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Hybrid Simulation is a simulation technique involving the integration of a physical system
and a computational system with the use of actuators and sensors. This method has a strong
background in the experimental community and has been used for many years. However,
there is a noticeable lack of theoretical research on the performance of hybrid simulation.
The hybrid simulation experiments are performed with the assumption of an accurate result
as long as the main causes of error are reduced. However, the theoretical background on
hybrid testing needs to be developed in order validate these experimental findings.

In this report, four systems are independently studied for a theoretical analysis of the
performance of hybrid simulation: an elastic bar, an elastic beam, a viscoelastic bar, and
a viscoelastic beam. Each of these systems has a well-known analytical solution, making
each an ideal candidate to compare with a theoretical hybrid simulation experiment. Each
model is separated into two substructures: a computational substructure and a physical
substructure. At the new imposed interface, errors are introduced, simulating errors that
would naturally occur in an experimental setup. A parametric study of these imposed errors
is performed, where L2 norms are used for determining the error between the actual system
and the hybrid system. It is found that resonant frequencies of the system have an large effect
on the error in all cases, except near regions of damping in the viscoelastic systems. Thus, if
the exciting loads act at a resonant frequency, the results obtained from hybrid simulation
may vary greatly from those of the real system. However, there are other sources of error
that come from how the hybrid system was constructed because each of the substructures
can be excited in ways different than that of the whole system. Finally, it is noted that error
in the system grows quickly with increasing interface matching error but the system error
becomes insensitive to further increases in mismatch error.
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Chapter 1

Introduction

1.1 Background on Hybrid Simulation

Hybrid Simulation is the method in which part of a system is modeled physically and
the part of the system is modeled computationally [15]. The two parts are then connected
with the use of actuators and sensors. This allows for only part of the system to be built
in order for the whole system to be simulated. This is useful for systems that are typically
too large or expensive to be tested. Hybrid Simulation may be categorized into two main
types: real-time hybrid simulation and pseudodynamic hybrid simulation [16]. The former
uses laboratory setups to drive the experiment in a real-time setting, typically with the use
of a shake table and other actuators, which provides dynamic response. The latter uses a
step-by-step numerical solution where the system is quasi-static and the mass characteristics
of the system are modeled numerically. Hybrid simulation has mainly been used as a testing
method in structural mechanics, especially for earthquake response testing [15, 19]. However,
other types of experiments have also been done [3], which shows that hybrid simulation also
has some possible use in fields other than structural mechanics, such as the automotive
industry, ship building industry, and other fields where it is impractical to build a complete
physical system to do testing.

Real-time hybrid simulation requires the equations of motion of the system, either of
discrete objects or a continua, to be determined [16]. Once the equations of motion have
been determined, the system is separated into multiple substructures, some of which are
physical substructures and the rest are computational substructures [7]. The physical sub-
structure will be placed in a lab and connected to sensors and actuators. The computational
substructures can be solved using different numerical methods, including Newmark meth-
ods and finite elements [4, 16]. However, the physical and computational substructures are
interacting with each other via the sensors and actuators. The sensors provide information
to the computational substructures regarding the current state of the physical substructures
and the actuators manipulate the physical substructures based on the current state of the
computational substructure. This process is run in real-time to simulate the desired system.
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However, most of the work with hybrid simulation so far has been purely experimental,
which means that there is very little theoretical background to verify the results that these
experiments produce. There has been some study of the errors associated with hybrid simu-
lation, but in many of those situations, the errors studied were due to the entire experimental
setup and numerical integration, rather than the errors associated with a hybrid system [17,
18]. This report focuses solely on the theoretical performance of real-time hybrid simulation
as an experimental method. This approach avoids the errors associated with solving the
system using numerical methods and focuses on the errors that are created by splitting the
system into a hybrid system. In order to test hybrid simulation theoretically, the use of the
following theoretical models are employed: a harmonic axial load on a bar and a harmonic
flexing moment on a beam. Both of these models have been chosen for their relative simplic-
ity and the ability to analyze the solutions to these systems in analytical forms. This leads
to the best possible performance specification for hybrid simulation on simple models that
can then be extended to more complex systems. For completeness, elastic and viscoelastic
material models are studied for both the bar and beam.

1.2 General Theory of Hybrid Simulation

1.2.1 The Reference System

First, the complete theoretical system is determined, with domain D as seen in Fig. 1.1.
In this section, the system in question is kept as general as possible to allow for possible

u(x, t)

D

Figure 1.1: A general system with domain D and displacement u(x, t).

expansion to other systems other than bars and beams, which are the focus of this report.
In most cases, the displacement and it’s spatial derivatives are the most useful and easiest
quantities to measure since they all have physical meaning, such as rotation, force, moment,
and shear [11]. Therefore, the displacement of the system is the physical quantity that is
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studied in this report. The displacement of the system is defined by

u(x, t) for x ∈ D. (1.1)

The system is then separated into two or more substructures to emulate the hybrid simulation
procedure. This report focuses only on two substructures for the hybrid system, a “physical”
substructure (P-side) and a“computational” substructure (C-side) as shown in Fig. 1.2, where
P ∪ C = D and P ∩ C = ∅. This allows for the displacement to also be separated into two

up(x, t)

P

uc(x, t)

C

P ∪ C = D

Figure 1.2: A general system with imposed separation into two substructures for comparison
to the hybrid system. P ∪ C = D and P ∩ C = ∅.

pieces, as indicated by

u(x, t) =

{
up(x, t) if x ∈ P
uc(x, t) if x ∈ C. (1.2)

This system represents the real solution, against which the hybrid systems are compared.

1.2.2 The Hybrid System

Now that the reference system has been defined, the hybrid system needs to be defined.
Using the same boundary defined in Fig. 1.2, the hybrid system is separated into two sub-
structures. In order to differentiate the reference system from the hybrid system a hat (ˆ) is
used to indicate a quantity in the hybrid system. Thus, the displacement for the hybrid
system is given by

û(x, t) =

{
ûp(x, t) if x ∈ P
ûc(x, t) if x ∈ C. (1.3)
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However, since the system is now physically separated into two pieces, functions are created
in order for the two substructures to interact, emulating the use of sensors and actuators in
a lab. For this, gap functions, designated as gk, are defined as shown if Fig. 1.3. The gap

ûp(x, t)

P

ûc(x, t)

C
gk

Figure 1.3: The hybrid system separated into the physical, P , and computational, C, sub-
structures with gap function gk.

functions act as boundary conditions for the newly created boundary between the P-side
and the C-side of the system. The number of gap functions needed is determined by the
hybrid system so that the system is mathematically determinate. Since these gap functions
take on the role of boundary conditions, for every gap function on the P-side, there is a
corresponding gap function on the C-side. To create a convention with regards to gk, when
k is an odd number, the gap function relates to the P-side, and the following even k is the
corresponding C-side gap function. Thus, the pairs of gap functions are k = 1, 2, k = 3, 4,
and so forth. The gap functions take into consideration the imperfection of the dynamics of
the hybrid system, such as time-delay between the two sides, as well as magnitude tracking
errors in the displacement, rotation, force, moment, and shear as needed by the system at
hand. This allows us to see the effects of these imperfections on the solution that the hybrid
simulation produces. These types of errors are chosen due to their direct correlation to
experimental systems [1, 18].

1.3 Hybrid Simulation Error

Now that both the reference system and the hybrid system have both been defined, an
error analysis of the solutions is implemented to assess the theoretical effectiveness of hybrid
simulation. In order to preform the error analysis an L2 Norm is employed, given by [12]

||e|| =




T∫

0

∫

D

(
u(x, t)− û(x, t)

)2

dxdt




1/2

, (1.4)
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where T is the period of the harmonic loading on the system and D is the complete domain
of the system. This allows for a measurement of the absolute error between the reference
system and the hybrid system over the domain of the mechanical system and over the period
of harmonic loading. An analysis of these errors can be done by varying multiple parameters
including the forcing frequency, the location of the gap, and the dynamical imperfections.

1.4 Organization of this Report

Chapter 2 focuses solely on the elastic case, for both the bar and beam systems. Chapter 2
also includes the derivation of the equations of motion for the reference and hybrid systems.
Chapter 3 follows the same pattern as Chapter 2, but for a viscoelastic material model.
An analysis of the errors in all of the cases is conducted in Chapter 4 with the use of a
parametric study of the imposed errors. Finally, Chapter 5 provides a comprehensive review
of the results in Chapter 4, while comparing and discussing the results from all of the cases.
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Chapter 2

Hybrid Simulation Theory Applied to
the Elastic Bar and Beam

2.1 Application to the Elastic Bar

2.1.1 Reference System

The first case that is studied is the elastic, homogeneous bar with axial, harmonic loading
on one end and a fixed boundary condition on the other, i.e. an elastic fixed-free elastic bar
with axial loading. A diagram of the mechanical system is shown in Fig. 2.1. In this case

x

f(t)
u(x, t)

l

EA, ρ

Figure 2.1: The system of an elastic fixed-free bar with applied forcing, f(t).

the displacement is given by
u = u(x, t)e1, (2.1)

where e1 represents the x-coordinate direction, as indicated in Fig. 2.1. For simplicity,
only u(x, t) is dealt with, and the vector form is ignored. The partial differential equation
governing the displacement of the bar is given by [20]

ρü = EAu,xx, (2.2)
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where ρ is the linear density, E is the elastic modulus, and A is the cross-sectional area of
the bar. The forcing function, f(t), is given by

f(t) = f̄ exp (iωt), (2.3)

where f̄ is the known magnitude of the applied force, and ω is the frequency of the applied
force. To solve this system, the method of separation of variables is used [6], which gives

u(x, t) = X(x)T (t), (2.4a)

X(x) = b1 cos (βx) + b2 sin (βx), (2.4b)

T (t) = exp (iωt), (2.4c)

where b1 and b2 are constants. The boundary conditions for this system are

u(0, t) = 0, (2.5a)

EAu,x(l, t) = f̄ exp(iωt). (2.5b)

Applying the boundary conditions to (2.4) gives

b1 = 0, (2.6a)

b2 =
f̄

EAβ cos(βl)
. (2.6b)

Thus, the solution to (2.2) is given by

u(x, t) =
f̄

EAβ cos(βl)
sin(βx) exp(iωt), (2.7)

with

ω2 =
EA

ρ
β2 (2.8)

for the determination of β, the wavenumber.

