From Equation (2.3c) and Figure 2.2, it is clear
there is an interface between P and C, ∂ΩP ∩ ∂ΩC ∈ Ω̂B, for which additional boundary
conditions on the split domain must be furnished to satisfy Equation (2.2). These boundary
conditions are

ûp(rp, t) = gp(rp, t) rp ∈ ∂ΩP ∩ ∂ΩC, (2.4a)

ûc(rc, t) = gc(rc, t) rc ∈ ∂ΩP ∩ ∂ΩC, (2.4b)

where gp and gc are “boundary functions” introduced to furnish the additional boundary
conditions needed on the interface of the P-domain and C-domain, respectively. For the
hybrid system, gp and gc are not independent but are related to each either via a constraint.

6



Figure 2.2: Separated ”hybrid” domain.

By forcing them to be unequal, a “gap” is formed between the two domains. To achieve
equivalence of the joint P-domain and C-domain to B, the boundary functions are constrained
to match:

gp = gc, (2.5a)

=⇒ Ω̂B = ΩB. (2.5b)

In the context of hybrid simulation, the boundary functions are forced to be incom-
patible by introducing an error. In general, the condition on the boundary functions is
expressed as

G[gp,gc] = 0, (2.6)

where G is a constraint functional. In hybrid simulation, the computational substructure is
subjected to some excitation. In this study the physical substructure’s response is determined
by the measured response of the testing due to the computed interface excitation. Following
this methodology, the C-domain will be subjected to an excitation, which then enters the
P-domain via the boundary functions through the constraint given by Equation (2.6). In the
context of a structural mechanics problem, the boundary functions are selected to assume
characteristic physical quantities such as displacements, rotations, bending moments, and
shears. The constraints given by Equation (2.6) then represent a mismatch in these quantities
across the interface. A key example of this mismatch is a time delay between the response
quantities of the computational and physical substructures due to the finite time required
to move the actuators in the laboratory [Horiuchi et al. 1999]. A simple expression for this
mismatch is of the kth boundary function is

gkp = gkc (1 + εk)e
−iΩdk (2.7)

where i =
√
−1 is the imaginary unit, εk controls the magnitude of the error, δk controls the

phase of the error, and Ω is a characteristic frequency of the system. This relation can be
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modified to include the effect of frequency dependence on the error. Physically speaking, a
controller will have more difficulty keeping up while operating at higher frequencies and larger
error is observed when compared to lower frequencies [Conte and Trombetti 2000]. Making
use of the generalized logistic function [Richards 1959], a simple frequency dependent error
gap model, as shown in Figure 2.3, may be expressed as

εk(ω) =
ε0

(1 + e(ω0−ω))2
, (2.8)

where ε0 is a maximum error magnitude, and ω0 is the frequency of maximum growth rate.

0 1 2 3 4 5 6 7 8 9 10

0
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ε
(ω

) 
(%

)

Figure 2.3: Example of the frequency-dependent error model.
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2.3 Kirchhoff-Love ”Thin” Plate

Consider a simply supported homogeneous, isotropic Kirchhoff-Love “thin” plate of uniform
thickness h, mass density ρ, and elastic modulus E, subjected to a harmonic edge moment
M(x, b, t) = M̄eiωt, as shown in Figure 2.4.

M
(x, b, t) =

M̄
e iωt,

xy

z

Figure 2.4: Simply supported homogeneous Kirchhoff plate with harmonic edge moment.

The governing equation of motion for the transverse displacements w is given by [Graff
1975]

D∇4w + ρh
∂2w

∂t2
= 0, (2.9)

where ∇4 = ∂4

∂x4
+ 2 ∂4

∂x∂y
+ ∂4

∂y4
is the biharmonic operator. The definitions of the various

plate terms used throughout can be found in Appendix A. The flexural rigidity D is defined
as

D =
Eh3

12(1− ν2)
. (2.10)

The boundary conditions for this system are

w(0, y, t) = w(a, y, t) = 0, (2.11a)

w(x, 0, t) = w(x, b, t) = 0, (2.11b)

∂2w

∂x2

∣∣∣∣
x=0

=
∂2w

∂x2

∣∣∣∣
x=a

= 0, (2.11c)

∂2w

∂y2

∣∣∣∣
y=0

= 0, (2.11d)

−D∂
2w

∂y2

∣∣∣∣
y=b

= M̄eiωt. (2.11e)

9



Lévy has proposed a solution where a Fourier sine series is assumed in one direction, with
the coefficients being functions of the orthogonal direction [Timoshenko 1959]:

w(x, y, t) = W (x, y)T (t), (2.12a)

T (t) = eiωt, (2.12b)

W (x, y) =
∞∑
m=1

Ym(y) sin(αmx), (2.12c)

αm =
mπ

a
. (2.12d)

The primary advantage of this method is a significantly more rapid convergence than
the traditional double sine series [Taylor and Govindjee 2004]. Furthermore, the plate can
be separated along the direction of the sine series, providing a convenient formulation of the
solution orthogonal to the separation. One major drawback noted by Taylor and Govind-
jee [Taylor and Govindjee 2004] is the presence of the hyperbolic terms may lead to some
numerical instability, addressed in Section 2.5.

Substituting Equation (2.12a) into Equation (2.9) leads to the following fourth order
ODE

Y ′′′′m − 2α2
mY

′′
m − (β4 − α4

m)Ym = 0, (2.13)

where

β4 =
ρhω2

D
. (2.14a)

The roots of the characteristic polynomial of Equation (2.13) are

r1, r2 = ±
√
β2 + α2

m, (2.15a)

r3, r4 = ±
√
β2 − α2

m. (2.15b)

From Equation (2.17b), it is apparent that the characteristic equation may have
complex or repeated roots. Therefore, the form of the solution will in general vary for
increasing terms in the series as well as for different driving frequencies and geometry [Leissa
1969]. The solution to Equation (2.9) is given by [Gorman and Sharma 1976]

w(x, y, t) =
mc∑

m=1,3,...

sin(αmx)[Am cosh(γ1y) +Bm sinh(γ1y)

+Cm cos(γ2y) +Dm sin(γ2y)]eiωt

+
mr∑

m=mc+1,mc+3,...

sin(αmx)[Em cosh(γ1y) + Fm sinh(γ1y)

+Gmy cosh(γ1y) +Hmy sinh(γ1y)]eiωt

+
∞∑

m=mr+1,mr+3,...

sin(αmx)[Im cosh(γ1y) + Jm sinh(γ1y)

+Km cosh(−γ2y) + Lm sinh(−γ2y)]eiωt.

(2.16)
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where α4
m > β4 for m ≤ mc, α

4
m = β4 for mc < m ≤ mr, and α4

m > β4 for m > mr and

γ1 =
√
β2 + α2

m, (2.17a)

γ2 =
√
|β2 − α2

m|. (2.17b)

The selection of the Fourier sine series in x automatically satisfies Equation (2.11a).
The coefficients Am through Lm are determined by imposing the remaining boundary con-
ditions. In order to impose Equation (2.11e), a Fourier expansion is performed:

−D∂
2w

∂y2

∣∣∣∣
y=b

= M̄eiωt =
4M̄

π

∞∑
m=1,3,...

1

m
sin(αmx)eiωt. (2.18)

By imposing the boundary conditions on Equation (2.16), the following solution is
determined:

w(x, y, t) =
mc∑

m=1,3,...

w0 sin(αmx)

(
sin(γ2y)

sin(γ2b)
− sinh(γ1y)

sinh(γ1b)

)
eiωt

+
mr∑

m=mc+1,mc+3,...

w′0 sin(αmx)

(
b coth(γ1b)

sinh(γ1y)

sinh(γ1b)
− y cosh(γ1y)

sinh(γ1b)

)
eiωt

+
∞∑

m=mr+1,mr+3,...

w∗0 sin(αmx)

(
sinh(−γ2y)

sinh(−γ2b)
− sinh(γ1y)

sinh(γ1b)

)
eiωt,

(2.19)

where

w0 =
4M̄

mπD(γ2
1 + γ2

2)
, (2.20a)

w∗0 =
4M̄

mπD(γ2
1 − γ2

2)
, (2.20b)

w′0 =
2M̄

mπDγ1

. (2.20c)

The natural frequencies and mode shapes of the simply supported plates were initially
solved by Navier [Szilard 2004] and Gorman and Sharma [Gorman and Sharma 1976] have
shown it to be consistent with the Lévy solution.

ω̄mn = π2
√

D
ρh

(
m2

a2
+ n2

b2

)
, for m,n ∈ Z+ (2.21a)

wmn(x, y) = sin(mπx
a

) sin(nπy
b

) . (2.21b)

Figure 2.5 shows the response of a square plate subjected to a harmonic edge moment
driven at a forcing frequency ω near the natural frequencies ω̄mn of the plate. The plots were
generated with the Matlab R© programming language software package [MATLAB 2013].
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(a) m=1, n=1 (b) m=1, n=3

(c) m=3, n=1 (d) m=3, n=3

Figure 2.5: Plate response at driving frequency near the natural frequencies.

