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Abstract. A scalable geometric multigrid preconditioner applicableto solving large-scale
time-harmonic elastodynamic systems on unbounded domainsmodeled by Perfectly Matched
Layers (PMLs) is presented. To solve for the forced motion ofthe elastodynamic system under
time-harmonic excitation, one must solve a linear system ofequations where the coefficient ma-
trix is the stiffness matrix shifted by the mass matrix. Application of PMLs to model the radiation
boundary condition renders these mass and stiffness matrices complex-valued symmetric and
large-scale for accurate solutions. Large-scale matricesrequire the use of iterative methods
to solve the linear systems for tractable solution time and computational memory. Complex-
valued symmetric linear systems can be in general extremelydifficult to solve iteratively, due
to the lack of standard efficient techniques. To solve this linear system, a geometric multigrid
preconditioner which can be combined with iterative methods such as GMRES is developed.
The prolongation operator is constructed geometrically byconstructing a nested hierarchy of
meshes within superblocks and evaluating fine grid nodes with coarse grid shape functions.
The smoothing operator is chosen as a Chebyshev smoother or Gauss-Seidel smoother. For a
desired accuracy, to obtain satisfactory convergence rates we observe a mild restriction on the
selectable PML component parameters. Heuristics for selecting PML parameters given a de-
sired error in approximating the radiation boundary condition are presented to complement this
solvability requirement our method poses on the range of selectable PML parameters. Under
these restrictions, we see superior convergence of the method. A microelectromechanical disk
resonator device is used to display the effectiveness of ourmethod.
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1 Introduction

In many applications involving elastodynamics, one is interested in the behavior of a su-
perstructure situated on top of a semi-infinite half domain,e.g., in earthquake engineering the
behavior of a building atop soil. The motion of the superstructure couples with the underlying
substrate giving rise to a source of energy dissipation in the form of outgoing propagating waves
emanating from the superstructure. Proper modeling of thisenergy dissipation mechanism can
be crucial in areas such as soil-structure interaction analysis, simulation of earthquake ground
motions [1], and MEMS design [2].

To numerically model the energy dissipation mechanism arising from wave propagation
into a semi-infinite half domain numerically on a finite computational domain, one must ap-
ply proper radiation boundary conditions. Among the many existing techniques modeling the
radiation boundary condition [3], we select the technologyof Perfectly Matched Layers [4]
(PMLs) for its simplicity in application, sparsity in the resulting discretized matrices, and abil-
ity to absorb all outgoing waves with zero impedance mismatch at the domain boundaries in the
continuous case. The application of PMLs mainly requires the selection of two parameters: the
thickness of the PML and the absorbing function. These two parameters along with the method
of discretization define how accurately the PML can approximate the radiation boundary condi-
tion. An optimal selection of the two components for a desired degree of accuracy is non-trivial.
This difficulty or non-triviality is often noted but the numerical difficulty that can occur with
respect to selection of these components is rarely mentioned.

To solve for the forced motion of the elastodynamic system under time-harmonic excitation,
one must solve the linear system of equations,

(

K − ω2
M

)

u = F . (1)

HereM, K are the mass and stiffness matrices of the numerically discretized system,u is
the nodal displacement vector,F is the forcing vector, andω is the forcing frequency. The
computation of transfer functions as well as computation ofeigenvalues of the elastodynamic
system involve the solution of this linear system. It must beemphasized that the application of
PMLs alters the structure of the matricesM andK from real-symmetric positive definite (SPD)
to complex-valued symmetric (non-Hermitian), with the selection of the PML parameters af-
fecting the degree to which they diverge from SPD. In the solution of small-scale problems,
robust direct methods can be selected to solve the linear system. In the solution of large-scale
problems, for tractable solution time and computational memory, one must resort to iterative
methods which are highly sensitive to the matrix structure of the linear system. Since the se-
lection of the PML parameters strongly alters the matrix structure, one must jointly consider
the selection of PML parameters and solution procedure in this case. The complex-valued sym-
metric (non-Hermitian) property poses great difficulty in solvability due to the lack of standard
tractable iterative solver techniques such that it may not be possible to select the PML parame-
ters independent of the available solution method. Thus, a good understanding of the non-trivial
relationship between PML parameters and accuracy is indispensable to select PML parameters
that yield sufficient accuracy within the given restrictions.