2.1.2 Hybrid System

The fixed-free bar with axial loading is subjected to a hybrid system separation. The
hybrid system is shown in Fig. 2.2, with the P-side as the fixed side and the C-side as the free
side. The separation of the hybrid system is at x = l1; thus, in this system the displacement
is given by

û(x, t) =

{
ûp(x, t) if 0 ≤ x < l1

ûc(x, t) if l1 < x ≤ l.
(2.9)
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x

f(t)
ûp(x, t)

l1

EA, ρ

ûc(x, t)

l2

g1(t)

g2(t)

Figure 2.2: The system of an elastic fixed-free bar with applied forcing, f(t), with hybrid
separation and gap functions g1(t) and g2(t), l1 + l2 = l.

Again, separation of variables is applied to the system. The displacement for the hybrid
system, û(x, t), must also satisfy (2.2), thus both ûp(x, t) and ûc(x, t) must independently

satisfy (2.2). Assuming that the solution form for ûp(x, t) = X̂p(x)T̂p(t) and ûc(x, t) =

X̂c(x)T̂c(t) is the same as that for u(x, t), the following equations are produced:

X̂p(x) = b̂1 cos (β̂px) + b̂2 sin (β̂px), (2.10a)

X̂c(x) = b̂3 cos (β̂cx) + b̂4 sin (β̂cx), (2.10b)

T̂p(t) = T̂c(t) = exp (iωt), (2.10c)

where b̂1-b̂4 are constants. Since both ûp(x, t) and ûc(x, t) have to independently solve (2.2),
when (2.10) are used, the following relation is determined:

ω2 =
EA

ρ
β̂2
p =

EA

ρ
β̂2
c . (2.11)

Using (2.11) along with (2.8), it is noted that β̂p = β̂c = β. Since (2.2) is a second order
system in x, two boundary conditions are required to solve the system, one on each bound-
ary [5]. Thus, only two gap functions are needed for this case, one for the P-side and one for
the C-side. Following the same convention defined in Section 1.2.2, g1 is the gap function on
the P-side and g2 is the gap function on the C-side, as indicated in Fig. 2.2. The boundary
conditions for the hybrid system are

ûp(0, t) = 0, (2.12a)

EAûc,x(l, t) = f̄ exp(iωt), (2.12b)

ûp(l1, t) = g1(t) = ḡ1 exp(iωt), (2.12c)

ûc(l1, t) = g2(t) = ḡ2 exp(iωt). (2.12d)
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Note, in this particular case, it is assumed that both g1 and g2 are displacements for either
side of the gap. Applying the boundary conditions to (2.10) leads to the following relations:

b̂1 = 0, (2.13a)

ḡ1 = b̂2 sin(βl1), (2.13b)

ḡ2 = b̂3 cos(βl1) + b̂4 sin(βl1), (2.13c)

f̄ = βEA(b̂4 cos(βl)− b̂3 sin(βl)). (2.13d)

Using (2.13), the solutions for ûp(x, t) and ûc(c, t) become

ûp(x, t) =
ḡ1

sin(βl1)
sin(βx) exp(iωt) (2.14)

and

ûc(x, t) =

(
ḡ2 cos(β(x− l)) +

f̄

EAβ
sin(β(x− l1))

)
exp(iωt)

cos(βl2)
. (2.15)

2.1.3 Non-Dimensionalization and Determination of gk

Now that (2.7), (2.14), and (2.15) have been determined, both the reference and the
hybrid systems have been completely solved in terms of displacement. At this point, it is
beneficial to non-dimensionalize these equations. Thus, the following relations are used:

ξ =
u

l
, y =

x

l
, (2.16a)

F =
f̄

EA
, (2.16b)

c =

√
EA

ρ
, ω̄ =

c

l

π

2
, Ω =

ω

ω̄
, τ = ω̄t, (2.16c)

κ = βl =
π

2
Ω, (2.16d)

G1 =
ḡ1

l
, G2 =

ḡ2

l
, (2.16e)

L1 =
l1
l
, L2 = 1− L1, (2.16f)

where ω̄ is the lowest resonant frequency of the elastic fixed-free bar [20]. Thus (2.7), (2.14),
and (2.15) become

ξ(y, τ) =
F

κ cos(κ)
sin(κy) exp(iΩτ), (2.17)

ξ̂p(y, τ) =
G1

sin(κL1)
sin(κy) exp(iΩτ), (2.18)
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ξ̂c(y, τ) =

(
G2 cos(κ(y − 1)) +

F

κ
sin(κ(y − L1))

)
exp(iΩτ)

cos(κL2)
. (2.19)

For the rest of this section, unless stated otherwise, all new variables or quantities are
assumed to be dimensionless.

Currently, G1 and G2 are just concepts and need to be determined in order for the
equations to be analyzed. In order to determine the equations for G1 and G2, the following
conditions are created to relate the displacements and forces, modulo some constants, on
either side of the gap:

ξ̂c(L1, τ) = ξ̂p(L1, τ)(1 + ε1) exp(iΩd1), (2.20a)

ξ̂c,y(L1, τ) = ξ̂p,y(L1, τ)(1 + ε2) exp(iΩd2), (2.20b)

where ε1 is the magnitude error in the displacement that occurs at the gap in the hybrid
system and ε2 is the magnitude error in the force that occurs at the gap. Also, d1 is the
dimensionless time-delay error of the displacement that occurs at the gap in the hybrid
system and d2 is the dimensionless time-delay error of the force that occurs at the gap. εk
and dk are the error parameters for the system. Solving for G1 and G2 gives

G1 =
F

κ cos (κL2)Gd

, (2.21a)

G2 = (1 + ε1) exp(iΩd1)G1, (2.21b)

where

Gd = (1 + ε2) exp(iΩd2) cot (κL1)− (1 + ε1) exp(iΩd1) tan (κL2) . (2.21c)

2.2 Application to the Elastic Beam

2.2.1 Reference System

The second case that is studied is that of the elastic, homogeneous beam pinned on both
ends with harmonic moment applied to one end, i.e. an elastic pinned-pinned beam with
harmonic moment. A diagram of the mechanical system is shown in Fig. 2.3. In this case
the displacement is given by (2.22):

w = w(x, t)e3. (2.22)

Where e3 represents the z-coordinate direction as indicated in Fig. 2.3. Again, the vector
form is ignored, and only w(x, t) is considered. The known partial differential equation that
governs the motion of the mechanical system is given by [10]

ρẅ = −EIw,xxxx, (2.23)
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x
z

M(t)
w(x, t)

l

EI, ρ

Figure 2.3: The system of an elastic pinned-pinned beam with applied moment, M(t).

where ρ is the linear mass density, E is the elastic modulus, and I is the second moment of
area of the beam. The applied moment, M , is described by

M(t) = M̄ exp (iωt), (2.24)

where M̄ is the magnitude of the applied moment and ω is the frequency of the applied
moment. Similar to the bar case, separation of variables is used to solve this system, which
gives

w(x, t) = X(x)T (t), (2.25a)

X(x) = b1 cos(βx) + b2 sin(βx) + b3 cosh(βx) + b4 sinh(βx), (2.25b)

T (t) = exp(iωt), (2.25c)

where b1-b4 are constants. The boundary conditions for this system are

w(0, t) = 0, (2.26a)

w(l, t) = 0, (2.26b)

w,xx(0, t) = 0, (2.26c)

EIw,xx(l, t) = M̄ exp(iωt). (2.26d)

Applying these boundary conditions to (2.25) gives

b1 = 0, (2.27a)

b2 =
−M̄

2EIβ2 sin(βl)
, (2.27b)

b3 = 0, (2.27c)

b4 =
M̄

2EIβ2 sinh(βl)
. (2.27d)
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Thus, the solution to (2.23) is given by

w(x, t) =

( −M̄ sin(βx)

2EIβ2 sin(βl)
+

M̄ sinh(βx)

2EIβ2 sinh(βl)

)
exp(iωt), (2.28)

with

ω2 =
EI

ρ
β4 (2.29)

for the determination of β, the wavenumber.

2.2.2 Hybrid System

The pinned-pinned beam is now subjected to a hybrid system separation. The hybrid
system is shown in Fig. 2.4, where the P-side is the left side, without the applied moment,
and the C-side is the right side, with the applied moment. The separation of the hybrid

x
z

M(t)
ŵp(x, t)

l1

EI, ρ

g1(t) g2(t)
ŵc(x, t)

l2

g3(t) g4(t)

Figure 2.4: The system of an elastic pinned-pinned beam with applied moment, M(t), with
hybrid separation and gap functions g1(t), g2(t), g3(t), and g4(t), l1 + l2 = l.

system occurs at x = l1, thus, in this system, the displacement is given by

ŵ(x, t) =

{
ŵp(x, t) if 0 ≤ x < l1

ŵc(x, t) if l1 < x ≤ l.
(2.30)

Separation of variables is applied to the system, giving ŵp(x, t) = X̂p(x)T̂p(t) and ŵc(x, t) =

X̂c(x)T̂c(t), which both must independently satisfy (2.23). This leads to the following equa-
tions:

X̂p(x) = b̂1 cos(βpx) + b̂2 sin(βpx) + b̂3 cosh(βpx) + b̂4 sinh(βpx), (2.31a)

X̂c(x) = b̂5 cos(βcx) + b̂6 sin(βcx) + b̂7 cosh(βcx) + b̂8 sinh(βcx), (2.31b)

T̂p(t) = T̂c(t) = exp(iωt), (2.31c)

where b̂1-b̂8 are constants. Since ŵp and ŵc must both independently satisfy (2.23), the
following results are reached:

ω2 =
EI

ρ
β̂4
p =

EI

ρ
β̂4
c . (2.32)
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Using (2.32) in conjunction with (2.29), it is noted that β = β̂p = β̂c, similar to the elastic
fixed-free bar case. Since (2.23) is a fourth order system in x, four boundary conditions
are required to solve this system, two on each boundary [5]. Thus, four gap functions are
required to solve this system, two for the P-side and two for the C-side. Following the same
convention defined in Section 1.2.2, g1 and g3 are the gap functions for the P-side, and g2

and g4 are the gap functions for the C-side, as indicated in Fig. 2.4. Thus, the boundary
conditions for the hybrid system become

ŵp(0, t) = 0, (2.33a)

ŵp,xx(0, t) = 0, (2.33b)

ŵc(l, t) = 0, (2.33c)