2.4 Hybrid Plate

Consider the plate from Section 2.3 separated into the P-domain and C-domain as depicted
in Figure 2.6, with boundary functions defined at the interface. Here gwp and gwc are selected
as displacements and gθp and gθc are rotations about the x-axis.

M
(x, b, t) =

M̄
e iωt,

xy

z

gp(x, t)

gc(x, t)

{
ŵp(x, y, t)

ŵc(x, y, t)

Figure 2.6: Hybrid thin plate with “physical” and “computational” substructures.
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The full plate is then the union of the individual solutions for each domain as intro-
duced in Equation (2.3)

ŵ(x, y, t) =

{
ŵp(x, y, t) for y ∈ [0, bp]

ŵc(x, y, t) for y′ ∈ [0, bc].
(2.22)

The coordinate transformation y′ = b − y is introduced for convenience and it holds
that bp + bc = b. The solution form for each domain is assumed to be similar to Equa-
tion (2.12a):

ŵp(x, y, t) = Ŵp(x, y)Tp(t), (2.23a)

Tp(t) = eiωpt, (2.23b)

ŵc(x, y
′, t) = Ŵc(x, y

′)Tc(t), (2.23c)

Tc(t) = eiωct. (2.23d)

Applying Lévy’s method to each domain, the solutions are expressed similar to Equa-
tion (2.16).

For the P-domain or x ∈ [0, a] and y ∈ [0, bp]

ŵp(x, y, t) =
mc∑

m=1,3,...

sin(αpmx)[Apm cosh(γp1y) +Bpm sinh(γp1y)

+Cpm cos(γp2y) +Dpm sin(γp2y)]eiωpt

+
mr∑

m=mc+1,mc+3,...

sin(αpmx)[Epm cosh(γp1y) + Fpm sinh(γp1y)

+Gpmy cosh(γp1y) +Hpmy sinh(γp1y)]eiωpt

+
∞∑

m=mr+1,mr+3,...

sin(αpmx)[Ipm cosh(γp1y) + Jpm sinh(γp1y)

+Kpm cosh(−γp2y) + Lpm sinh(−γp2y)]eiωpt.

(2.24)

For the C-domain or x ∈ [0, a] and y′ ∈ [0, bc]

ŵc(x, y, t) =
mc∑

m=1,3,...

sin(αcmx)[Acm cosh(γc1y
′) +Bcm sinh(γc1y

′)

+Ccm cos(γc2y
′) +Dcm sin(γc2y

′)]eiωct

+
mr∑

m=mc+1,mc+3,...

sin(αcmx)[Ecm cosh(γc1y
′) + Fcm sinh(γc1y

′)

+Gcmy
′ cosh(γc1y

′) +Hcmy
′ sinh(γc1y

′)]eiωct

+
∞∑

m=mr+1,mr+3,...

sin(αcmx)[Icm cosh(γc1y
′) + Jcm sinh(γc1y

′)

+Kcm cosh(−γc2y′) + Lcm sinh(−γc2y′)]eiωct.

(2.25)
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It is assumed that the frequencies of the solutions, ωp and ωc, are continuous across
the domains and comply with the driving frequency ω. This condition leads to

ωp = ωc = ω, (2.26a)

αpm = αcm = αm, (2.26b)

β4
p = β4

c = β4, (2.26c)

γp1 = γc1 =
√
α2
m + β2, (2.26d)

γp2 = γc2 =
√
α2
m − β2. (2.26e)

In the spirit of substructuring analysis, each domain is considered separately and the
results subsequently merged.

2.4.1 P-Domain

The boundary conditions on the P-domain are

ŵp(0, y, t) = ŵp(a, y, t) = 0, (2.27a)

∂2ŵp
∂x2

∣∣∣∣
x=0

=
∂2ŵp
∂x2

∣∣∣∣
x=a

= 0, (2.27b)

ŵp(x, 0, t) = 0, (2.27c)

∂2ŵp
∂y2

∣∣∣∣
y=0

= 0, (2.27d)

ŵp(x, bp, t) = gwp (x, t) =
∞∑

m=1,3,...

Γwpm sin(αpmx)eiωpt, (2.27e)

∂ŵp
∂y

∣∣∣∣
y=bp

= gθp(x, t) =
∞∑

m=1,3,...

Γθpm sin(αpmx)eiωpt. (2.27f)

Because the boundary functions are selected as displacements and rotations at the
interface y = bp along x, the Fourier expansions are assumed to be of the form given by
Equations (2.27e) and (2.27f) to maintain consistency with the Lévy solution.

By substituting these boundary conditions into Equation (2.24), the coefficients Apm
through Lpm are determined:

Apm = 0, (2.28a)

Bpm =
−γp2 cos(γp2bp)γp1 + sin(γp2bp)Γ

θ
pm

R1

, (2.28b)

Cpm = 0, (2.28c)

Dpm =
γp1 cosh(γp1bp)γp1 − sinh(γp1bp)Γ

θ
pm

R1

, (2.28d)

Epm = 0, (2.28e)
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Fpm =
(γp1bp sinh(γp1bp) + cosh(γp1bp))γp1 − bp cosh(γp1bp)Γ

θ
pm

R′1
, (2.28f)

Gpm =
−γp1 cosh(γp1bp)γp1 + sinh(γp1bp)Γ

θ
pm

R′1
, (2.28g)

Hpm = 0, (2.28h)

Ipm = 0, (2.28i)

Jpm =
−γp2 cosh(γp2bp)γp1 + sinh(γp2bp)Γ

θ
pm

R∗1
, (2.28j)

Kpm = 0, (2.28k)

Lpm =
γp1 cosh(γp1bp)γp1 − sinh(γp1bp)Γ

θ
pm

R∗1
. (2.28l)

where

R1 = γp1 cosh(γp1bp) sin(γp2bp)− γp2 sinh(γp1bp) cos(γp2bp), (2.29a)

R∗1 = γp1 cosh(γp1bp) sinh(−γp2 bp)− γp2 sinh(γp1bp) cos(−γp2bp), (2.29b)

R′1 = sinh(γp1bp) cosh(γp1bp)− γp1bp. (2.29c)

Note again that the excitation enters the P-domain through gwp (x, t) and gθp(x, t) at
the interface by imposing a constraint on these functions with their counterparts in the
C-domain gwc (x, t) and gθc (x, t), respectively.

2.4.2 C-Domain

Similar to the P-domain, the boundary conditions for the C-domain are

ŵc(0, y
′, t) = ŵc(a, y

′, t) = 0, (2.30a)

∂2ŵc
∂x2

∣∣∣∣
x=0

=
∂2ŵc
∂x2

∣∣∣∣
x=a

= 0, (2.30b)

ŵc(x, 0, t) = 0, (2.30c)

∂2ŵc
∂y′2

∣∣∣∣
y′=0

= −4M̄

πD

∞∑
m=1,3,...

1

m
sin(αcmx)eiωct, (2.30d)

ŵc(x, bc, t) = gwc (x, t) =
∞∑

m=1,3,...

Γwcm sin(αcmx)eiωct, (2.30e)

∂ŵc
∂y′

∣∣∣∣
y′=bc

= gθc (x, t) =
∞∑

m=1,3,...