To solve the complex-valued symmetric linear system, we employ a scalable geometric
multigrid preconditioner combined with the iterative method GMRES. Multigrid (MG) has been
selected as a preconditioner due to its success in solving large-scale linear systems arising from
quasi-static elasticity [5]. Geometric Multigrid (GMG), the geometric variant, has been cho-
sen due to the lack of a theoretical basis for generating an algebraic version for complex-valued
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symmetric systems (theory exists only for the real symmetric positive definite [6, 7, 8] and some
special indefinite cases [9, 10, 11]) as well as for its effectiveness when one has geometric infor-
mation of the domain underlying the linear system of equations. In the GMG, the prolongation
operator is constructed geometrically by constructing a nested hierarchy of meshes within su-
perblocks and evaluating fine grid nodes with coarse grid shape functions for high scalability.
The smoothing operator is chosen as the Gauss-Seidel or Chebyshev smoother.

An outline of the rest of the paper is as follows. Section 2 introduces the technology of Per-
fectly Matched Layers. A 1D scalar wave problem is used to develop heuristics for selection of
PML parameters given a desired accuracy in approximating the radiation boundary conditions
for a finite element discretized problem. In Section 3, the GMG preconditioned iterative linear
solver is presented in combination with some mild restrictions on the selectable PML parame-
ters for a convergent method. Section 4 presents numerical results to illustrates the applicability
and scalability of the proposed method to large-scale 3D elastodynamic problems through a
simulation of a MEMS disk resonator. The algorithm is implemented through a combination of
HiQLab [12] the parallel numerical libraryPETSc[13] and run on a parallel processor machine.

2 Perfectly Matched Layers

In contrast to the coarse qualitative heuristics of [14, 15,16], we present quantitative heuris-
tics for PML parameter selection; the work is an extension of[17]. These heuristics are moti-
vated through a 1D scalar wave problem, in which the sources of error of PMLs in modeling the
radiation boundary condition for the finite element discretized problem are identified. (Though
we restrict the presentation here to linear finite elements and a linear absorbing functionλ(x),
heuristics can be constructed for higher-order elements aswell as other profiles ofλ(x).)

σ(x)

0
L L + Lpml

u(x)

0 L L + Lpml

x

x

β

Elastic,Ωbd PML, Ωpml

Figure 1: 1D scalar wave configuration with linear absorbingfunction profile.

2.1 1D scalar wave equation

Consider the 1D scalar wave equation with the application ofPMLs as depicted in Fig. 1.
The entire computational domain[0, L + Lpml] is defined as the union of the bounded elastic
domainΩbd := [0, L] and the wave absorbing PML domainΩpml := [L, L + Lpml]. The
governing equations for the system under time-harmonic assumptions for the displacement,
u(x, t) = û(x) exp(iωt), take the form of the Helmholtz equation,

d2û

dx̃2
+ k2û = 0, x ∈ [0, L + Lpml], (2)

x̃ =

∫ x

0

λ(s)ds, λ(s) = 1 − σ(s)i, (3)
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where,ω is the forcing frequency,c is the wave speed,k := ω/c is the wave number,x is
the original and̃x the complex-stretched coordinate, andi =

√
−1. The absorbing function

λ(x), which determines the wave absorbing behavior of the PML, isselected as a linear profile
with its imaginary partσ(s) taking an end value ofβ in the PML domain. Harmonic excitation
is applied atx = 0, yielding solutions to this equation consisting of two components, a right
propagating (outgoing) wave of magnitudecout and a left propagating (incoming) wave of mag-
nitudecin. Due to the application of PMLs, the waves propagating within the PML domain are
exponentially damped.

2.2 End termination reflection

To mimic the radiation boundary condition, one desirescin = 0, such that only outgoing
waves are permitted as solutions. Thus the ratio [17],

rend :=

∣

∣

∣

∣

cin

cout

∣

∣

∣

∣

= exp (−kβLpml) , (4)

can be considered a normalized measure of the quality of the boundary condition. This quantity
will be given the name “end termination reflection”, since itis due to the wave reflection arising
from a finite end termination of the PML. This equation can be rewritten in the form,

− 1

2π
log(rend) = β nwpml , (5)

by defining the wave lengthλ := 2π/k and the number of wave lengths in the PMLnwpml :=
Lpml/λ. rend tends to zero asnwpml, a non-dimensional measure of the length of the PML
Lpml, andβ, a non-dimensional measure of the strength of the absorbingfunction, increase.
Additionally, one observes that the contours of constantrend represent hyperbolas with respect
to β andnwpml. (β, nwpml) are the two PML parameters one must properly select.