EIŵc,xx(l, t) = M̄ exp(iωt), (2.33d)

ŵp(l1, t) = g1(t) = ḡ1 exp(iωt), (2.33e)

ŵc(l1, t) = g2(t) = ḡ2 exp(iωt), (2.33f)

ŵp,x(l1, t) = g3(t) = ḡ3 exp(iωt), (2.33g)

ŵc,x(l1, t) = g4(t) = ḡ4 exp(iωt). (2.33h)

Note that in this particular case, g1 and g2 are displacements and g3 and g4 are rotations at
the interface. Using these boundary conditions leads to the following relations:

b̂1 = 0, (2.34a)

b̂3 = 0, (2.34b)

b̂2 =
−
(

cosh(βl1)ḡ1 − sinh(βl1) ḡ3
β

)

cos(βl1) sinh(βl1)− sin(βl1) cosh(βl1)
, (2.34c)

b̂4 =
cos(βl1)ḡ1 − sin(βl1) ḡ3

β
)

cos(βl1) sinh(βl1)− sin(βl1) cosh(βl1)
, (2.34d)

b̂5 cos(βl) + b̂6 sin(βl) + b̂7 cosh(βl) + b̂8 sinh(βl) = 0, (2.34e)

b̂5 cos(βl1) + b̂6 sin(βl1) + b̂7 cosh(βl1) + b̂8 sinh(βl1) = ḡ2, (2.34f)

β2
(
−b̂5 cos(βl)− b̂6 sin(βl) + b̂7 cosh(βl) + b̂8 sinh(βl)

)
=
M̄

EI
, (2.34g)

β
(
−b̂5 sin(βl1) + b̂6 cos(βl1) + b̂7 sinh(βl1) + b̂8 cosh(βl1)

)
= ḡ4. (2.34h)

Due to the complexity of the solutions to ŵp and ŵc, the following functions are defined for
convenience:

A1(x) = sin(x)− sinh(x), (2.35a)
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A2(x) = sin(x) + sinh(x), (2.35b)

B1(x) = cosh(x)− cos(x), (2.35c)

B2(x) = cosh(x) + cos(x), (2.35d)

P1(x) = sin(x) sinh(x), (2.35e)

P2(x) = cos(x) cosh(x), (2.35f)

D1(x, y) = cosh(x) sin(y) + cos(x) sinh(y), (2.35g)

D2(x, y) = cosh(x) sin(y)− cos(x) sinh(y), (2.35h)

D3(x, y) = sinh(x) sin(y)− sin(x) sinh(y). (2.35i)

Using (2.34) and (2.35), the solutions to ŵp(x, t) and ŵc(x, t) become

ŵp(x, t) =
ḡ1D2(βl1, βx)− ḡ3

β
D3(βl1, βx)

D2(βl1, βl1)
exp(iωt), (2.36)

ŵc(x, t) =

(
M̄

2EIβ2

(
A1(βl2)B1 (β(x− l1))−B1(βl2)A1 (β(x− l1))

)

−ḡ2D2(βl2, β(x− l)) +
ḡ4

β
D3(β(x− l), βl2)

)
exp(iωt)

D2(βl2, βl2)
. (2.37)

2.2.3 Non-Dimensionalization and Determination of gk

First, (2.35) are applied to (2.28) to get the solution for the reference system in the same
format as (2.36) and (2.37), which produces

w(x, t) =
M̄D3(βx, βl)

2EIβ2P1(βl)
exp(iωt). (2.38)

Similar to the bar case, it is now beneficial to non-dimensionalize these equations. Thus, the
following relations are used:

η =
w

l
, y =

x

l
, (2.39a)

µ =
M̄l

EI
, (2.39b)

ω̄ =

√
EI

ρ

π2

l2
, Ω =

ω

ω̄
, τ = ω̄t, (2.39c)

κ = βl = π
√

Ω, (2.39d)

G1 =
ḡ1

l
, G2 =

ḡ2

l
, G3 = ḡ3, G4 = ḡ4, (2.39e)
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L1 =
l1
l
, L2 = 1− L1, (2.39f)

where ω̄ is the lowest resonant frequency of the elastic pinned-pinned beam [10]. Thus (2.36), (2.37),
and (2.38) become

η(y, τ) =
µD3(κy, κ)

2κ2P1(κ)
exp(iΩτ), (2.40)

η̂p(y, τ) =
G1D2(κL1, κy)− G3

κ
D3(κL1, κy)

D2(κL1, κL1)
exp(iΩτ), (2.41)

η̂c(y, τ) =

(
µ

2κ2

(
A1(κL2)B1(κ(y − L1))−B1(κL2)A1(κ(y − L1))

)

−G2D2(κL2, κ(y − 1)) +
G4

κ
D3(κ(y − 1), κL2)

)
exp(iΩτ)

D2(κL2, κL2)
. (2.42)

For the rest of this section, unless stated otherwise, all new variables or quantities are
assumed to be dimensionless.

Now, G1, G2, G3, and G4 need to be determined in order to perform an analysis of the
above equations. In order to determine the equations for G1, G2, G3, and G4, the following
conditions are imposed to relate the displacements, rotations, moments, and shears, modulo
some constants, on either side of the gap:

η̂c(L1, τ) = η̂p(L1, τ)(1 + ε1) exp(iΩd1), (2.43a)

η̂c,y(L1, τ) = η̂p,y(L1, τ)(1 + ε3) exp(iΩd3), (2.43b)

η̂c,yy(L1, τ) = η̂p,yy(L1, τ)(1 + ε2) exp(iΩd2), (2.43c)

η̂c,yyy(L1, τ) = η̂p,yyy(L1, τ)(1 + ε4) exp(iΩd4), (2.43d)

where εk for k = 1, 2, 3, 4 are the magnitude errors for the displacement, moment, rotation,
and shear, respectively, at the gap and dk are the time delays of the displacement, moment,
rotation, and shear at the gap. εk and dk are the error parameters for the system. Solving
for G1, G2, G3, and G4 gives

G1 =
µ

D2(κL2, κL2)Gd

(
A2(κL2)(1 + ε3) exp(iΩd3)− A1(κL2)D1(κL1, κL1)

D2(κL1, κL1)
(1 + ε4) exp(iΩd4)

+
2B1(κL2)P1(κL1)

D2(κL1, κL1)
(1 + ε2) exp(iΩd2)

)
, (2.44a)

G3 =
µκ

D2(κL2, κL2)Gd

(
−B2(κL2)(1 + ε1) exp(iΩd1)− 2A1(κL2)P2(κL1)

D2(κL1, κL1)
(1 + ε4) exp(iΩd4)

+
B1(κL2)D1(κL1, κL1)

D2(κL1, κL1)
(1 + ε2) exp(iΩd2)

)
, (2.44b)
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G2 = G1(1 + ε1) exp(iΩd1), (2.44c)

G4 = G3(1 + ε3) exp(iΩd3), (2.44d)

where

Gd = κ2
(

(1 + ε1)(1 + ε3) exp
(
iΩ(d1 + d3)

)
+ (1 + ε2)(1 + ε4) exp

(
iΩ(d2 + d4)

))

− κ2D1(κL1, κL1)D1(κL2, κL2)

D2(κL1, κL1)D2(κL2, κL2)

(
(1 + ε1)(1 + ε4) exp

(
iΩ(d1 + d4)

)

+ (1 + ε2)(1 + ε3) exp
(
iΩ(d2 + d3)

))

− κ2

D2(κL1, κL1)D2(κL2, κL2)

(
4P1(κL1)P2(κL2)(1 + ε1)(1 + ε2) exp

(
iΩ(d1 + d2)

)

+ 4P1(κL2)P2(κL1))(1 + ε3)(1 + ε4) exp
(
iΩ(d3 + d4)

))
. (2.44e)
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Chapter 3

Hybrid Simulation Theory Applied to
the Viscoelastic Bar and Beam

3.1 Application to the Viscoelastic Bar

The same fixed-free bar model that was used in Section 2.1 is used in this section.
However, instead of assuming pure elasticity, viscoelastic material effects are now considered.
In order to do this, the complex elastic modulus is used,

E∗ = E ′ + iE ′′, (3.1)

where E ′ is the storage modulus and E ′′ is the loss modulus [9]. The standard 3-parameter
Maxwell model for a linear viscoelastic solid is used in this report, which gives the following
result [21]:

E ′ = E∞ +
ω2t2r

1 + ω2t2r
(E0 − E∞), (3.2a)

E ′′ =
ωtr

1 + ω2t2r
(E0 − E∞), (3.2b)

where E0 is the instantaneous modulus, E∞ is the equilibrium modulus, which are different
than the elastic modulus, E, that was used in Section 2.1. The relaxation time, tr, is given
by

tr =
1

ω̄ζ
. (3.3)

The parameter ζ is the non-dimensional damping frequency, which determines where the
majority of the damping is applied in the frequency domain. Since E∗ is complex, it can be
expressed in polar form by

E∗ = |E∗| exp(iδ), (3.4a)

|E∗| =
√
E ′2 + E ′′2, (3.4b)
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δ = tan−1

(
E ′′

E ′

)
. (3.4c)

Using the same solution form as in (2.4), (2.8) now becomes

ω2 =
|E∗|A
ρ

β2 exp(iδ). (3.5)

Since ω, |E∗|, A, and ρ are all real values, β must now be complex. Thus, the following
result is reached for β:

β =

√
ρ

|E∗|Aω exp

(−iδ
2

)
. (3.6)

By applying the boundary conditions from (2.5), the following results are reached:

b1 = 0, (3.7a)

b2 =
f̄ exp(−iδ)
|E∗|Aβ cos(βl)

. (3.7b)

Note that b2 has also become complex. Thus the solution now becomes

u(x, t) =
f̄ exp(−iδ)
|E∗|Aβ cos(βl)

sin(βx) exp(iωt). (3.8)

Non-dimensionalizing (3.8) leads to

ξ(y, τ) =
F sin (κy)

κ cos (κ)
exp(iΩτ). (3.9)

Where all values have the same definition as in Section 2.1, except

F =
f̄ exp (−iδ)
|E∗|A , (3.10a)

c =

√
|E∗|A
ρ

, (3.10b)

κ = βl =
π

2
Ω exp

(−iδ
2

)
. (3.10c)

Note that (3.9) is exactly identical to (2.17), with the new definitions for F and κ. This
result will hold true for the hybrid system as well. Thus, the following equations all hold for
the viscoelastic fixed-free hybrid bar case, for the new definitions of F and κ:

ξ̂p(y, τ) =
G1

sin(κL1)
sin(κy) exp(iΩτ), (3.11)
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ξ̂c(y, τ) =

(
G2 cos(κ(y − 1)) +

F

κ
sin(κ(y − L1))

)
exp(iΩτ)

cos(κL2)
, (3.12)

G1 =
F

κ cos (κL2)Gd

, (3.13a)

G2 = (1 + ε1) exp(iΩd1)G1, (3.13b)

Gd = (1 + ε2) exp(iΩd2) cot (κL1)− (1 + ε1) exp(iΩd1) tan (κL2) . (3.13c)

3.2 Application to the Viscoelastic Beam

The same pinned-pinned beam model that was used in Section 2.2 is used for the vis-
coelastic case. For the viscoelastic pinned-pinned beam, the complex elastic modulus is the
same as that defined by (3.2). Using this form of the complex elastic modulus and the same
general solution as defined by (2.25), (2.29) becomes

ρω2 = |E∗|I exp(iδ)β4. (3.14)

Again note that β must now be complex. Solving for β gives

β = 4

√
ρ

|E∗|I
√
ω exp

(−iδ
4

)
. (3.15)

Applying the boundary conditions (2.26), the following results are reached:

b1 = 0, (3.16a)

b2 =
−M̄ exp(−iδ)

2|E∗|Iβ2 sin(βl)
, (3.16b)

b3 = 0, (3.16c)

b4 =
M̄ exp(−iδ)

2|E∗|Iβ2 sinh(βl)
. (3.16d)

Also note that b2 and b4 have become complex. The solution now becomes

w(x, t) =

(−M̄ exp(−iδ) sin(βx)

2|E∗|Iβ2 sin(βl)
+
M̄ exp(−iδ) sinh(βx)

2|E∗|Iβ2 sinh(βl)

)
exp(iωt). (3.17)

Non-dimensionalizing (3.17) and applying the functions defined by (2.35) leads to

η(y, τ) =
µD3(κy, κ)

2κ2P1(κ)
exp(iΩτ), (3.18)
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where all values have the same definitions as in Section 2.2, except

κ = βl = π
√

Ω exp

(−iδ
4

)
, (3.19a)

µ =
M̄l exp(−iδ)
|E∗|I . (3.19b)

Note that the solution to the viscoelastic case, (3.18), is identical to (2.40), with the new
definitions of κ and µ. Therefore, the following equations all hold for the viscoelastic pinned-
pinned hybrid beam case, using the new definitions of κ and µ:

η̂p(y, τ) =
G1D2(κL1, κy)− G3

κ
D3(κL1, κy)

D2(κL1, κL1)
exp(iΩτ), (3.20)

η̂c(y, τ) =

(
µ

2κ2

(
A1(κL2)B1(κ(y − L1))−B1(κL2)A1(κ(y − L1))

)

−G2D2(κL2, κ(y − 1)) +
G4

κ
D3(κ(y − 1), κL2)

)
exp(iΩτ)

D2(κL2, κL2)
, (3.21)

G1 =
µ

D2(κL2, κL2)Gd

(
A2(κL2)(1 + ε3) exp(iΩd3)− A1(κL2)D1(κL1, κL1)

D2(κL1, κL1)
(1 + ε4) exp(iΩd4)

+
2B1(κL2)P1(κL1)

D2(κL1, κL1)
(1 + ε2) exp(iΩd2)

)
, (3.22a)

G3 =
µκ

D2(κL2, κL2)Gd

(
−B2(κL2)(1 + ε1) exp(iΩd1)− 2A1(κL2)P2(κL1)

D2(κL1, κL1)
(1 + ε4) exp(iΩd4)

+
B1(κL2)D1(κL1, κL1)

D2(κL1, κL1)
(1 + ε2) exp(iΩd2)

)
, (3.22b)

G2 = G1(1 + ε1) exp(iΩd1), (3.22c)

G4 = G3(1 + ε3) exp(iΩd3), (3.22d)
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where

Gd = κ2
(

(1 + ε1)(1 + ε3) exp
(
iΩ(d1 + d3)

)
+ (1 + ε2)(1 + ε4) exp

(
iΩ(d2 + d4)

))

− κ2D1(κL1, κL1)D1(κL2, κL2)

D2(κL1, κL1)D2(κL2, κL2)

(
(1 + ε1)(1 + ε4) exp

(
iΩ(d1 + d4)

)

+ (1 + ε2)(1 + ε3) exp
(
iΩ(d2 + d3)

))

− κ2

D2(κL1, κL1)D2(κL2, κL2)

(
4P1(κL1)P2(κL2)(1 + ε1)(1 + ε2) exp

(
iΩ(d1 + d2)

)

+ 4P1(κL2)P2(κL1))(1 + ε3)(1 + ε4) exp
(
iΩ(d3 + d4)

))
. (3.22e)
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Chapter 4

Analysis of Hybrid Simulation Theory
for the Elastic and Viscoelastic
Models

In the previous section, equations were established for the displacement of the reference
and hybrid systems for both the bar and beam. However, in order to verify that the hybrid
system equations, they need to be compared to the reference system equations with no im-
posed errors at the gap. If there are no imposed errors at the gap, the two sets of equations
for the displacement should be identical. Thus, the first part of each of the following sec-
tions will involve a verification of the displacement equations. After the verification of the
displacement equations, the effects of the error parameters on the system error will then be
systematically studied.

4.1 Analysis of the Elastic Model

4.1.1 Elastic Bar

First, (2.18) and (2.19) need to be compared with (2.17), to verify that those equations
do in fact describe the correct system. Note that if all εk = 0 and dk = 0 for k = 1, 2, then
the hybrid system should reduce to the reference system. Thus, in order to test the accuracy
of (2.18)and (2.19), εk = 0 and dk = 0 for k = 1, 2, and then compared to (2.17), as seen in
Fig. 4.1. The Matlab R© programming language software package is used to make all of the
graphs in this report [13]. For all of the following figures, all error parameters are assumed to
be 0 unless noted otherwise in the figure. Note that in all cases the real part of the solution
is used for the plotting of figures. See Appendix C for a table of all material constants
and dimensions used for all of the following tests. As seen in Fig. 4.1, the two solutions,
the reference system and the hybrid system, are nearly identical and the only error is due
to numerical inaccuracies in the computation. Now a 10% error in the magnitude of the
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Figure 4.1: Comparison of the reference elastic fixed-free bar to the hybrid elastic fixed-free
bar with no imposed error.

displacement is introduced, ε1 = 0.1, to demonstrate that the hybrid system is performing
in the proper manner with introduced error. Fig. 4.2 shows a discontinuity between the two
sides of the gap and that a noticeable amount of error is now present in the hybrid system
based only on a displacement inaccuracy, which is to be expected. Thus, the hybrid system
is performing properly with introduced error. In order for the error analysis to be conducted
on this system, (1.4) is applied to this specific system, giving

||ep||2 =

T∫

0

L1∫

0

(
Re
(
ξ(y, τ)− ξ̂p(y, τ)

))2

dydτ, (4.1a)

||ec||2 =

T∫

0

1∫

L1

(
Re
(
ξ(y, τ)− ξ̂c(y, τ)

))2

dydτ, (4.1b)

||e|| =
√
||ep||2 + ||ec||2. (4.1c)

Where T is the period of the applied force, meaning that it changes with Ω. Re(•) is the
real part of •. ξ(y, τ), ξ̂p(y, τ), and ξ̂p(y, τ) come from (2.17), (2.18), and (2.19) respectively.
Appendix A has a complete derivation of an analytical solution for (4.1a) and (4.1b), which
will be used for all of the error analysis of the elastic fixed-free bar. The error produced
by (4.1c) is analyzed in a parametric study by varying the multiple parameters that affect
the error, including Ω, ε1, and d1.
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Figure 4.2: Comparison of the reference elastic fixed-free bar to the hybrid elastic fixed-free
bar with ε1 = 0.1.

Frequency Sweeps

The first parameter that is studied is the applied frequency, Ω. For specified choices
of the other parameters, Ω is swept from 10−1 to 102 to give a comprehensive look at the
effects of frequency on the error of the hybrid system. Figs. 4.3-4.6 show the error of the
system with only one error parameter used at a time. This allows for a study of the effect
of each of those parameters individually. In all case, the error grows extremely large at the
resonant frequencies of the reference system, i.e. Ω = 1, 3, 5, ..., which is to be expected, as
displacement of the reference system becomes unbounded. Also note that in each case there
are specific values of Ω where the error drops to relatively small values. For ε1 and d1, these
drops occur when sin(κL1) = 0, and for ε2 and d2 these drops occur when cos(κL1) = 0.
Recall that κ = π

2
Ω. Thus, the location of the gap is very important on the error that

the hybrid system encounters. After careful inspection of Figs. 4.5 and 4.6 there are more
drops in error than those caused by the above mentioned effects. These extra drops in error
are caused by dk = 2πn

Ω
for n = 1, 2, 3..., or when dk is an integer multiple of the period.