Γθcm sin(αcmx)eiωct. (2.30f)

By substituting these boundary conditions into Equation (2.25), the coefficients Acm
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through Lcm can be determined:

Acm = −w0, (2.31a)

Bcm =
−γc2 cos(γc2bc)γc2 + sin(γc2bc)Γ

θ
cm + w0(γc2 + P1)

R2

, (2.31b)

Ccm = w0, (2.31c)

Dcm =
γc1 cosh(γc1bc)γc2 + sinh(γc1bc)Γ

θ
cm + w0(γc1 − P2)

R2

, (2.31d)

Ecm = 0, (2.31e)

Fcm =
(γc1bc sinh(γc1bc) + cosh(γc1bc))γc2 − bc cosh(γc1bc)Γ

θ
cm − w′0γc1b2

c

R′2
, (2.31f)

Gcm =
−γc1 cosh(γc1bc)γc2 + sinh(γc1bc)Γ

θ
cm + w′0 sinh2(γc1bc)

R′2
, (2.31g)

Hcm = −w′0, (2.31h)

Icm = −w∗0, (2.31i)

Jcm =
−γc2 cosh(γ′c2bc)γc2 + sin(γ′c2bc)Γ

θ
cm − w∗0(γ′c2 + P ∗1 )

R∗2
, (2.31j)

Kcm = w∗0, (2.31k)

Lcm =
γc1 cosh(γc1bc)γc2 + sinh(γc1bc)Γ

θ
cm − w∗0(γc1 − P ∗2 )

R∗2
. (2.31l)

where

R2 = γc1 cosh(γc1bc) sin(γc2bc)− γc2 sinh(γc1bc) cos(γc2bc), (2.32a)

P1 = γc1 sinh(γc1bc) sin(γc2bc)− γc2 cosh(γc1bc) cos(γc2bc), (2.32b)

P2 = γc2 sinh(γc1bc) sin(γc2bc) + γc1 cosh(γc1bc) cos(γc2bc), (2.32c)

R′2 = sinh(γc1bc) cosh(γc1bc)− γc1bc, (2.32d)

R∗2 = γc1 cosh(γc1bc) sinh(−γc2bc) + γc2 sinh(γc1bc) cosh(γc2bc), (2.32e)

P ∗1 = γc1 sinh(γc1bc) sinh(−γc2bc) + γc2 cosh(γc1bc) cosh(γc2bc), (2.32f)

P ∗2 = −γc2 sinh(γc1bc) sinh(−γc2bc)− γc1 cosh(γc1bc) cosh(γc2bc). (2.32g)

2.4.3 P ∪ C Joint Domain

Because the boundary functions are not explicitly defined, two more relations in addition to
Equation (2.6) are required to determine properly the unique solutions ŵp and ŵc. These
are furnished by constraints on the bending moment and shear at the interface. Because the
force quantities in a hybrid test will also have error associated with them, gaps of the form
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given by Equation (2.7) are imposed on the bending moment and shear.

gwp (x, t)− fwgwc (x, t) = 0, (2.33a)

gθp(x, t)− fθgθc (x, t) = 0, (2.33b)

M̂py(x, bp, t)− fMM̂cy′(x, bc, t) = 0, (2.33c)

V̂py(x, bp, t)− fV V̂cy′(x, bc, t) = 0. (2.33d)

Because the rotation, ∂w/∂y, has been specified, the twisting moment is also neces-
sarily specified (see Appendix A for the definition of the twisting moment), implying that
an additional condition on the twisting moment is redundant.

2.5 Perfect Conditions

Naturally the first case to be considered is the absence of any inconsistencies between the two
domains in which the results should be equivalent to those of Section 2.3. This is achieved
with zero gap or fw = fθ = fM = fV = 1. Accordingly, Equation (2.33) becomes

gwp (x, t)− gwc (x, t) = 0, (2.34a)

gθp(x, t)− gθc (x, t) = 0, (2.34b)

M̂py(x, bp, t)− M̂cy′(x, bc, t) = 0, (2.34c)

V̂py(x, bp, t)− V̂cy′(x, bc, t) = 0. (2.34d)

These relations can be expressed in terms of the Fourier coefficients Γm of the bound-
ary functions while taking note that without the introduction of additional boundary func-
tions, the bending moments and shears are functions of these coefficients. The terms below
can be found in Appendix A.

Γwpm = Γwcm, (2.35a)

Γθpm = Γθcm, (2.35b)[
ν
∂2ŵp
∂x2

+
∂2ŵp
∂y2

]
y=bp

=

[
∂2ŵc
∂y′2

+ ν
∂2ŵc
∂x2

]
y′=bc

, (2.35c)[
(1− 2ν)

∂3ŵp
∂x2∂y

+
∂3ŵp
∂y3

]
y=bp

=

[
∂3ŵc
∂y′3

+
∂2ŵc
∂x2∂y′

(1− 2ν)

]
y′=bc

. (2.35d)

By imposing these relations on Equations (2.24) and (2.25), the following system of
algebraic equations can be used to solved for the Fourier coefficients:

1 −1 0 0
0 0 1 −1
M1 M2 M3 M4

V1 V2 V3 V4




Γwpm
Γwcm
Γθpm
Γθcm

 =


0
0
M5

V5

 . (2.36)

The terms of the coefficient matrix are defined in Appendix B.
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It was noted in Section 2.1 that the presence of the hyperbolic terms in the Lévy
solution can lead to some numerical instability. When considering higher terms in the series,
i.e., with increasing m, α4

m in general is greater than β4 and the last summation term
in Equations (2.19), (2.24), and (2.25) becomes the appropriate form of the solution with
the corresponding system of coefficients given by Equation (B.3). With increasing m, the
arguments of the hyperbolic terms become quite large and numerical evaluation of the system
can lead to instability. In this situation, it becomes necessary to switch to asymptotic forms
of the system to achieve a convergent and stable solution. These asymptotic limits are

sinh a→ ea/2 a > 0, sinh a→ −e−a/2 a < 0,

cosh a→ ea/2 a > 0, cosh a→ e−a/2 a < 0.

With these limits it can be shown that M5 = V5 = 0, which leads to Γwpm = Γwcm =
Γθpm = Γθcm = 0 and a convergent series. Note that the hyperbolic terms increase fairly
rapidly, but there is a transition period where it is inappropriate to use these limits. In
this transition, there is an observed loss of precision when compared to the numerically
well-behaved solution of Equation (2.19).

2.6 Imperfect Conditions

Figure 2.7 demonstrates this solution without and with the introduction of a displacement
gap between the P and C-domains.

(a) Perfect matching (no error). (b) Forced incompatibility in displacements.

Figure 2.7: Hybrid plate with a displacement gap.

Returning to the system of Equation (2.36) and re-introducing the error terms leads
to 

1 −fw 0 0
0 0 1 −fθ
M1 fwM2 fMM3 fθfMM4

V1 fwV2 fV V3 fθfV V4




Γwpm
Γwcm
Γθpm
Γθcm

 =


0
0

fMM5

fV V5

 . (2.37)
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with a solution given by

Γwpm =
fMfV [(V3 + fθV4)M5 − (M3 + fθM4)V5]

fV (M1 + fwM2)(V3 + fθV4)− fM(M3 + fθM4)(V1 + fwV2)
, (2.38a)

Γwcm = fwΓwpm, (2.38b)

Γθpm =
fM(V1 + fwV2)M5 − fV (M1 + fwM2)V5

fM(M3 + fθM4)(V1 + fwV2)− fV (M1 + fwM2)(V3 + fθV4)
, (2.38c)

Γθcm = fθΓ
θ
pm. (2.38d)

19



20



3. Error Analysis

To study the effect of an error introduced at the interface between the P and C-domains,
non-dimensional forms of the solutions are presented. An appropriate norm is then defined
to describe the errors over the domain.

3.1 Non-Dimensionalization

The following non-dimensional parameters are introduced:

ξ = x
a

η = y
b
ψ = w

b
, (3.39a)

ηp = bp
b

ηc = bc
b
, (3.39b)

Ω = ω
ω̄11

τ = ω̄11t µ̄ = M̄b
D
, (3.39c)

γ̄1 = γ1b = π b
a

√
(1 + (a

b
)2)Ω +m2 γ̄2 = γ2b = π b

a

√
(1 + (a

b
)2)Ω−m2, (3.39d)

Γ̄wpm =
Γw
pm

b
Γ̄wcm = Γw

cm

b
. (3.39e)

With these expressions, Equation (2.19) can be expressed in non-dimensonal form as

ψ(ξ, η, τ) =
mc∑

m=1,3,...

ψ0 sin(mπξ)

[
sin(γ̄2η)

sin(γ̄2)
− sinh(γ̄1η)

sinh(γ̄1)

]
eiΩτ

+
mr∑

m=mc+1,mc+3,...

ψ′0 sin(mπξ)
[

coth(γ̄1)
sinh(γ̄1η)

sinh(γ̄1)
− η cosh(γ̄1η)

sinh(γ̄1)

]
eiΩτ

+
∞∑

m=mr+1,mr+3,...

ψ∗0 sin(mπξ)

[
sinh γ̄2η

sinh(γ̄2)
− sinh(γ̄1η)

sinh(γ̄1)

]
eiΩτ .

(3.40)

For ξ, η ∈ [0, 1] and τ ≥ 0 and where m2 < (1 + (a
b
)2)Ω for m ≤ mc, m

2 = (1 + (a
b
)2)Ω for

mc < m ≤ mr and m2 > (1 + (a
b
)2)Ω for m > mr and

ψ0 =
4µ̄

mπ(γ̄2
1 + γ̄2

2)
, (3.41a)

ψ∗0 =
4µ̄

mπ(γ̄2
1 − γ̄′22 )

, (3.41b)

ψ′0 =
2µ̄

mπγ̄1

. (3.41c)
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Similarly, Equations (2.24) and (2.25) can be expressed non-dimensionally as

ψ̂p(ξ, η, τ) =
mc∑

m=1,3,...

sin(mπξ)
[
B̄pm sinh(γ̄1η) + D̄pm sin(γ̄2η)

]
eiΩpτ

+
mr∑

m=mc+1,mc+3,...

sin(mπξ)
[
F̄pm sinh(γ̄1η) + Ḡpmη sinh(γ̄1η)

]
eiΩpτ

+
∞∑

m=mr+1,mr+3,...

sin(mπξ)
[
J̄pm sinh(γ̄1η) + L̄pm sinh(γ̄2η)

]
eiΩpτ .