2.3 Interface reflection

Compared to the continuous problem whererend is the only source of error, numerical dis-
cretization of the PML introduces another source. This error depends on many features of the
PML such as node-spacing, finite element interpolation order, and PML absorbing function
profile making the derivation of an analytical expression difficult. But, its character can be re-
vealed by computing the reflectionrcomputed = |cin|/|cout| from a finite element discretization
of the 1D scalar wave problem introduced in the previous section. rcomputed is obtained through
dispersion analysis for equations with non-constant coefficients [17, 18, 19]. For simplicity, we
assume the distance between nodes as constant.

In Fig. 2, the contours of constant computed reflectionrcomputed with respect to varyingβ
and nwpml is shown for a mesh discretization ofnnpw = 48, wherennpw is the number of
nodes per wave. The important detail to note is the shape of the curves of constantrcomputed

consist of a hyperbola plus a straight line emanating from the origin. The hyperbolas arise from
the contributionrend of Eqn. (5) and the straight lines are due to the discretization error. This
contribution has been assigned the name “interface reflection” rinterface [17]. Through numerical
experimentation with various absorbing function profiles,we have observed that the shape of
the contour curves representing the contributionrinterface is identical to the function profile of
σ(s) (in Fig. 2 one has a linear profile and hence a straight line). This allows one to model the
curves (in this case a straight line) as,

β = c(rinterface, nnpw) nwpml , (6)
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Figure 2: Computed reflection− log10(rcomputed) for discretizationnnpw = 48 with linear finite elements and
linear absorbing function profile.
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Figure 3: Interface reflection− log10(rinterface) with linear finite elements and linear absorbing function profile.
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Figure 4: Reconstructed contour line for− log10(rtol) = 3 for discretizationnnpw = 48 with linear finite elements
and linear absorbing function profile.
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where the coefficientc is a function ofrinterface andnnpw. (In generalc will also depend on the
order of finite element interpolation and PML absorbing function profile. [20]) In Fig. 3 the
relationship betweenc, nnpw, andrinterface obtained numerically is presented, where the contours
of constantrinterface with respect to varyingnnpw andc are plotted.

2.4 PML parameter selection

Given a desired tolerance of errorrtol and discretizationnnpw, one can obtain a range of PML
parameters(β, nwpml) based on Eqns. (5,6) that satisfy this tolerance.

The case for(rtol, nnpw) = (10−3, 48) is shown in Fig. 4. The dotted line corresponds to
the curve obtained from settingrend = rtol in Eqn. (5) and the solid line corresponds to the
curve obtained from settingrinterface = rtol in Eqn. (6). As a result, the gray region defines
the range of selectable PML parameters(β, nwpml) for an error of10−3. One can see that we
have been able to reconstruct what is observed in Fig. 2. Since nwpml directly translates to the
number of nodes and hence solution time, a minimal value is optimal. The obtained range of
PML parameters implies that there exists an optimally smallnwpml and correspondingβ

Though the parameter selection procedure that is presentedhere has been developed for
the 1D scalar wave equation, it can be applied to multi-D scalar wave equations and vector-
valued wave equations by only considering the component of the wave vector orthogonal to the
Elastic/PML domain interface and then treating the problemas a 1D scalar wave problem.

3 Geometric Multigrid Preconditioner

To iteratively solve the linear system defined in Eqn. (1) forlarge-scale problems, a Geo-
metric Multigrid (GMG) preconditioner is employed in combination with the GMRES iterative
solver. GMG, the geometric variant of multigrid, has been chosen for its effectiveness and scal-
ability in solving large-scale linear systems arising fromquasi-static elasticity when one has
geometric information of the physical system. It is also straightforward to extend to complex-
symmetric systems. Special care though must be taken in selecting the two major components
of MG, the prolongation operator and the smoother, since MG has been originally designed for
SPD equations. Through investigation of the two grid convergence factor, it is shown that some
mild restrictions exist on the selectable PML parameters for an effective GMG preconditioner.

3.1 Smoother

The smoothing operator is chosen as a Gauss-Seidel or a Chebyshev smoother. Since the
coefficient matrix(K − ω2

M) is complex-symmetric in the PML case, the application of these
smoothers is not as straight-forward as the SPD case. Unconditionally convergent stationary
methods such as row projections [5] as well as Krylov smoothers [21] can also be employed but
due to either slow or varying convergence properties they are not selected here.