Physically this makes sense because it means that the time-delay in the system causes the
displacement or force to be behind or ahead by a complete period, meaning that the hybrid
system, by accident, is behaving exactly the same as the reference system. After careful
inspection of Figs. 4.3 and 4.4 there are “mini” peaks that occur near the resonant frequency
peaks. The location of these mini peaks are determined by

Ω = n+ .21(−1)ksgn(εk)
√
|εk| sin(nπL1) for n = 1, 3, 5, ... and k = 1, 2. (4.2)
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Note, (4.2) is only valid for |εk| < 0.5. Thus, for different values of εk or L1, these mini peaks
will move to different locations in the frequency space. Next, multiple error parameters are
placed into a single system, as shown in Figs. 4.7-4.10. Fig. 4.7 has ε1 = 0.1 and ε2 = 0.1,
and note that there are no longer any drops in error or any mini peaks, which were associated
with εk for either k = 1 or k = 2. This indicates that equivalent values of ε1 and ε2 result
in a cancellation of both drops and extra peaks of error. However, it is noted that as either
ε1 or ε2 begins to outweigh the other, the effects seen in the individual error figures begin to
reappear. Fig. 4.8 has ε1 = 0.1 and d1 = 0.1 which again has the drops in error associated
with the individual error parameters. This makes sense as these drops in error occurred
at the same frequency for the individual error parameters, and thus should be present for
the combined errors. However, the mini peaks associated with ε1 are no longer present in
the error curve. Also, the error drops from the time-delay being an integer multiple of the
frequency are also gone, which makes sense because the error caused by ε1 will outweigh
the error drop due to d1. Fig. 4.9 has ε1 = 0.1 and d2 = 0.1, which, similar to Fig. 4.7, no
longer has the error drops associated with the individual error parameters. This leads to the
conclusion that whenever there is an error parameter with k = 1 and another error parameter
with k = 2 present in a system, then the error drops disappear from the curves. Also, similar
to Figs. 4.7 and 4.8, the mini peaks associated with ε1 are gone. This indicates that the mini
peaks are highly sensitive to the error parameters that are present in the system. Again, the
error drop due d2 equaling an integer multiple of the period also disappears, for the same
reason mentioned above for Fig. 4.8. Fig. 4.10 has d1 = 0.1 and d2 = 0.1, which also does
not have the error drops associated with the individual error parameters alone. However, the
error drop due to di equaling an integer multiple is still present for d1 = d2 = 0.1. However,
this only happens when d1 = nd2 for n = 1, 2, 3, ..., if this does not hold, then that error
drop will also no longer be present.
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Figure 4.3: (a) A frequency sweep of the elastic fixed-free bar with ε1 = 0.1 on a log-log plot.
(b) A zoomed in plot showing the mini peak
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Figure 4.4: A frequency sweep of the elastic fixed-free bar with ε2 = 0.1 on a log-log plot.
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Figure 4.5: A frequency sweep of the elastic fixed-free bar with d1 = 0.1 on a log-log plot.

10
−1

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

10
5

10
10

Ω

||e
||

d2 = 0.1, L1 = 0.35

Figure 4.6: A frequency sweep of the elastic fixed-free bar with d2 = 0.1 on a log-log plot.
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Figure 4.7: (a) A frequency sweep of the elastic fixed-free bar with ε1 = 0.1 and ε2 = 0.1 on
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Figure 4.9: A frequency sweep of the elastic fixed-free bar with ε1 = 0.1 and d2 = 0.1 on a
log-log plot.
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ε1 Domain

Next, the error in the ε1 domain is studied at specified frequencies. The frequencies were
chosen to provide a comprehensive spectrum. Fig. 4.11 shows the error in the ε1 domain for
multiple frequencies. As seen in Fig. 4.11, there is always one error peak for each frequency,
somewhere in the ε1 domain. These error peaks in the ε1 domain are the cause of the mini
peaks in the frequency domain. Also, note that as ε1 becomes large in both the positive and
negative directions, the error of the curves tend to level off and the only areas of large error
change are near the peaks and near ε1 = 0. And, as expected, the error approaches zero as
ε1 approaches zero in all cases. All of the general results for the ε1 domain are similar for
the ε2 domain, and thus are not shown in this report.
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Figure 4.11: The error in the ε1 domain of the elastic fixed-free bar with no other imposed
error for multiple frequencies on a linear-log plot.

d1 Domain

Next, the error in the d1 domain is studied at specified frequencies. The frequencies were
chosen to match those in the previous section. Fig. 4.12 shows the d1 domain. The error
was only computed for each frequency from d1 = 0 to d1 = 2π

Ω
because the error is periodic

with a period of 2π
Ω

. Fig. 4.12 shows that whenever d1 is equal to an integer multiple of
the period, the error tends to zero. This result is consistent with the results obtained from
the frequency sweeps as well. The general results for the d1 domain are repeated for the d2

domain, and thus are not shown in this report. Also note, that in all of the above situations,
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there is a general trend of decreasing error with increasing frequency, excluding near the
resonant frequencies and the mini peaks described earlier.
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Figure 4.12: The error in the d1 domain of the elastic fixed-free bar with no other imposed
error for multiple frequencies on a log-log plot.

4.1.2 Elastic Beam

Similar to the elastic fixed-free bar case, (2.41) and (2.42) need to be compared with (2.40),
to determine that the system is behaving properly. Note, only the real part of each solution
will be used for all of the following tests. See Appendix C for a table of all material con-
stants and dimensions used for all of the following tests. Fig 4.13 shows both the reference
system and the hybrid system, along with the difference between the two solutions for a
hybrid system without error. As seen in Fig. 4.13, when there is no introduced error then
the two systems are identical, which is to be expected. Now a 10% error is introduced into
the displacement, ε1 = 0.1, to verify that the hybrid system is performing properly with
an introduced error. Fig. 4.14 shows a discontinuity between the two sides of the gap and
that a considerable amount of error has been introduced into the hybrid system due to the
10% displacement error, which is to be expected. Thus, the hybrid system is performing
properly with introduced error. Similar equations defined for the bar case are used for the
error analysis of the pinned-pinned beam case.

||ep||2 =

T∫

0

L1∫

0

(
Re
(
η(y, τ)− η̂p(y, τ)

))2

dydτ (4.3a)
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Figure 4.13: Comparison of the reference elastic pinned-pinned beam to the hybrid elastic
pinned-pinned beam with no imposed error.
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Figure 4.14: Comparison of the reference elastic pinned-pinned beam to the hybrid elastic
pinned-pinned beam with ε1 = 0.1.
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||ec||2 =

T∫

0

1∫

L1

(
Re
(
η(y, τ)− η̂c(y, τ)

))2

dydτ (4.3b)

||e|| =
√
||ep||2 + ||ec||2 (4.3c)

Where η(y, τ), η̂p(y, τ), and η̂c(y, τ) come from (2.40), (2.41), and (2.42) respectively. How-
ever, due to the complexity of solutions for the pinned-pinned beam case, an analytical
solution for ||e|| is not determined, but rather the error is computed numerically. See Ap-
pendix B for the justification of using a numerical solution.

Frequency Sweeps

The first parameter that is studied is the frequency, Ω. For specific choices of the other
parameters, Ω is swept from 10−1 to 102 to give a comprehensive look at the effect of the
frequency of the hybrid system. Figures 4.15-4.18 show the error of the elastic pinned-pinned
beam system with only one error parameter at a time. Note, that ε1 and ε2 have similar
affects on the error, and thus only ε1 are discussed, with all results applying to ε2 as well.
This is the same for ε3 and ε4, d1 and d2, and d3 and d4. Thus, only the parameters with
k = 1, 3 are used for analysis in this report. For every instance, the error grows extremely
large at the resonant frequencies of the system, i.e. Ω = 1, 4, 9, ..., which is to be expected
as the displacement becomes unbounded at those frequencies. In all cases, there are drops
in the errors, similar to those of the elastic fixed-free bar. For parameters with k = 1, 2,
these drops occur when sin(κL1) = 0, and for parameters with k = 3, 4, these drops occur
when cos(κL1) = 0. Recall that κ = π

√
Ω. These drops do not account for all of the drops

in the curves with a dk error. The extra drops in those curves are caused by dk = 2πn
Ω

for
n = 1, 2, 3..., or when dk is an integer multiple of the period of the system. The physical
reason for these drops is explained in the elastic fixed-free bar section. In Figs. 4.15 and 4.16,
there are mini peaks that occur around the resonant frequencies. These mini peaks oscillate
around the resonant frequencies as L1 changes. Also, the distance, in the frequency domain,
of the mini peaks from the main peaks is directly related to the value of εk for k = 1, 2, 3, 4.
Next, a frequency sweep is performed with two error parameters to see how the errors add
to one another, as shown in Figs. 4.19-4.22. Similar to the elastic fixed-free bar case, when
ε1 = 0.1 and ε3 = 0.1, the error drops and the mini peaks cancel out, as seen in Fig. 4.19.
Fig. 4.20 has ε1 = 0.1 and d1 = 0.1. In this instance, the error drops associated with
sin(κL1) = 0 are still present because both parameters individually had these drops. Also,
the mini peaks associated with an ε1 error are now gone, as well as the error drops from
d1 equaling a integer multiple of the period. In Fig. 4.21, ε1 = 0.1 and d3 = 0.1, which
also no longer has the error drops associated with the individual error parameters. However,
remnants of the error drops associated with the d3 error at cos(κL1) = 0 are present. This
indicates for equivalent values of the εk and dk in a system, dk has a larger effect on the
error. Finally, Fig. 4.22 shows the error with d1 = 0.1 and d3 = 0.1. Again, the error drops
due to sin(κL1) = 0 and cos(κL1) = 0 are no longer present. However, the error drop due
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to dk being equal to an integer multiple of the period is still present, only because d1 = nd3

for n = 1, 2, 3, .... If that relation does not hold, then there will not be an error drop coming
from dk equaling an integer multiple of the period.
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Figure 4.15: (a) A frequency sweep of the elastic pinned-pinned beam with ε1 = 0.1 on a
log-log plot. (b) A zoomed in plot showing the mini peak.
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Figure 4.16: A frequency sweep of the elastic pinned-pinned beam with ε3 = 0.1 on a log-log
plot.
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Figure 4.17: A frequency sweep of the elastic pinned-pinned beam with d1 = 0.1 on a log-log
plot.
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Figure 4.18: A frequency sweep of the elastic pinned-pinned beam with d3 = 0.1 on a log-log
plot.
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Figure 4.19: (a) A frequency sweep of the elastic pinned-pinned beam with ε1 = 0.1 and
ε3 = 0.1 on a log-log plot. (b) A zoomed in plot missing the mini peak.
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Figure 4.20: A frequency sweep of the elastic pinned-pinned beam with ε1 = 0.1 and d1 = 0.1
on a log-log plot.
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Figure 4.21: A frequency sweep of the elastic pinned-pinned beam with ε1 = 0.1 and d3 = 0.1
on a log-log plot.
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Figure 4.22: A frequency sweep of the elastic pinned-pinned beam with d1 = 0.1 and d3 = 0.1
on a log-log plot.
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Figure 4.23: The error in the ε1 domain of the elastic pinned-pinned beam with no other
imposed error for multiple frequencies on a linear-log plot.
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ε1 Domain

Now, the error in the ε1 domain is studied to see the effects of ε1 on the error. The error
is shown at multiple frequencies, which were chosen to give a comprehensive spectrum of
frequencies. Figure 4.23 shows this ε1 domain for multiple frequencies. As seen in Fig. 4.23,
for every frequency, as ε1 becomes large in magnitude, the error approaches a constant value.
Thus the only areas of large change in the error come from locations near ε1 = 0 or near
the error peak in each curve. The error peak in each curve in the ε1 domain is the cause of
the mini peaks in the frequency domain. Finally, there is an error peak in every curve, thus
no matter what the frequency is, there will be an error peak somewhere in the ε1 domain,
except when the frequency is a resonant frequency of the system. Note that in the ε2, ε3,
and ε4 domains, all of the results are similar to those in Fig. 4.23, thus are not shown in this
report.
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Figure 4.24: The error in the d1 domain of the elastic pinned-pinned beam with no other
imposed error for multiple frequencies on a log-log plot.

d1 Domain

Finally, the error in the d1 domain is analyzed to see the effects of d1 on the error of
the system. Since the effects of d1 are periodic, for each frequency d1 will only go from 0
to 2π

Ω
. The frequencies chosen for the d1 domain were the same as those for the ε1 domain.