(3.42)

For ξ ∈ [0, 1], η ∈ [0, ηp] and τ ≥ 0 with the non-dimensional forms of the Fourier coefficients
of Equation (2.28) denoted by the overbar.

ψ̂c(ξ, η, τ) =
mc∑

m=1,3,...

sin(mπξ)
[
ψ0( cos(γ̄2(1− η))− cosh(γ̄1(1− η)))

+B̄cm sinh(γ̄1(1− η)) + D̄cm sin(γ̄2(1− η))
]
eiΩcτ

+
mr∑

m=mc+1,mc+3,...

sin(mπξ)
[
F̄cm sinh(γ̄1(1− η))

+Ḡcm(1− η) cosh(γ̄1(1− η))− ψ′0(1− η) sinh(γ̄1(1− η))
]
eiΩcτ

+
∞∑

m=mr+1,mr+3,...

sin(mπξ)
[
ψ∗0( cosh(−γ̄2(1− η))− cosh(γ̄1(1− η)))

+J̄cm sinh((γ̄1(1− η)) + L̄cm sinh(−γ̄2(1− η))
]
eiΩcτ .

(3.43)

For ξ ∈ [0, 1], η ∈ [ηp, 1] and τ ≥ 0 and with the non-dimensional forms of the Fourier
coefficients of Equation (2.31) denoted by the overbar.

3.2 Error Norms

A L2 displacement error norm is defined as follows for each domain:

||epw||2 =

∫
τ

∫
ξ

∫
η

(ψ − ψ̂p)2 dη dξ dτ, (3.44a)

||ecw||2 =

∫
τ

∫
ξ

∫
η

(ψ − ψ̂c)2 dη dξ dτ, (3.44b)

||ew|| =
√
||epw||2 + ||ecw||2. (3.44c)

The integrals in Equation (3.44) are to be evaluated as

||epw||2 =

∫
τ

∫
ξ

∫
η

ψ2 + ψ̂2
p − 2ψψ̂p dη dξ dτ, (3.45a)

||ecw||2 =

∫
τ

∫
ξ

∫
η

ψ2 + ψ̂2
c − 2ψψ̂c dη dξ dτ. (3.45b)
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With reference to Appendix C, the final form of these integrals can be expressed as

||epw||2 =
π

2Ω

M∑
m=1,3,...

(∫ ηp

0

Y 2
m dη +

∫ ηp

0

Re(Ypm)2 + Im(Ypm)2 dη−2

∫ ηp

0

Ym Re(Ypm) dη

)
,

(3.46a)

||ecw||2 =
π

2Ω

M∑
m=1,3,...

(∫ 1

ηp

Y 2
m dη +

∫ 1

ηp

Re(Ycm)2 + Im(Ycm)2 dη−2

∫ 1

ηp

Ym Re(Ycm) dη

)
,

(3.46b)

where the spatial integration has been carried out over the domain of the plate and the
time integration over one period of the harmonic excitation. Ym, Ypm, and Ycm are given in
Equations (3.40), (3.42), and (3.43), respectively. It is useful to consider other norms related
to different quantities of interest, primarily the rotation, bending moment, and shear. The
strategy of Appendix C can be adopted to compute these norms given the proper integrands.
For instance, the rotation L2 error norm can be computed as

||epθ||2 =
π

2Ω

M∑
m=1,3,...

(∫ ηp

0

Y ′
2
m dη +

∫ ηp

0

Re(Y ′pm)2 + Im(Y ′pm)2 dη−2

∫ ηp

0

Y ′m Re(Y ′pm) dη

)
,

(3.47a)

||ecθ||2 =
π

2Ω

M∑
m=1,3,...

(∫ 1

ηp

Y ′
2
m dη +

∫ 1

ηp

Re(Y ′cm)2 + Im(Y ′cm)2 dη−2

∫ 1

ηp

Y ′m Re(Y ′cm) dη

)
,

(3.47b)

||eθ|| =
√
||epθ||2 + ||ecθ||2, (3.47c)

where Y ′ = dY/dη. Similar expressions can be used to determine the bending moment L2

error norm, ||eM ||, and the shear L2 error norm, ||eV ||. It is perhaps more useful to consider
the relative errors with respect to the true solution. The error norms considered for the
following error analysis are of the form given by Equation (3.48):

||ew||rel = ||ew||/||ψ||, (3.48a)

||eθ||rel = ||eθ||/||θy||, (3.48b)

||eM ||rel = ||eM ||/||My||, (3.48c)

||eV ||rel = ||eV ||/||Vy||, (3.48d)

where the non-hybrid norms can be expressed similar to Equation (3.46). The definitions of
the bending moment and shear in Appendix A [Timoshenko 1959] are used to arrive at the
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following expressions:

||ψ|| =
π

2Ω

M∑
m=1,3,...

(∫ 1

0

Y 2
m dη

)
, (3.49a)

||θy|| =
π

2Ω

M∑
m=1,3,...

(∫ 1

0

Y ′
2
m dη

)
, (3.49b)

||My|| =
π

2Ω

M∑
m=1,3,...

(∫ 1

0

(Y ′′m − ν(mπ)2Ym)2 dη

)
, (3.49c)

||Vy|| =
π

2Ω

M∑
m=1,3,...

(∫ 1

0

(Y ′′′m − (1− 2ν)(mπ)2Y ′m)2 dη

)
, (3.49d)

where Y ′′ = d2Y/dη2 and Y ′′′ = d3Y/dη3.

3.3 Parametric Study of Errors

For the purpose of illustration in this section, material properties of steel are chosen with
Poisson’s ratio ν = 0.3. Square plates (a/b = 1) with thickness ratio h/b = 0.1 are presented.

3.3.1 Perfect Conditions: No Error

Figure 3.1 shows a frequency sweep of the norms introduced in the preceding section over
a range of driving frequencies of interest. Zero error is introduced between the P and C-
domains. Other parameters are held constant. Several important observations are noted as
follows:

1. The relative “zero” error is above the machine precision. As discussed in Section 2.5,
the use of the hyperbolic terms in the series leads to a noticeable loss of precision.
There is significant oscillation in the resulting norms as the frequency is changed. This
is due to the attempted numerical evaluation of “zero” with finite machine precision.

2. The higher order norms (i.e., rotation, bending moment and shear) are subject to a
higher loss of precision (due to the relative complexity of numerical evaluation) when
compared to the displacement norm. Furthermore, a downward trend can be seen with
increasing frequency, which is not observed with the displacement norm.

3. Certain natural frequencies of the plate may not be excited. This stems from the
excitation being in the form of a directional edge bending moment that does not
activate certain symmetric modes. Mathematically speaking, the “missing” natural
frequencies only appear in even terms of the series solution, with the solution here
being an odd series. This is observed at Ω = 4.
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The integrals in Equation (3.46) may be evaluated analytically or numerically with the
use of high-order numerical quadrature. The analytical expressions involve large operations
with increasing hyperbolic terms that lead to significant loss of precision and render them
surprisingly less accurate than numerical quadrature. The use of Gauss-Kronrod numerical
quadrature with well-defined error bounds [Kronrod 1965] provides more favorable results
and is used in this study unless otherwise noted.

Figure 3.2 demonstrates the effect of the separation location (i.e., ηp) on the error
norms with no introduced errors, comparing both analytical and numerical integration. In
Figure 3.2a, the relative tolerance used to determine the switch to the asymptotic forms is
set relatively high (10−5), and the integration methods provide essentially identical results.
Figure 3.2b tightens the tolerance and the analytical integration begins to accumulate error
due to loss of precision. Indeed, as the tolerance is lowered to machine precision, the numeri-
cal integrations converges while the analytical integration exhibits large errors (Figure 3.2c).
There is an upward trend of the norm with increasing ηp that is accompanied by sudden
drops at discrete values of ηp, leading to an overall downward trend of the norm. These are
artifacts of the finite numerical precision when attempting to evaluate “zero.” These trends
are not present when there is a gap and can be observed in Figure 3.14 as part of a later
discussion.