Gauss-Seidel The Gauss-Seidel smoother is only proven to be a convergent smoother for di-
agonally dominant or real-symmetric positive definite linear systems [22], which the coefficient
matrix in our case is not. Still, Gauss-Seidel can be shown tobe an effective smoother even
for the complex-symmetric PML case under a restriction on the selectable PML parameters.
Through Local Fourier Analysis (LFA) [5] one can show that for 2D and 3D elastodynamics
with a linear PML absorbing function profile, Gauss-Seidel is convergent for0 ≤ β . 1. This
is one restriction the solution method puts on the selectable PML parameters. It must be em-
phasized that this restriction is one that any iterative method should encounter, since the upper
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boundβ . 1 stems from a loss of ellipticity of the material within the PML. This can be easily
explained through a 2D scalar wave equation on a Cartesian grid with PML applied to absorb
waves propagating in thex direction (the elastodynamic case can be shown in a similar man-
ner). Locally, one can assume that the absorbing function defining the wave absorbing behavior
is constant,λ := 1 − β i, with 0 ≤ β < ∞. By definingβ := tanα (0 ≤ α < π/2), one has
λ = 1

cos α
e−iα and thus obtains the following 2D Helmholtz equation in an anisotropic medium,

(cos2 α e2αi)
d2û

dx2
+

d2û

dy2
+ k2 û = 0. (7)

For any value ofα > π/4 (β > 1), the real part of the coefficient in front of thex derivative
becomes negative; forβ > 1, the PML behaves as an anisotropic viscoelastic material with
negative stiffness in thex direction. This unstable behavior is not ideal and can causeproblems
for iterative methods due to introduction of small eigenvalues.

Chebyshev Chebyshev smoothers [23] are attractive for their efficiency in parallelization
since they only involve matrix-vector operations. For the smoother to be effective, the eigen-
values of the operator(K − ω2

M) must be contained in an ellipse of convergence defined by
the selection of parameters in the Chebyshev polynomial. Inthe case of a complex-symmetric
operator, a bounding box for the eigenvalues can be obtainedto properly select the Cheby-
shev polynomial parameters so that the eigenvalues are contained within the ellipse [19]. This
smoother loses its effectiveness asβ > 1 for exactly the same reason the Gauss-Seidel smoother
loses its effectiveness, but the performance degradation is not as extreme.

3.2 Prolongation operator

The different levels in the MG scheme are constructed automatically by parameterizing the
block-generated mesh by a few length scale variables such asthe approximate distance between
adjacent nodes. The prolongation operatorP from the coarse gridGcoarse to fine gridGfine is
constructed by the evaluation of fine grid nodes at the coarsegrid shape functions. Let us
denote the coarse grid nodes asx

c
i and the fine grid nodes asxf

i . Using the finite element shape
functions on the coarse gridN c

j (x), the field on the coarse grid is represented as,

u(x) =
∑

j∈Gcoarse

N c
j (x)uc

j . (8)

Using the coarse grid valuesuc
j, one can obtain an approximation of the nodal values on the fine

grid uf
i , by the interpolated values from the coarse grid shape functions [24],

uf
i := u(xf

i ) =
∑

j∈Gcoarse

N c
j (x

f
i )u

c
j . (9)

This is a linear mapping from the coarse grid valuesuc
j to the fine grid valuesuf

i , which is
defined as the prolongation operator,

u
f = Pu

c , (10)

whose components are,

Pij = N c
j (x

f
i ), i ∈ Gfine, j ∈ Gcoarse. (11)
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Figure 5: 2D elastodynamics: Two grid convergence factorρ2grid for bilinear finite elements and linear absorbing
function profile with Gauss-Seidel Smoother.
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Figure 6: 2D elastodynamics: Two grid convergence factorρ2grid for bilinear finite elements and linear absorbing
function profile with Chebyshev smoother (polynomial order=2).

For the vector-valued case, each field is interpolated separately by the method introduced
above. Since the finite element nodal shape functions have small support and little overlap, the
prolongation operator is sparse. The block-generation based mesh construction strategy allows
one to construct a data structure that allows a look up procedure for fast construction of the
prolongation operators.

3.3 Two grid convergence factors

One can compute the two grid convergence factor,ρ2grid, of the MG, a measure of the re-
duction in the error in one iteration of MG, to investigate what factors affect the performance
of the proposed MG scheme.ρ2grid is computed for a sample 2D elastodynamic half space
configuration to display the properties of the proposed method. The computational domain is
truncated with the application of PMLs, and forced at a pointon the free surface at a frequency
which excites shear waves with wave discretization ofnnpw points-per-wave. The fine grid has
a discretization ofnnpw and the coarse grid has half this value. The computed contours of con-
stantρ2grid for varying (nnpw,β) using bilinear finite elements and a linear absorbing function
profile are shown in Figs. 5 and 6 for the Gauss-Seidel and Chebyshev smoothers.ρ2grid < 1 is
required for convergence. The divergent behavior forβ & 0.9 using the Gauss-Seidel smoother
is due to the divergence of the smoother, as mentioned earlier. It is clear that the Chebyshev
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Top view Side view