Fig. 4.24 shows the d1 domain for multiple frequencies. In all instances, the error grows
from zero, peaks when d1 is half of the period, and then falls when d1 is equal to a period.
Note that the d2, d3, and d4 domains all produce similar results as those in Fig. 4.24, thus
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are not shown in this report. Finally, in all of the above instances, there is a general trend
of decreasing error with increasing frequency, except near the resonant frequencies and the
mini peaks mentioned earlier. All of the results from the elastic pinned-pinned beam system
are consistent with the results obtained for the elastic fixed-free bar system.

4.2 Analysis of the Viscoelastic Model

4.2.1 Viscoelastic Bar

In order for the viscoelastic fixed-free bar to be analyzed, the equations derived in Sec-
tion 3.1 are verified for accuracy in the viscoelastic case. In order to do this, (3.9) is compared
against (3.11) and (3.12) with no applied error, as shown in Fig. 4.25. It can be seen that
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Figure 4.25: Comparison of the reference viscoelastic fixed-free bar to the hybrid viscoelastic
fixed-free bar with no imposed error.

both solutions are nearly identical, the difference between them is a negligible computa-
tional error. Also, note that Ω = 3, which is a resonant frequency of the elastic fixed-free
bar system, thus the displacement should, in principle, become unbounded. However, in this
instance, the displacement is bounded because ζ = 2, which is near the value of Ω, thus
the system is damped, indicating that the equations are performing properly for no error.
Now, an ε1 = 0.1 error is applied, to check that the equations are performing properly with
an applied error, as shown in Fig. 4.26. It can be seen that there is now a considerable
amount of error between the two systems, which is the desired result. Also, note that there
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Figure 4.26: Comparison of the reference viscoelastic fixed-free bar to the hybrid viscoelastic
fixed-free bar with ε1 = 0.1.

is no a discontinuity at the gap caused by ε1 = 0.1. Thus, the hybrid system equations are
performing properly in the presence of applied error. In order to perform the error analy-
sis, (4.1a), (4.1b), and (4.1c) are used, where ξ, ξ̂p, and ξ̂c come from (3.9), (3.11), and (3.12)
respectively. Unlike in the elastic fixed-free bar case, an analytical solution is not determined
due to the complexity of the equations, but rather a numerical solution is used for the error.
For a justification of using a numerical solution see Appendix B.

Frequency Sweeps

First, a sweep of the frequency is performed from Ω = 10−1 to Ω = 102. This range
gives a comprehensive look at the effect of the error parameters in the frequency domain.
Figs. 4.27-4.30 show the frequency sweeps when only one error parameter is applied at a
time for multiple values of ζ. In all of of these instances, similar to the elastic case, there
are drops in the error, which correspond to sin(κL1) = 0 for ε1 and d1 and cos(κL1) = 0 for
ε2 and d2. Again, in the figures with d1 and d2, there are extra drops in error, corresponding
to di equaling an integer multiple of the period. Unlike the elastic case, when the resonant
frequencies are near the damping frequency, ζ, the error does not become unbounded, but
rather becomes finite. Also, when the damping frequency gets larger and the applied fre-
quency gets larger, the error drops considerably, to almost negligible levels. Fig. 4.27 shows
the frequency sweep for ε1 = 0.1. The mini peaks described in the elastic case are still present
in this case, but is reduced due to the damping in the system. This result is the same for the
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frequency sweep with ε2 = 0.1, as seen in Fig. 4.28. Figures 4.31-4.34 show frequency sweeps
when two error parameters are applied. The results resemble those from the elastic case.
The error drops or mini peaks that are present in both of the error parameters separately are
also present when the error parameters are applied together, otherwise they are no longer
present. Also, for equivalent values of εk and dk, dk has a larger effect on the shape of the
error of the system. As can be seen in Figs. 4.27-4.34, when the applied frequency is near
the damping frequency, the effects of all error parameters are canceled out by the damping,
except for the effect of dk equaling an integer multiple of the period.
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Figure 4.27: (a) A frequency sweep of the viscoelastic fixed-free bar with ε1 = 0.1 on a
log-log plot. (b) A zoomed in plot
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Figure 4.28: A frequency sweep of the viscoelastic fixed-free bar with ε2 = 0.1 on a log-log
plot.
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Figure 4.29: A frequency sweep of the viscoelastic fixed-free bar with d1 = 0.1 on a log-log
plot.
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Figure 4.30: A frequency sweep of the viscoelastic fixed-free bar with d2 = 0.1 on a log-log
plot.

10
−1

10
0

10
1

10
2

10
−15

10
−10

10
−5

10
0

 

 

ζ=1
50
350
2150

105

Ω

||e
||

ǫ1 = 0.1, ǫ2 = 0.1, L1 = 0.35

10
−0.09

10
−0.04

10
0.01

10
0.06

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

 

 

ζ=1
50
350
2150

105

Ω

||e
||

ǫ1 = 0.1, ǫ2 = 0.1, L1 = 0.35

Figure 4.31: (a) A frequency sweep of the viscoelastic fixed-free bar with ε1 = 0.1 and
ε2 = 0.1 on a log-log plot. (b) A zoomed in plot
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Figure 4.32: A frequency sweep of the viscoelastic fixed-free bar with ε1 = 0.1 and d1 = 0.1
on a log-log plot.
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Figure 4.33: A frequency sweep of the viscoelastic fixed-free bar with ε1 = 0.1 and d2 = 0.1
on a log-log plot.
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Figure 4.34: A frequency sweep of the viscoelastic fixed-free bar with d1 = 0.1 and d2 = 0.1
on a log-log plot.
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ε1 Domain

Next, the error in the ε1 domain is analyzed to see how ε1 affects the error. This is shown
in Fig. 4.35 for multiple damping frequencies at Ω = 74.1. Only one frequency was chosen
because, as seen in the elastic case, the effect of frequency only moves the error peak around
and gradually lowers the error for increasing frequency, thus the results would be similar for
any applied frequency. As can be seen in Fig. 4.35, in every instance there is an error peak
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Figure 4.35: The error in the ε1 domain of the viscoelastic fixed-free bar with Ω = 74.1 on
a linear-log plot for multiple ζ values.

in the ε1 domain. However, when the applied frequency is far from the damping frequency,
then the curve resembles that of the elastic case. Also, as the applied frequency nears the
damping frequency, the error peak moves towards ε1 = −1. Thus, this implies that in the
highly damped region, the only major changes in error are caused by ε1 = −1, or G2 = 0,
which means that there is no change in displacement on the C-side of the gap, turning it into
a fixed point. However, similar to the elastic case, as ε1 grows in magnitude, the error in the
system does not change very much, aside from the error peak and ε1 = 0. The ε2 domain
would produce similar results, thus are not shown in this report.

d1 Domain

Finally, the error in the d1 domain is studied for multiple damping frequencies, as shown
in Fig. 4.36. For the same reasons described above, only one applied frequency was used for
the d1 domain. The same frequency from the ε1 domain is used for the d1 domain just for
consistency. As can be seen in Fig. 4.36, in every instance the error drops when d1 equals the
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Figure 4.36: The error in the d1 domain of the viscoelastic fixed-free bar with Ω = 74.1 on
a log-log plot for multiple ζ values.

period of the specific applied frequency, just like in the elastic case. For damping frequencies
far from the applied frequency, the curves resemble those of the elastic case. However, for
damping frequencies closer to the applied frequency, the error drops down, but develops an
error peak. This peak occurs when d1 equals half of the period. The general results for the
d1 domain are repeated for the d2 domain, and thus are not shown in this report.

4.2.2 Viscoelastic Beam

First, the equations for the hybrid solution to the viscoelastic beam, (3.20) and (3.21), are
compared with the equation for the solution to the reference viscoelastic beam, (3.18), when
there is no error in the hybrid system. This comparison is shown in Fig. 4.37. As with all
of the previous cases, only the real part of the equations will be considered for the following
tests. For a list of material constants and dimensions of the beam used in this section,
see Appendix C. As it can be seen, there is only round-off error between the hybrid and
reference systems, which is desired for this instance. Secondly, the viscoelasticity is tested,
which is also shown is Fig. 4.37. In this instance, the applied frequency chosen was Ω = 4,
which is a resonant frequency of the system, meaning that the displacement would become
extremely large in the elastic case. However, in Fig. 4.37, the displacement is bounded to
normal values for this system, meaning that viscoelasticity is working properly. Note that
ζ = 2, meaning the the damping peak is at a frequency of 2, which is close to the applied
frequency. If ζ was chosen to be much farther from the applied frequency, the effects of the
damping would be less.
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Figure 4.37: Comparison of the reference viscoelastic pinned-pinned beam to the hybrid
viscoelastic pinned-pinned beam with no imposed error.
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Figure 4.38: Comparison of the reference viscoelastic pinned-pinned beam to the hybrid
viscoelastic pinned-pinned beam with ε1 = 0.1.
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Now, the effects of the error parameters are tested to make sure that they are working
properly in the viscoelastic beam case. Fig. 4.38 shows the comparison between the reference
system and the hybrid system with ε1 = 0.1 applied to the hybrid system. It can be
seen that with the applied error, there is now a discontinuity at the gap and the error
between the two systems is no longer round-off error, but rather hybrid system error, which
is to be expected. Thus all of the equations are working properly for the viscoelastic beam
case. In order to compute the error of the system, (4.3a), (4.3b), and (4.3c) are employed.
Due to the complexity of these equations, an analytical solution is not determined, but
rather a numerical solution is computed. For a justification of a computational solution, see
Appendix B.