It is concluded that the behavior of the full plate can be captured fairly accurately by
the formulation presented for the hybrid plate. The error analysis presented in this chapter
will be made with reference to the “zero” error solution being the perfect case.
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(a) Relative displacement error
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(b) Relative rotation error

Figure 3.1: Frequency sweep of relative errors under perfect domain matching. Natural
frequencies are shown as dashed lines but omitted from the plots for clarity.
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(c) Relative bending moment error
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(d) Relative shear error

Figure 3.1 (Cont.): Frequency sweep of relative errors under perfect domain matching. Nat-
ural frequencies are shown as dashed lines but omitted from the plots for clarity.
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(c) Relative tolerance of switch to asymptotic forms: 10−16

Figure 3.2: Effect of separation location on norm for perfect conditions with a comparison
of exact and numerical integration.
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3.3.2 Imperfect Conditions: Displacement Gap

There are four types of gaps that can be introduced into the plate, as demonstrated by
Equation (2.37). The gap error terms are given by Equation (2.7). Figure 3.3 demonstrates
the effect of an in-phase gap, or δk = 0. When compared to Figure 3.1, it is apparent that
across all frequencies there is a considerable increase in the relative norm. Figure 3.4 presents
the same frequency sweep at a 5% magnitude error (ε = 0.05) but with a nonzero δk. The
following is observed:

1. The oscillations in Figure 3.1 are not present. Instead there is a smooth response when
not in the vicinity of a natural frequency.

2. The norm increases rapidly with the initial introduction of error but becomes quickly
indifferent to increasing error. This is discussed further in the last part of this section.

3. Except for minor variations, under the presence of constant magnitude error and no
phase delay, the four norms are very close to each other. This is different from that
shown in Figure 3.1 where there was a higher loss of precision observed for the higher
order norms.

4. There is a tendency to accumulate more error in the vicinity of excited natural fre-
quencies.

5. There are frequencies that are not natural frequencies of the system that exhibit larger
errors (for this case, Ω ≈ 1.79 and 5.58). A study of these frequencies indicates they
are in fact natural frequencies of one of the sub-plates. This is discussed further in
Section 3.6.

6. The error does not noticeably change below the fundamental frequency but rapidly
changes near and above it.

Figure 3.4 demonstrates the same displacement gaps as in Figure 3.3 but with δk =
0.01. The observations noted above are seen again under the presence of a time delay. The
delay seems to have a larger effect on the overall response at the higher frequencies.
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(b) Relative rotation error

Figure 3.3: Introduction of a constant magnitude displacement gap between P and C-
domains.
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(d) Relative shear error

Figure 3.3 (Cont.): Introduction of a constant magnitude displacement gap between P and
C-domains.
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Figure 3.4: Introduction of a displacement gap between P and C-domains, with δk = 0.01.

32



10
−1

10
0

10
1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Driving Frequency Ratio Ω

R
el

at
iv

e 
B

en
d

in
g

 M
o

m
en

t 
E

rr
o

r

 

 

  1% Gap

  5% Gap

10% Gap

20% Gap
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Figure 3.4 (Cont.): Introduction of a displacement gap between P and C-domains, with
δk = 0.01.
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3.3.3 Imperfect Conditions: Displacement, Rotation, Bending
Moment and Shear Gaps

The gap introduced in the previous section was only in the displacement; however, the form
of Equation (2.36) allows the introduction of rotation, bending moment, and shear gaps
simultaneously with a displacement gap. Physically speaking, the controller not only sends
and receives displacement commands but also records force response. Furthermore, the
system may require imposing rotations and measuring the corresponding bending moment
or torque. Therefore, naturally a hybrid system will exhibit gaps in all quantities considered
across the interface. It is, however, unclear what the relative magnitude of these gaps should
be. For the purpose of this study, the error introduced in each of the terms is identical and
incremented simultaneously. Furthermore, due to the similarity of the different norms, only
results for the displacement norm are presented.
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(a) Displacement and rotation gap.

Figure 3.5: Effect of multiple gaps.
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Figure 3.5 (Cont.): Effect of multiple gaps.
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The effect on the overall error of multiple gaps will be considered in the next sub-
section. Interestingly, the frequencies described in item 5 of the previous subsection that
exhibit large errors are not present with the addition of a rotation gap to the displacement
gap; however, these errors return with the addition of bending moment and shear gaps.
These frequencies are considered further in Section 3.6.

3.3.4 Imperfect Conditions: Effect of Increasing Gaps

The effect of increasing gap errors is now considered. The driving frequency is chosen from
Figure 3.3 such that there is no excessive error and subsequently held constant. Two cases
are presented: Figures 3.6a, 3.7a, and 3.8a are driven at a relatively low frequency (half of the
fundamental frequency), and Figures 3.6b, 3.7b, and 3.8b are driven at a higher frequency
(twice the fundamental frequency). Figure 3.7 includes a time delay, while Figure 3.8 shows
the the effect of an increasing time delay. Each curve represents the error in each of the global
response quantities (i.e., ||ew||rel, ||eθ||rel, ||eM ||rel and ||eQ||rel). The following is observed:

1. As noted earlier, there is a rapid increase in the error at the first introduction of a gap,
but as the gap increases, the overall response does not change significantly.

2. At low frequencies, more error is seen in the displacement and rotation response than
in the shear and bending moment, as opposed to higher frequencies when the different
quantities become less spread out.

3. Even with a zero magnitude gap, a time delay (phase error) induces significant errors
(Figure 3.7). Physically speaking, the errors accumulate with time.

4. The phase error term, δk, has a more significant impact on the response than the
magnitude term, εk, as observed in Figure 3.8.

5. There is more error observed in the kinematic quantities (displacements and rotations)
than in the force quantities (bending moments and shears).
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Figure 3.6: Effect on plate response quantities with constant magnitude error gaps in dis-
placement, rotation, bending moment, and shear with δk = 0. All gaps are equivalent in
magnitude and incremented simultaneously.
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Figure 3.7: Effect of constant magnitude error gaps in displacement, rotation, bending mo-
ment, and shear with δk = 0.05. All gaps are equivalent in magnitude and incremented
simultaneously.
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Figure 3.8: Effect of increasing time delay.
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3.4 Frequency-Dependant Errors

Making use of Equation (2.8), the effect of a frequency dependent errors is considered.
Figure 3.9 demonstrates a comparison of an increasing maximum gap ε0 as given by Equa-
tion (2.8) with δk = 0.01. A clear upward trend shows that as the driving frequency grows,
so does the error. Furthermore, there is little difference in the error of the various response
quantities. Finally, the effect of ε0 is only significant at higher frequencies.
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Figure 3.9: Frequency dependent gaps with δk = 0.01 in displacement, rotation, bending
moment, and shear.
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Figure 3.9 (Cont.): Frequency dependent gaps with δk = 0.01 in displacement, rotation,
bending moment, and shear.
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Figure 3.9 (Cont.): Frequency dependent gaps with δk = 0.01 in displacement, rotation,
bending moment, and shear.

3.5 Spatial Distribution of Errors

The norms introduced in Section 3.2 are useful for quantifying the overall behavior of the
plate when a mismatch is introduced between the domains in the context of hybrid simula-
tion. Given that the local behavior is often a driving factor, it is thus instructive to study
the spatial distribution of the errors when imperfect conditions are introduced.

With the solutions presented in Section 2.4, it is relatively straightforward to compute
the distribution of the error in space and time. Figures 3.10 and 3.11 demonstrate the
absolute difference between the full solution and the hybrid solution with a driving frequency
Ω = 0.5 at the time of maximum displacement. The location of the domain separation is
indicated with a dashed line. Figures 3.12 and 3.13 show the same results at a higher driving
frequency Ω = 2. In both cases a gap is introduced in displacement, rotation, bending
moment, and shear at a magnitude of 5% and δk = 0.01. Consistent with the derivation in
Section 2.4, the edge bending moment is applied at η = 1. As observed, the general trend
is for the error to accumulate around the interface where the gap is introduced. The error
seems to propagate to the driving edge as well as the opposite edge for the rotation and
the shear, with more propagation seen at the higher frequency. Finally, the peaks of the
deformed shape also show some error.
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Figure 3.10: Contour plot of absolute error in plate at Ω = 0.5 with 5% gap in all quantities
and δk = 0.01 (ηp = 0.25).
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Figure 3.11: Contour plot of absolute error in plate at Ω = 0.5 with 5% gap in all quantities
and δk = 0.01 (ηp = 0.6).
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Figure 3.12: Contour plot of absolute error in plate at Ω = 2 with 5% gap in all quantities
and δk = 0.01 (ηp = 0.25).
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Figure 3.13: Contour plot of absolute error in plate at Ω = 2 with 5% gap in all quantities
and δk = 0.01 (ηp = 0.6).
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3.6 Excitation of Substructures

The previous results indicated certain discrete frequencies that resulted in larger errors. A
careful study of these errors shows that they correspond to natural frequencies of one of
the sub-plates of the P or C-domain. For each domain, the sub-plate is simply, supported
on three sides with imposed displacements and rotations on the fourth side or, in other
words, clamped on the fourth side. The natural frequencies can be easily computed [Leissa
1973] given the aspect ratios defined by the separation location ηp. Figure 3.14 confirms
that for a driving frequency of Ω = 1.79, error spikes only occur at ηp = 0.75 and again at
ηp = 1− 0.75, where in each case one of the sub-plates is at the aspect ratio with a natural
frequency corresponding to the driving frequency.
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Figure 3.14: Effect of separation location with errors at Ω = 1.79.