Figure 7: The 2nd radial contour mode shape of the 10µm radius disk resonator; Color representsz displacement
(Red: Positive, Blue: Negative).

smoother has a less stringent requirement for convergence on the selectableβ parameter. The
divergent behavior forβ . 0.1 andnnpw . 7 is due to a nonzero shiftω which prohibits a very
coarse coarsest grid [10] and causes eigenvalues to cross the Imaginary axis of the complex
plane [21]. The study of the two grid convergence factor imposes two constraints:0 ≤ β . 1
andnnpw & 5 on the coarsest grid for convergent behavior of the iterative method.

4 Numerical example

To illustrate the effectiveness of the proposed method in solving a real 3D elastodynamic
problem, the simulation of a MEMS disk resonator device is presented. The proposed method
is implemented in the MEMS simulation software HiQLab [12] combined with the PETSc [13]
library built on top of MPI, the linear solver MUMPS, the serial graph partitioner METIS, and
conducted on a multiple processor machine. The cluster consists of 16 Linux compute nodes,
each with two dual-core AMD Opteron 2216 processors for a total of 64 cores, connected via a
Quadrics QsNet network.

A 20[µm] diameter polysilicon disk resonator is simulated and theforced motion at a radial
contour mode of 716[MHz] is computed. Fig. 7 shows a 2D slice of the resonator through the
center post and substrate, where the colors show the z direction displacements of the mode. One
can see wave propagation through the substrate and the damping behavior in the PML region at
the boundary of the computational domain, as well as parasitic z direction bending type motion
in the disk.

Due to our current implementation of the code which uses the serial graph partitioner METIS,
a computational constraint restricts the size of the problem we can compute, i.e., the dis-
cretizationnnpw and the size of the PMLnwpml. This limits the 3D simulation to parameters
(β, nwpml) = (1, 6/13) andnnpw = 69.5 on the finest grid in the MG hierarchy, which leads to
a 6 million degrees-of-freedom (DOF) system. The hierarchyof levels constructed in the GMG
preconditioner is shown in Table 1 with corresponding number of DOFs and discretization. For
this simulation the Gauss-Seidel smoother has been employed. The selection of PML param-
eters yields an error of− log10(r) = 1.26, implying that the approximation of the radiation
boundary condition should be accurate to at least the 1st digit. This accuracy can be investi-
gated by computing the complex-valued eigenfrequencyω0 closest to the forcing frequencyω
and looking at its corresponding quality factor,Q := Abs(ω0)

Imag(ω0)
. Q is a measure of the damping of

the system vibrating in the mode corresponding to the eigenfrequency. Due to the computa-
tional constraints stated above, we cannot push the problemto full convergence inQ but see the
value approaching 6000, which matches to the 1st digit the value of 6300 which we obtain from
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Table 1: The 4 levels constructed for the geometric multigrid preconditioned GMRES iteration.

Level Number of DOF nnpw
1 49938 8.69
2 197574 17.4
3 977115 34.8
4 6140520 69.5

Table 2: GMRES iterations required to obtain a preconditioned relative residual of1 × 10−10 (Parentheses denote
the actual relative residual).

β 0 1.0 1.2

Iterations 38(5.0e-09) 41(3.3e-09) 160(2.0e-07)
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Figure 8: Strong scaling speedup with respect to number of processors for the solution of the disk resonator 6
million degrees-of-freedom problem.

a converged 2-D axisymmetric simulation. (The geometry of this disk allows an axissymetric
analysis.)

The scalable behavior of the GMG preconditioned GMRES, can be see in Table 2 and Fig.
8. In Table 2 the number of iterations required to obtain a preconditioned relative residual of
1×10−10 for varyingβ is shown. As predicted, performance drops asβ > 1, but for0 ≤ β . 1
the number of iterations is fairly low. Fig. 8 shows the strong scaling speedup for the 6 million
DOF problem.

5 Conclusions

A method to evaluate large-scale elastodynamic systems with PMLs based on a GMG pre-
conditioned GMRES iterative solver has been presented. TheGMG preconditioned GMRES
poses restrictions on the selectable PML parameters (0 ≤ β . 1) but one can expect simi-
lar restrictions on other iterative methods as well. To attain sufficient accuracy of the PML
in modeling the radiation boundary conditions under this restriction, the relationship between
PML parameters and accuracy along with heuristics for PML parameter selection have been
presented. The numerical example of a MEMS disk resonator shows the scalable behavior of
the proposed method to large-scale problems.
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