Frequency Sweeps

In order to study the effects of the error parameters, a sweep of the frequency is performed
from Ω = 10−1 to Ω = 102. In each instance, only one error parameter is applied at a time
to see the effect of that parameter. However, it is noted that the effects of ε1 and ε2 are
nearly identical, and thus only ε1 will be considered. This is the same for d1 and d2, ε3 and
ε4, and d3 and d4, thus only the parameters with k = 1, 3 will be considered in this report.
Figs. 4.39-4.42 show the frequency sweep for the individual error parameters. In all instances,
there are drops in the error that occur at same location in the frequency domain, regardless
of the ζ value. These drops occur when sin(κL1) = 0 for error parameters with k = 1, 2,
and when cos(κL1) = 0 for error parameters with k = 3, 4. Recall that κ = π

√
Ω exp(iδ).

However, these drops in error are not the only drops in error for the curves with a dk error.
These extra error drops occur when dk equals an integer multiple of the period. It can also
be seen that when the applied frequency is near the damping frequency the error is reduced
around the resonant frequencies and does not become large, as in the elastic case. Also,
when the applied frequency is far from the damping frequency the error curves resemble
those seen in the elastic beam case. In the Figs. 4.39 and 4.40 there are mini peaks around
the resonant frequency peaks, similar to those described for the elastic beam case. These
mini peaks oscillate around the resonant frequency peaks as L1 grows from zero to one. And
the magnitude, in terms of distance from the resonant frequency peak, is a function of to
the value of εk. All of this indicates that both the error parameters and the gap location,
L1, are extremely important to the error in the hybrid system. Now, in order to see how the
error parameters effect each other, two error parameters will be applied at a time, shown in
Figs. 4.43-4.46. Figure 4.43 shows the error for ε1 = 0.1 and ε3 = 0.1. In this instance, all
of the error drops associated with the individual parameters are now gone. Also, the mini
peaks described earlier have also vanished. Figure 4.44 has ε1 = 0.1 and d1 = 0.1, and in
this instance, the error drops associated with sin(κL1) = 0 are still present because they are
present in the two parameters individually. However, in the curves with ζ = 50 and ζ = 350
traces of the error drop due to d1 being an integer multiple of the period is noticeable. Since
d1 = 0.1, the error drop occurs when Ω = 62.8, or Ω = 2π

.1
, which is close to ζ = 50 and

relatively close to ζ = 350, but far from the other ζ values. This indicates that when the
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applied frequency is near the damping frequency, the effects of ε1 are reduced and the effects
of d1 take a larger role. In Fig. 4.45, again the error drops due to sin(κL1) = 0 are completely
gone. However, remnants of the error drops due to cos(κL1) = 0 are still visible, indicating
that d3 has a large effect on the error than ε1 for equal values of the parameters. Also, in the
curves with ζ = 50 and ζ = 350, the error drop due to d3 = 2π

Ω
is noticeable, when it is not

noticeable in the other curves. This confirms the result from Fig. 4.44 that when the applied
frequency is close to the damping frequency, then the effects of εk are diminished, and the
effects of dk take on a larger role. In Fig. 4.46, the error drops due to sin(κL1) = 0 and
cos(κL1) = 0 are both gone, meaning that all dk have an equal effect on the error and one
can cancel out the error drop due to another. The error drop due to the time-delay being
equal to a period of the system is still present, which is expected since it’s present for each
of the individual parameters. However, this is only true when d1 = nd3 for n = 1, 2, 3, ...,
otherwise those error drops will not be present. As can be seen in Figs. 4.39-4.46, when
the applied frequency is near the damping frequency, the effects of all error parameters are
canceled out by the damping, except for the effect of dk equaling an integer multiple of the
period.
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Figure 4.39: (a) A frequency sweep of the viscoelastic pinned-pinned beam with ε1 = 0.1 on
a log-log plot for multiple ζ values. (b) A zoomed in plot showing the mini peak.
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Figure 4.40: A frequency sweep of the viscoelastic pinned-pinned beam with ε3 = 0.1 on a
log-log plot for multiple ζ values.
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Figure 4.41: A frequency sweep of the viscoelastic pinned-pinned beam with d1 = 0.1 on a
log-log plot for multiple ζ values.
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Figure 4.42: A frequency sweep of the viscoelastic pinned-pinned beam with d3 = 0.1 on a
log-log plot for multiple ζ values.
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Figure 4.43: (a) A frequency sweep of the viscoelastic pinned-pinned beam with ε1 = 0.1
and ε3 = 0.1 on a log-log plot for multiple ζ values. (b) A zoomed in plot showing the mini
peak.
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Figure 4.44: A frequency sweep of the viscoelastic pinned-pinned beam with ε1 = 0.1 and
d1 = 0.1 on a log-log plot for multiple ζ values.
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Figure 4.45: A frequency sweep of the viscoelastic pinned-pinned beam with ε1 = 0.1 and
d3 = 0.1 on a log-log plot for multiple ζ values.
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Figure 4.46: A frequency sweep of the viscoelastic pinned-pinned beam with d1 = 0.1 and
d3 = 0.1 on a log-log plot for multiple ζ values.
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ε1 Domain

Next, the error in the ε1 domain is analyzed, shown in Fig. 4.47. In the ε1 domain, the
error is computed for one frequency choice, Ω = 79.1, and multiple ζ values. In each case,
there are peaks in the error, however, these peaks move in the ε1 domain when the ζ value
changes and, just like the viscoelastic fixed-free bar, as the damping frequency approaches
the applied frequency, the peak approaches ε1 = −1. This has the same implications as
those described for the viscoelastic fixed-free bar. Also, when the damping frequency is
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Figure 4.47: The error in the ε1 domain of the viscoelastic pinned-pinned beam with Ω = 79.1
on a linear-log plot for multiple ζ values.

closest to the applied frequency, on a log scale, the average error over the ε1 domain drops
considerably, but is much higher for farther damping frequencies. Also, as in the elastic case,
as ε1 becomes large in magnitude, the error levels off and seems to approach an asymptote.
The general results seen for the ε1 domain are repeated for the domains of ε2, ε3, and ε4, and
thus are not shown in this report.

d1 Domain

Finally,the error in the d1 domain is studied, as shown in Fig. 4.48. Since the effects of d1

are periodic with the frequency, only one period will be shown, with d1 going from 0 to 2π
Ω

.
In this instance Ω = 79.1, which was chosen to match the frequency used for the ε1 domain.
As seen in Fig. 4.48, when the applied frequency is far from the damping frequency, on a log
scale, the curves behave similar to that of the elastic case, see Fig. 4.24. However, when the
damping frequency is close to the applied frequency, the error drops to a lower average value
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Figure 4.48: The error in the d1 domain of the viscoelastic pinned-pinned beam with Ω = 79.1
on a log-log plot for multiple ζ values.

over the domain of d1, except a specific value of d1 where the error grows to a value similar
to the other curves. The general results from the d1 domain are repeated for d2, d3, and d4

domains, thus they are not shown in this report. Note, that in all cases, there is a general
decay in the error as the frequency increases, indicating that at very high frequencies, the
error in the hybrid system will be small, except near the resonant frequencies and the mini
peaks, just like the elastic case. However, when the applied frequency is near the damping
frequency, ζ, then the error will never grow without bound, even at the resonant frequencies,
which differs from the elastic case. In all cases, when the applied frequency is far from the
the damping frequency, then the error curves behave in the same manner as the elastic case.
This is to be expected, because away from the damping frequency the viscoelastic equations
approach the elastic equations.
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Chapter 5

Conclusion

The analysis in Chapter 4 of the four cases studied in this report, the elastic fixed-free
bar, the elastic pinned-pinned beam, the viscoelastic fixed-free bar, and the viscoelastic
pinned-pinned beam, demonstrates the theoretical performance of those cases. Note, that in
all of the above situations, it was assumed that a harmonic excitation was applied and only
the steady-state solution was relevant. This ignores any transient response that may occur
in experimental implementations of hybrid simulation.

5.1 Summary of Results

The results show, that even for the four different cases, the errors are extremely similar.
The resonant frequencies have a large impact on the error of the system, in all cases, except
when the resonant frequencies are near the damping frequency. Thus, in order for hybrid
simulation to be effective as a simulation technique, one must be aware of the forcing fre-
quency, as this could potentially lead to large errors. And typically, the forcing frequency
is not just a single frequency, but rather distribution of frequencies, such as an earthquake.
This makes it more likely that the resonant frequencies are going to be in that distribution
of frequencies, meaning that special care must be taken when applying those distributions
of frequencies. However, in all instances, there are error drops that occur, such as those due
to sin(κL1) = 0 or cos(κL1) = 0 for the specific error parameters. This implies that one
could possibly use these error drops to give more accurate results from hybrid simulation if
the error drops were placed at frequencies that are more common in the forcing distribution.
Also, if the main distribution of forcing frequencies is near the damping frequency, ζ, then
the error no longer has any spikes or drops. In the earlier analysis for the viscoelastic cases,
ζ was used as a parameter that could be controlled, however, ζ is a material constant, and
would not usually be controllable, other than switching materials. In all cases the error due
to εk seems to approach an asymptotic limit, as seen by the ε1 domain figures. Also, the
error reaches those limits quickly in the εk domain, thus it would be impractical to try and
reduce the εk parameters to reduce the error in the system because unless one could make
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the εk value very small, the system error is not going to change much. However, this assumes
that the value of εk is not at one of the peaks that occur in the εk domain. These results
were corroborated with hybrid formulations of a classical elastic Kirchhoff-Love plate with
dynamic bending by the work of Bakhaty [2]. This shows that there are universal errors that
begin to occur for hybrid simulation, even for simple one-dimensional and two-dimensional
problems. However, an understanding of the causes of these errors will allow for hybrid
simulations to be conducted in a way that will reduce and prevent these errors.

5.2 Potential Future Research in the Field of Hybrid

Simulation Theory

In this report it was assumed that εk and dk were constants. However, this is not always
the case, they may in fact be functions of the frequency, such that at higher frequencies
the time-delay or magnitude error may increase. Thus, to include this, one could use the
following equation for the error parameters [2]:

dk =
d0(

1 + exp(Ω0 − Ω)
)2 . (5.1)

Where d0 is the maximum time delay and Ω0 is the frequency of maximum growth rate. A
similar equation can be applied to εk. This will provide a different look to the error curves of
the frequency sweeps. However, this is just one possible function for the error parameters.