A look at the deformation of the hybrid plate with imperfect conditions, shown in
Figure 3.15, indicates that the excited P-domain is vibrating with a different mode shape
than the fully simply supported (non-hybrid) plate and at a higher amplitude. Although
the solution would be expected to be unbounded at the natural frequencies, because the
sub-plates are being driven by kinematic quantities (i.e., displacements and rotations), the
solution remains bounded.

As shown in Figure 3.1, these frequencies are not excited when no error is imposed.
This is consistent with the hybrid formulation, which recovers the solution of the full simply
supported plate when there is no gap. Figure 3.5a indicates that when only displacement
and rotation errors of equivalent magnitudes are present, these frequencies are not excited.

47



(a) Zero errors (b) Imposed errors

Figure 3.15: Deflected shape of a plate at Ω = 5.58 with ηp = 0.75. The P-domain is seen
to vibrate at its natural frequency.

3.7 Discussion of Results

The preceding results leads to several conclusions. Note that the following discussion is
based primarily on the results of the analysis of an undamped, elastic homogeneous isotropic
Kirchhoff-Love plate under infinitesimal kinematics and the Bernoulli assumptions of “plane
sections remain plane.” Furthermore, the plate is subjected to harmonic excitation, which
plays an important role in engineering applications in the study of vibrations and other
phenomena; hybrid testing applications have generally been conducted with transient ex-
citation. Results were corroborated with hybrid formulations of a rod under axial loading
and an Euler-Bernoulli beam in flexure by the work of Drazin [Drazin 2013]. Generaliza-
tion of the results to hybrid simulation and pseudodynamic testing is not possible without
considerably more study in an ongoing effort.

3.7.1 Effect of Excitation Frequency

The first and most apparent results observed in Sections 3.3.2 and 3.4 is the relatively large
error at driving frequencies larger than the fundamental frequency. Below the fundamental
frequency, the error for the most part is well-behaved being log-linear or almost constant
as the fundamental frequency of the system is approached and beyond, however, the errors
become highly unpredictable. The implications of this could mean that hybrid testing may
not be reliable at high frequencies, which is certainly observed with ground motion excitation
seen in earthquake engineering applications; however, the effect of damping is not included
in this presentation. Damping plays a significant role in the dynamical response of systems,
and it is necessary to include these effects before a more formal conclusion can be drawn.

It has been noted that hybrid simulation and pseudodynamic testing produce more
favorable results in earthquake engineering applications for systems that exhibit inelastic
response than corresponding elastic systems [Chang et al. 2011]. A structural system that
undergoes inelastic deformation due to yielding exhibits significantly higher effective damping
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than the corresponding elastic system, where equivalent viscous damping is observed at about
2 to 5% of critical damping for typical structural systems [Chopra 2004]. The less favorable
response of the lightly damped elastic systems subjected to the high-frequency excitation of
an earthquake ground acceleration history is consistent with the conclusions of the theoretical
study of the plate; however, it is necessary to include the effect of damping to complete this
argument.

Also observed is the tendency to accumulate significant errors around the natural
frequencies. This result has been presented as a conclusion of previous studies [Shing and
Mahin 1983]. That work also concluded that with the presence of a discrete computational
substructure utilizing a numerical integration strategy to solve the equations of motion [New-
mark 1959] in a pseudodynamic setting, the error is proportional to ω̄∆t, where ω̄ is a natural
frequency of the system and ∆t is the time step of the numerical integration. It is not nec-
essarily appropriate to consider that result in this context; however, it is also observed here
that there are larger errors at the higher frequencies of the system.

3.7.2 Effect of Error Magnitudes

It is observed that the slightest introduction of error leads to a quick increase of the global
error in the system relative to the perfect case. Further increase of error has a lesser effect
on the global response. The implication of this is that significant efforts to improve the
experimental set-up may not have a significant impact on the overall response. Because
there will always be some error in the system due to the nature of the hybrid testing, it may
not be particularly advantageous to expend continued effort to improve the set-up. That
said, simple error compensation techniques maybe worth exploring [Elkhoraibi and Mosalam
2007].

3.7.3 Impact of Time Delay

The results presented in Section 3.3.4 indicate that the phase of the error plays a larger
role than the magnitude. Physically speaking, a system that is out-of-phase exhibits larger
errors than corresponding in-phase systems. This is an expected result granted that a time
delay will cause an accumulation of error with increasing time. The implication is that
accurate control of the physical substructure in hybrid simulation is critical for accurate
results [Ahmadizadeh et al. 2008].

3.7.4 Excitation of Substructures

Several discrete frequencies not being natural frequencies of the system exhibit a relatively
large accumulation of error. A careful study of these frequencies indicated that the sub-
structures are being excited when there is error between the domains. The implication
of this is that the individual substructures can be excited independently during a hybrid
test, particularly when the excitation is transient. This is consistent with studies that have
demonstrated that delay in the control can lead to excitation of higher modes of the physical
substructure [Shing and Mahin 1987].
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This behavior was observed in experiments carried out in an earlier phase of this
project when the effect of real-time hybrid simulation with large computational substruc-
tures was investigated, which is discussed briefly in Appendix D. In this case, components of
the experimental set-up (the hydraulic oil-column in the actuator system) were observed to
be excited [Mosalam et al. 2012a]. Although not intended as part of the physical substruc-
ture, the entire experimental set-up inevitably becomes part of the physical substructure,
and in this case is excited, resulting in significant errors. Furthermore, when a different
computational model is used, a different mode of the physical substructure is seen to be
excited, leading to some errors (Figure D.3).

3.7.5 Propagation of Errors

The error introduced as a mismatch at the interface does not remain localized at this location.
In certain cases, especially at higher driving frequencies, error is seen to spread. Error is
observed at the peaks of the system, indicating that the peak global response is affected
by local introduction of errors. Furthermore, depending on the boundary conditions, static
and kinematic quantities at supports may also exhibit significant errors. This can play an
important role as support reactions are of great interest in stress analysis.
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4. Conclusion

4.1 Summary

Hybrid simulation has the potential to solve many of today’s challenging problems in science
and engineering by overcoming the limitations of traditional experimentation and analysis
techniques. But like all methods, it faces unique limitations that are currently being ad-
dressed to insure robust and effective applicability. One of the primary drawbacks is the
lack of a well-established theory. The results presented here are the first in a continuing en-
deavor to investigate hybrid simulation and pseudodynamic testing in a theoretical context
and provide error bounds.

Beginning with the abstract problem, hybrid simulation was presented as a theoretical
problem. It was then applied to an important and prevalent problem in mechanics: dynamic
response of plates. Beginning with Kirchhoff-Love thin plate theory, “hybrid” equations were
presented for a mathematically split domain representing the physical and computational
substructures of hybrid simulation. Typical of hybrid testing, excitation was provided in
the computational domain, and the physical domain was constrained to match the response
at the interface. The hybrid solution was shown to match the non-hybrid plate within a
thoroughly presented precision of numerical evaluation in the absence of introduced error.
Error was subsequently introduced between the domains and its effect carefully studied.

The following conclusions were made as a result of this study

1. Without the presence of damping, significant errors are seen at driving frequencies near
and above the fundamental frequency.

2. There is a tendency to accumulate errors in the vicinity of the natural frequencies.
This has been observed experimentally in the context of pseudodynamic testing by
others.

3. Systems with out-of-phase response of the physical and computational substructures
exhibit larger errors than corresponding in-phase systems. This emphasizes the need
for accurate control and delay compensation.

4. There is a tendency for the error to propagate away from the interface of the phys-
ical and computational substructure at higher frequencies, affecting both peak and
boundary responses.

5. Under the presence of domain mismatch, natural frequencies of the substructures can
be excited and lead to relatively large errors. This was observed in experiments per-
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formed in an earlier effort to study the effects of numerically intensive computational
substructures in real-time hybrid simulation.

4.2 Ongoing Studies and Concluding Remarks

The continued study of the theoretical development of hybrid simulation should involve the
following:

1. The inclusion of damping, which plays an important role in the dynamical response of
systems; its inclusion is critical to generalize the results presented here.

2. More robust error models as those presented here were of the form of a time delay with
a dependence on frequency intended to simulate the errors due to experimental control
in hybrid testing. Many other forms of errors have been noted and studied, and should
be investigated in the context of the theoretical framework.