Also, this report assumed a single homogeneous linear material that could be modeled
by (2.2) and (2.23). This is not always the case of an experimental setup of hybrid simulation.
For example, many hybrid simulation setups are for many bars and beams at the same time,
each interacting with the whole system [14]. Also, the specific material used for all examples
was that of a generic steel, see Appendix C, just because steel is a good generic material that
is used in multiple situations. However, hybrid simulation is not limited to steel, but can also
be applied to other materials, such as polymers, that have completely different governing
equations and would react differently to a hybrid simulation setup.

This report focused on the L2 norm of the displacement, but that only shows one part of
error in the system. The error in the force, rotation, shear, and moment can also be studied
with the use of seminorms on the spatial derivatives of the displacement [12]. Understanding
the error in these quantities is just as important as understanding the error in the displace-
ment because in some situations these quantities can be of more importance to the workings
of a system than the displacement.

Hybrid simulation has a strong background in the experimental community, but is lacking
in theoretical support. This report is designed to show both the theoretical flaws and benefits
of hybrid simulation, allowing for a better understanding of hybrid simulation. Hopefully,
this report strengthened the theoretical development of hybrid simulation, and leads to
further theoretical tests of different and more complicated systems.
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Appendix A

Analytical Bar Error Equation
Derivation

The equations for bar are as follows:

ξ(y, τ) =
F

κ cos(κ)
sin(κy) exp(iΩτ), (A.1)

ξ̂p(y, τ) =
G1

sin(κL1)
sin(κy) exp(iΩτ), (A.2)

ξ̂c(y, τ) =

(
G2 cos(κ(y − 1)) +

F

κ
sin(κ(y − L1))

)
exp(iΩτ)

cos(κL2)
. (A.3)

With the following definitions for G1 and G2:

G1 =
F

κ cos (κL2)Gd

, (A.4a)

G2 = (1 + ε1) exp(iΩd1)G1, (A.4b)

Gd = (1 + ε2) exp(iΩd2) cot (κL1)− (1 + ε1) exp(iΩd1) tan (κL2) . (A.4c)

In order for the error to be determined (A.1), (A.2), and (A.3) must be applied to the
following:

||ep||2 =

T∫

0

L1∫

0

(
Re
(
ξ(y, τ)− ξ̂p(y, τ)

))2

dydτ, (A.5a)

||ec||2 =

T∫

0

1∫

L1

(
Re
(
ξ(y, τ)− ξ̂c(y, τ)

))2

dydτ, (A.5b)

||e|| =
√
||ep||2 + ||ec||2. (A.5c)
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In order to get an analytical solution for ||ep||2 and ||ec||2, the real parts of ξ, ξ̂p, and ξ̂c
must be found. The most straight forward way to do this is to get the complex part of each
equation in the numerator, thus G1 and G2 are multiplied by G∗d, where G∗d is the complex
conjugate of Gd. This gives

|Gd|2 = GdG
∗
d =(1 + ε2)2 cot2(κL1) + (1 + ε1)2 tan2(κL2)

− 2(1 + ε2)(1 + ε1) cot(κL1) tan(κL2) cos(Ω(d2 − d1)). (A.6)

Thus, G1 and G2 become

G1 =
F
(

(1 + ε2) exp(−iΩd2) cot(κL1)− (1 + ε1) exp(−iΩd1) tan(κL2)
)

κ cos(κL2)|Gd|2
, (A.7)

G2 =
F (1 + ε1)

(
(1 + ε2) exp

(
iΩ(d1 − d2)

)
cot(κL1)− (1 + ε1) tan(κL2)

)

κ cos(κL2)|Gd|2
. (A.8)

Note that
exp(ix) = cos(x) + i sin(x), (A.9)

where x is a real value. Also note that

Re(z1 + z2) = Re(z1) + Re(z2), (A.10)

where z1 and z2 are complex values. Thus, now the real parts of ξ, ξ̂p, and ξ̂c can all be
easily found, as shown by

Re(ξ(y, τ)) =
F

κ cos(κ)
sin(κy) cos(Ωτ), (A.11)

Re(ξ̂p(y, τ)) =
F
(

(1 + ε2) cos(Ω(τ − d2)) cot(κL1)− (1 + ε1) cos(Ω(τ − d1)) tan(κL2)
)

κ sin(κL1) cos(κL2)|Gd|2
sin(κy),

(A.12)

Re(ξ̂c(y, τ)) =

(
F (1 + ε1) cos(κ(y − 1))

κ cos2(κL2)|Gd|2
(

(1 + ε2) cos
(
Ω(τ + d1 − d2)

)
cot(κL1)

− (1 + ε1) cos(Ωτ) tan(κL2)
)

+
F cos(Ωτ)

κ cos(κL2)
sin(κ(y − L1))

)
. (A.13)

Now, these equations can be applied to (A.5a)and (A.5b). Both the time and space integrals
are straight forward, requiring only patience. Thus, the following equations are derived:

||ep|| =
π

Ω
F 2

(
L1

2
− sin(2κL1)

4κ

)(
1

(κ cos(κ))2
+

1

(κ cos(κL2) sin(κL1))2|Gd|2

+
2(1 + ε1) tan(κL2) cos(Ωd1)− 2(1 + ε2) cot(κL1) cos(Ωd2)

(κ)2 cos(κ) sin(κL1) cos(κL2)

)
. (A.14)
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||ec|| =
π

Ω

(
M

(
L2

2
+

(sin(2κL2)− sin(2κ))

4κ

)
+N

(
L2

2
− sin(2κL2)

4κ

)

+Q

(
L2

2
− sin(2κL2)

4κ

)
− 2P

(
cos(κ(L1 − L2))− cos(κ) + 2L2κ sin(κ)

4κ

)

+ 2R

(
L2 sin(κL2)

2

)
− 2S

(
2L2κ cos(κL1) + sin(κL1)− sin(κ(1 + L2))

4κ

))
.

(A.15)

Where M , N , P , Q, R, and S are defined by

M =
F 2

κ2 cos2(κ)
(A.16a)

N =
F 2

κ2 cos2(κL2)
(A.16b)

P =
F 2(1 + ε1)

(
(1 + ε2) cot(κL1) cos(Ω(d2 − d1))− (1 + ε1) tan(κL2)

)

κ2 cos2(κL2) cos(κ)|Gd|2
(A.16c)

Q =
F 2(1 + ε1)2

(
κ cos2(κL2)

)2|Gd|2
(A.16d)

R =
F 2(1 + ε1)

(
(1 + ε2) cot(κL1) cos(Ω(d2 − d1))− (1 + ε1) tan(κL2)

)

κ2 cos3(κL2)|Gd|2
(A.16e)

S =
F 2

κ2 cos(κ) cos(κL2)
(A.16f)

Now that ||ep|| and ||ec|| have been defined, (A.5c) can be used to get the error for the
hybrid elastic fixed-free bar.
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Appendix B

Analytical Solutions vs.
Computational Solutions

In Appendix A, an analytical solution was derived for the error to the elastic fixed-free
bar. However, for the other three cases, the equations are too complicated to derive an
analytical solution in a reasonable amount of time. This leads to the use of the MATLAB R©

function quadgk, which uses adaptive Gauss-Kronrod quadrature to evaluate the integrals
for the error [13]. The problem with using a numerical method for evaluating an integral
is determining whether or not the numerical solution is accurate. In order to fully justify
the use of quadgk, the solution from the analytical equations of Appendix A are directly
compared against those coming from quadgk. Figs. B.1-B.3 show both the analytical and
numerical solution for the elastic fixed-free bar with three different sets of error parameters.
As it can be seen in all three cases, the two curves are directly on top on each other, which
indicates that the solutions are the same. However, to be thorough, the absolute value of
the difference is also examined. Figs. B.4-B.6 shows the absolute value of the difference
between the analytical and numerical solutions from Figs. B.1-B.3. As it can be seen, in
all three cases, the absolute value of the difference is less than machine precision, except
at the resonant frequencies. This rise in error at the resonant frequencies comes from the
unboundedness of the displacement at those frequencies. This is not a cause of concern
since the resonant frequencies are locations in the frequency domain that need to be avoided
for a proper hybrid system simulation. Also, note that there is a trend of increasing error
with increasing frequency. Again, this is not a cause for concern because in all cases, the
frequency, Ω, never goes above 102, which is still within the domain of acceptable difference
between the two solutions. Since the other three cases only involve the integration of squared
trigonometric functions, it can be concluded that the results from the use of quadgk will
nearly be identical to those obtained from an analytical solution, thus allowing for a correct
analysis of the system.
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Figure B.1: A comparison of the analytical and numerical solutions to the elastic fixed-free
bar with ε1 = 0.1 on a log-log plot.
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Figure B.2: A comparison of the analytical and numerical solutions to the elastic fixed-free
bar with d1 = 0.1 on a log-log plot.
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Figure B.3: A comparison of the analytical and numerical solutions to the elastic fixed-free
bar with ε1 = 0.1 and d1 = 0.1 on a log-log plot.
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Figure B.4: The absolute value of the difference between the analytical and numerical solu-
tions to the elastic fixed-free bar with ε1 = 0.1 on a log-log plot.
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Figure B.5: The absolute value of the difference between the analytical and numerical solu-
tions to the elastic fixed-free bar with d1 = 0.1 on a log-log plot.
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Figure B.6: The absolute value of the difference between the analytical and numerical solu-
tions to the elastic fixed-free bar with ε1 = 0.1 and d1 = 0.1 on a log-log plot.



69

Appendix C

Material Constants

C.1 Fixed-Free Bar

For analysis of the fixed-free bar in Chapter 4, the bar is assumed to be a square steel
bar with material constants and dimensions listed in Table C.1 [8].

C.2 Pinned-Pinned Beam

For analysis of the pinned-pinned beam in Chapter 4, the beam is assumed to be a square
steel beam with material constants and dimensions listed in Table C.2 [8].

E E0 E∞ A l ρ f̄

2× 1011 N
m2 2× 1011 N

m2 1011 N
m2 0.0625 m2 1 m 7800× A kg

m
105 N

Table C.1: Material constants and dimensions used for fixed-free bar systems

E E0 E∞ A I l ρ M̄

2× 1011 N
m2 2× 1011 N

m2 1011 N
m2 0.04 m2 A2

12
m4 10 m 7800× A kg

m
104 N

m2

Table C.2: Material constants and dimensions used for fixed-free bar systems