3. Extension of concepts to (a) slower than real-time and (b) faster than real-time hybrid
simulation.

4. More realistic mathematical theory as the results presented have only been for the sim-
plest case of linear elasticity, isotropy, infinitesimal kinematics, and negligible through-
thickness deformation. Most of the observed physical response, in particular the prob-
lems of greatest interest, involve large deformation kinematics, material nonlinearity,
anisotropy, and inhomogeneity.

5. Extension of concepts beyond solid mechanics as some of the most challenging problems
of importance are in fluid dynamics, heat flow, multi-physics problems, and more.

Hybrid simulation has the potential to solve many of today’s most challenging problems in
engineering and provide a powerful means to face the challenges of tomorrow. A theoretical
framework for the technique is needed to achieve a more robust implementation across mul-
tiple disciplines. The study presented herein should only be the beginning of a continued
effort on the theoretical development of hybrid simulation.
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Appendix A

Plate Notation

The various plate quantities used throughout the thesis are presented below. Figure A.1
shows a differential plate element with the consistent sign convention [Graff 1975].

dxdy

Qx

Qx +
∂Qx

∂x

∂x
Qy

Qy +
∂Qy

∂y

Mx

Mx +
∂Mx

∂x

My

My +
∂My

∂y

Mxy

Mxy +
∂Mxy

∂x

Myx

Myx +
∂Myx

∂y

Figure A.1: Differential plate element.

It follows that the shears per unit length are

Qx =
∂Mx

∂x
+
∂Myx

∂y
, (A.1a)

Qy =
∂My

∂y
− ∂Mxy

∂x
. (A.1b)

Note that the total shear also has a contribution from the twisting moment as shown by
Kirchhoff [Timoshenko 1959], as seen in Equation (A.6). Given the Euler-Bernoulli assump-
tions of “plane sections remain plane,” the strains can be defined as

εx = −z∂
2w

∂x2
εy = −z∂

2w

∂y2
γy = −2z

∂2w

∂x∂y
, (A.2)

57



where the engineering shear strain is used. For an isotropic elastic material, the stress is
given by Hooke’s law:σx

σy
τxy

 =
E

(1 + ν)(1− 2ν)

1− ν ν 0
ν 1− ν 0
0 0 1−2ν

2

 εx
εy
γxy

 . (A.3)

With the center-plane of the differential element as reference, the moments per unit length
are defined as

Mx =

∫ h/2

−h/2
zσxdz My =

∫ h/2

−h/2
zσydz Mxy = −

∫ h/2

−h/2
zτxydz, (A.4)

which leads to

Mx = −D
(∂2w

∂x2
+ ν

∂2w

∂y2

)
, (A.5a)

My = −D
(∂2w

∂y2
+ ν

∂2w

∂x2

)
, (A.5b)

Mxy = D(1− ν)
∂2w

∂x∂y
, (A.5c)

where the D is given by Equation (2.10). The total shears are

Vx = Qx −
∂Mxy

∂y
, (A.6a)

Vy = Qy −
∂Myx

∂x
. (A.6b)

The contributions of the shears from the shear stress are

Qx = −D
(∂3w

∂x3
+

∂3w

∂x∂y2

)
, (A.7a)

Qy = −D
(∂3w

∂y3
+

∂3w

∂x2∂y

)
. (A.7b)

And the total shears are

Vx = −D
(∂3w

∂x3
+ (1− 2ν)

∂3w

∂x∂y2

)
, (A.8a)

Vy = −D
(∂3w

∂y3
+ (1− 2ν)

∂3w

∂x2∂y

)
. (A.8b)

Finally the governing equation of motion is given by Equation (2.9).
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Appendix B

Coefficients of Joining System

The system of algebraic equations given by Equation (2.36) is to be solved to determine the
gap functions at the interface. The coefficients of this system are given below.

For α4 < β4

M1 = [γ̂2
2γ1 cosh(γ1b1) sin(γ2b1)− γ̂1

2γ2 sinh(γ1b1) cos(γ2b1)]/R1, (B.1a)

M2 = [γ̂1
2γ2 sinh(γ1b2) cos(γ2b2)− γ̂2

2γ1 cosh(γ1b2) sin(γ2b2)]/R2, (B.1b)

M3 = [(γ̂1
2 − γ̂2

2) sinh(γ1b1) sin(γ2b1)]/R1, (B.1c)

M4 = [(γ̂1
2 − γ̂2

2) sinh(γ1b2) sin(γ2b2)]/R2, (B.1d)

M5 = w0

[
γ̂2

2 cos(γ2b2)− γ̂1
2 cosh(γ1b2) +

γ̂1
2 sinh(γ1b2)(γ2 + P1) + γ̂2

2 sin(γ2b2)(γ1 − P2)

R2

]
,

(B.1e)

V1 = [(γ̂2
3γ1 − γ̂1

3γ2) cosh(γ1b1) cos(γ2b1)]/R1, (B.1f)

V2 = [(γ̂2
3γ1 − γ̂1

3γ2) cosh(γ1b2) cos(γ2b2)]/R2, (B.1g)

V3 = [γ̂1
3 cosh(γ1b1) sin(γ2b1)− γ̂2

3 sinh(γ1b1) cos(γ2b1)]/R1, (B.1h)

V4 = [γ̂2
3 sinh(γ1b2) cos(γ2b2)− γ̂1

3 cosh(γ1b2) sin(γ2b2)]/R2, (B.1i)

V5 = w0

[
γ̂1

3 sinh(γ2b2) + γ̂2
3 sin(γ2b2)− γ̂1

3 cosh(γ1b2)(γ2 + P1) + γ̂2
3 cos(γ2b2)(γ1 − P2)

R2

]
.

(B.1j)

The following terms, related to the mixed derivatives of the moments and shears (see Ap-
pendix A) were introduced for convenience:

γ̂1
2 = γ2

1 − να2 γ̂2
2 = −γ2

2 − να2,
γ̂1

3 = γ3
1 − (1− 2ν)α2γ1 γ̂2

3 = −γ3
2 − (1− 2ν)α2γ2

(B.2)
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For α4 > β4

M1 = [γ̂1
2γ′2 cosh(γ1b1) sinh(γ′2b1)− γ̂′2

2
γ1 sinh(γ1b1) cosh(γ′2b1)]/R∗1, (B.3a)

M2 = [γ̂1
2γ′2 sinh(γ1b2) cosh(γ′2b2)− γ̂′2

2
γ1 cosh(γ1b2) sinh(γ′2b2)]/R∗2, (B.3b)

M3 = [(γ̂′2
2
− γ̂1

2) sinh(γ1b1) sinh(γ′2b1)]/R∗1, (B.3c)

M4 = [(γ̂′2
2
− γ̂1

2) sinh(γ1b2) sinh(γ′2b2)]/R∗2, (B.3d)

M5 = w∗0

[
γ̂′2

2
cosh(γ′2b2)− γ̂1

2 cosh(γ1b2)− γ̂1
2 sinh(γ1b2)(γ′2 + P ∗1 ) + γ̂2

2 sinh γ′2b2(γ1 − P ∗2 )

R∗2

]
,

(B.3e)

V1 = [(γ̂1
3γ′2 − γ̂′2

3
γ1) cosh(γ1b1) cosh(γ′2b1)]/R∗1, (B.3f)

V2 = [(γ̂1
3γ′2 − γ̂′2

3
γ1) cosh(γ1b2) cosh(γ′2b2)]/R∗2, (B.3g)

V3 = [γ̂′2
3

sinh(γ1b1) cosh(γ′2b1)− γ̂1
3 cosh(γ1b1) sinh(γ′2b1)]/R∗1, (B.3h)

V4 = [γ̂1
3 cosh(γ1b2) sinh(γ′2b2)− γ̂′2

3
sinh(γ1b2) cosh(γ′2b2)]/R∗2, (B.3i)

V5 = w∗0

[
γ̂1

3 sinh(γ′2b2)− γ̂′2
3

sinh(γ′2b2) +
γ̂1

3 cosh(γ1b2)(γ′2 + P ∗1 ) + γ̂′2
3

cosh(γ′2b2)(γ1 − P ∗2 )

R∗2

]
.

(B.3j)

Where γ′2 = −γ2 is introduced for convenience and

γ̂1
2 = γ2

1 − να2 γ̂′2
2

= γ′22 − να2,

γ̂1
3 = γ3

1 − (1− 2ν)α2γ1 γ̂′2
3

= γ′32 − (1− 2ν)α2γ′2.
(B.4)

and for α4 = β4

M1 = [−γ̂1
2γ1b1 + (γ̂1

2 − 2γ2
1) sinh(γ1b1) cosh(γ1b1)]/R′1, (B.5a)

M2 = [γ̂1
2γ1b2 − (γ̂1

2 − 2γ2
1) sinh(γ1b2) cosh(γ1b1)]/R′2, (B.5b)

M3 = [2γ1 sinh2(γ1b1)]/R′1, (B.5c)

M4 = [2γ1 sinh2(γ1b2)]/R′2, (B.5d)

M5 =

−w′0
[
γ̂1

2b2 sinh(γ1b2) + 2γ1 cosh(γ1b2) +
γ̂1

2b2
2γ1 sinh(γ1b2)

R′2

−(γ̂1
2b2 cosh(γ1b2) + 2γ1 sinh(γ1b2)) sinh2(γ1b2)

R′2

], (B.5e)

V1 = −2γ3
1 cosh2(γ1b1)]/R′1, (B.5f)

V2 = −2γ3
1 cosh2(γ1b2)]/R′2, (B.5g)

V3 = [γ̃1
3 sinh(γ1b1) cosh(γ1b1)− γ̂1

3b1]/R′1, (B.5h)

V4 = [−γ̃1
3 sinh(γ1b2) cosh(γ1b2) + γ̂1

3b2]/R′2, (B.5i)
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V5 =

w′0

[
γ̂1

3b2 cosh(γ1b2) + γ̃1
3 sinh(γ1b2) +

γ̂1
3b2

2γ1 cosh(γ1b2)

R′2

−(γ̂1
3b2 sinh(γ1b2) + γ̃1

3 cosh(γ1b2)) sinh2(γ1b2)

R′2

]
.

(B.5j)

γ̂1
2 = γ2

1 − να2 ,
γ̂1

3 = γ3
1 − (1− 2ν)α2γ1 γ̃1

3 = 3γ2
1 − (1− 2ν)α2.

(B.6)
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Appendix C

Integration of the Error Norms

The terms of the integrand in Equation (3.45) involve the product of two infinite series. For
the purposes of this integration, finite series with a sufficient number of terms for a required
accuracy will be used. The objective is to compute the following integral:∫

τ

∫
ξ

∫
η

( M∑
m=1,3,...

am(ξ, η, τ)

)( N∑
n=1,3,...

bn(ξ, η, τ)

)
dη dξ dτ. (C.1)

where
am(ξ, η, τ) = Xma(ξ)Yma(η)Ta(τ). (C.2)

bn(ξ, η, τ) = Xnb(ξ)Ynb(η)Tb(τ). (C.3)

Equation (C.1) can be expressed as∫
τ

∫
ξ

∫
η

[a1b1 + a1b2 + a2b1 + ...+ a2bN + ...+ aMbN ] dη dξ dτ

=

∫
τ

∫
ξ

∫
η

a1b1 dη dξ dτ + ...+

∫
τ

∫
ξ

∫
η

a2b1 dη dξ dτ + ...+

∫
τ

∫
ξ

∫
η

aMbN dη dξ dτ.

(C.4)

Each integral in the expanded sum of Equation (C.4) is∫
τ

∫
ξ

∫
η

ambn dη dξ dτ =

∫
τ

∫
ξ

∫
η

[
Xma(ξ)Yma(η)Ta(τ)

][
Xnb(ξ)Ynb(η)Tb(τ)

]
dη dξ dτ. (C.5)

Due to the independence of X(ξ), Y (η) and T (τ) as well as the orthogonality of ξ, η and τ ,
Equation (C.5) becomes∫
τ

∫
ξ

∫
η

ambn dη dξ dτ =

(∫
ξ

Xma(ξ)Xnb(ξ) dξ

)(∫
η

Yma(η)Ynb(η) dη

)(∫
τ

Ta(τ)Tb(τ) dτ

)
.

(C.6)
Observing that Xm(ξ) = sin(mπξ) for ψ, ψ̂p and ψ̂c, leads to∫ 1

0

Xma(ξ)Xnb(ξ) dξ =

{
1/2 m = n

0 m 6= n
. (C.7)
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Due to the orthogonality of the Fourier series, only terms where m = n of the sum given
by Equation (C.4) contribute. It becomes necessary to take either the real (or imaginary)
term of the integrand to compute the norm. Because the the error terms introduced in
Equation (2.7) are complex, the boundary function Fourier coefficients Γm become complex,
leading to complex coefficients of Ym. Given that T (τ) = eiΩτ leads to

Re(Yme
iΩτ ) = Re(Ym) cos(Ωτ)− Im(Ym) sin(Ωτ). (C.8)

The integral over τ and η becomes∫
τ

∫
η

Re
(
YmaT

)
Re
(
YmbT

)
dη dτ =∫

τ

∫
η

Re(Yma) Re(Ymb) cos2(Ωτ) dη dτ +

∫
τ

∫
η

Im(Yma) Im(Ymb) sin2(Ωτ) dη dτ,

−
∫
τ

∫
η

(
Re(Yma) Im(Ymb) + Im(Yma) Re(Ymb)

)
sin(Ωτ) cos(Ωτ) dη dτ.

(C.9)

Taking the time integral over one period, τ ∈ [0, 2π
Ω

], and noting that Imψ = 0 and Reψ = ψ,
leads to the following forms of Equation (3.45):

||epw||2 =
π

2Ω

M∑
m=1,3,...

(∫ η1

0

Y 2
m dη +

∫ η1

0

(
Re(Ypm)2 + Im(Ypm)2

)
dη−2

∫ η1

0

Ym Re(Ypm) dη

)
,

(C.10a)

||ecw||2 =
π

2Ω

M∑
m=1,3,...

(∫ 1

η1

Y 2
m dη +

∫ 1

η1

(
Re(Ycm)2 + Im(Ycm)2

)
dη−2

∫ 1

η1

Ym Re(Ycm) dη

)
.

(C.10b)
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Appendix D

Real-Time Hybrid Simulation with
Large Computational Substructures

Hybrid simulation to date has been primarily limited to framed structures involving compu-
tational substructures with relatively few degrees of freedom (DOFs). It has been noted that
in real-time applications, which become important for rate-dependent response, not suitable
for pseudodynamic tests [Nakashima 2001]; the presence of computational intensive analyt-
ical models may cause some significant issues [Mosalam and Günay 2013]. Because many
of the problems of interest today such as soil-structure interaction, fluid dynamics, multi-
physics simulations, etc., involve computational intensive numerical models, it is important
to study the limitations of real-time hybrid simulation.

The tests performed were similar to that of Figure 1.1 at the micronees@berkeley
experimental site [nees@berkeley 2013]. For a computational model, a framed structure
was considered but varied in size such that more DOFs can be parametrically added and
quantified by its computational intensity (i.e., bandwidth of the banded-matrix equations
being solved [Strang 2005]). The computational driver used was Open System for Earthquake
Engineering Simulation (OpenSEES) [OpenSEES 2013], and the model was subjected to a
selected transient ground motion record, namely the 1940 El Centro ground acceleration
record [Chopra 2004]. One of the ground-level columns is taken as the physical substructure
in the laboratory. The intent of the simulations was not to model a particular problem
but to study the effects of a large computational substructure. Material nonlinearity was
subsequently added to the computational substructure.

Figure D.1 shows a comparison of “slower than real-time” and real-time hybrid sim-
ulation response with accepted pure simulation results. Significant errors are observed for
real-time hybrid simulation. Figure D.2 shows a Fourier spectrum [Chopra 2004] of the
response indicating an excitation at about 100 Hz, which is consistent with the hydraulic
oil-column of the actuator in the test set-up [Mosqueda 2003]. Several mitigation strate-
gies were proposed such as integration algorithms with numerical damping [Combescure and
Pegon 1997] and a real-time filtering strategy, but these problem-specific solutions are typ-
ically not general in scope. For example, the addition of material nonlinearity as shown in
Figure D.3 with the strategies proposed still shows an excitation in the Fourier spectrum
consistent with the natural frequency of the physical column at about 20 Hz.
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(a) Slower than real-time
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(b) Real-time

Figure D.1: Acceleration response history at the interface between the computational and
physical substructures.
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(b) Real-time

Figure D.2: Fourier spectrum of acceleration response history at the interface between the
computational and physical substructures.
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(a) Element force-deformation hysteresis
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(b) Acceleration response Fourier spectrum

Figure D.3: Hybrid simulation with nonlinear material response of the computational sub-
structure.

Finally, Figure D.4 shows a comparison of the measured force-displacement response
to a purely numerical simulation at two different computational model sizes. As the com-
putational intensity of the model grows past a certain point, the numerical equations being
solved at each time step cannot keep up with the real-time control, and erroneous results
are observed.
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(a) 720 DOF
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(b) 780 DOF

Figure D.4: Demonstration of computational limitations in real-time hybrid simulation.
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