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Abstract

The least-squares projection procedure appears frequently in mathematics,
science, and engineering. It possesses the well-known property that a least-
squares approximation (formed via orthogonal projection) to a given data
set provides an optimal fit in the chosen norm. The orthogonal projection
of the data onto a finite basis is typically approached by the inversion of a
Gram matrix involving the inner products of the basis functions. Even if the
basis functions have compact support, so that the Gram matrix is sparse, its
inverse will be dense. Thus computing the orthogonal projection is expensive.

An efficient local least-squares algorithm for non-orthogonal projection
onto smooth piecewise-polynomial basis functions is analyzed. The algo-
rithm runs in optimal time and delivers the same order of accuracy as the
standard orthogonal projection. Numerical results indicate that in many
computational situations, the new algorithm offers an effective alternative to
global least-squares approximation.
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1. Introduction

In a recent publication [1], an efficient approximate method for the impo-
sition of Dirichlet boundary conditions in isogeometric analysis was proposed.
Isogeometric analysis [2] uses non-interpolatory basis functions for both ge-
ometry and analysis, and adjusts “control point” values to impose Dirichlet
boundary conditions. Standard methods for finding the control point val-
ues solve a least-squares (LSQ) problem [3]. This provides optimal accuracy
but increases the computational cost, especially when dealing with transient
Dirichlet boundary conditions, and in certain classes of non-linear problems.
The local least-squares (LLSQ) method of [1] approximates the global least-
squares problem by a collection of decoupled local least-squares problems,
greatly diminishing the computational cost. Examples in [1] demonstrate
the efficiency and accuracy of the method. However, the theoretical proper-
ties of the LLSQ method were not addressed and thus the true limitations
of the method are unknown. In this work, we carefully examine the LLSQ
method and elucidate its theoretical properties. In particular, we analyze
the error in the LLSQ approximation, prove convergence to the global LSQ
solution for model problems under appropriate conditions, and make positive
statements about the overall impact of using LLSQ solutions in place of LSQ
solutions.

In brief, the LLSQ method exploits the finite element concepts of local
basis functions and global basis functions. When we speak of a global LSQ
solution, we mean the projection of a given function onto the span of the
global basis functions. This projection is an orthogonal projection in the
L2 norm which is computationally expensive. The LLSQ solution proceeds
by first computing the orthogonal projection of the given function onto the
span of the local basis functions. This inexpensive local computation yields a
discontinuous approximation. The LLSQ solution then projects the discon-
tinuous approximation non-orthogonally into the space spanned by the global
basis functions, in a way that is not equivalent to the global LSQ projection.
The primary theoretical question is to clearly ascertain the relation between
the resulting approximations. We answer this question by factorizing the
LSQ and LLSQ projections, identifying the common factors, and bounding
the differences.
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2. The Least-Squares Method

The least-squares method [4] is a well-established scheme for computing
the orthogonal projection which best approximates given data from a finite
dimensional subspace; see e.g. [5, §6.2-6.5] for an elementary introduction
and [6, §5.3] for a more in-depth presentation and further references. In
summary, consider a given vector-valued data function u ∈ Hs with values
u(x) in the state space R

r, for x in a subset Ω of Euclidean space R
d, where the

dimension d is 1, 2, or 3 and r is typically O(1). Here Hs is the usual Sobolev
space consisting of functions with distributional derivatives up to order s
in L2. Suppose one wishes to project this data onto a finite dimensional
subspace Fn = span{f1(x), f2(x), · · · , fn(x)} of L2(Ω). Here fi(x) are given
linearly independent (but not usually orthogonal) scalar basis functions, and
we seek a projection which is orthogonal in the standard L2 inner product
〈u, v〉 =

∫
Ω

u(x)∗v(x) dx. The global least-squares projection uF ∈ Fn of the
data u minimizes the squared residual norm

‖u −
n∑

i=1

uifi‖2 = 〈u −
n∑

i=1

uifi, u −
n∑

i=1

uifi〉 (1)

with respect to the parameters ui ∈ R
r. Employing an obvious abuse of

notation, the nr-vector of minimizing components is also denoted uF ∈ R
nr

and it satisfies the well-known normal equations

GuF = p , (2)

where the nr × nr Gram matrix has r × r block matrix-valued components

Gij = 〈fi, fj〉 I (3)

and the right hand side has vector-valued components

pi = 〈fi, u〉 . (4)

Here I is the r × r identity matrix.

Remarks:.

1. Standard solution methods for the normal equations (independent of
their assembly) exploit the uncoupled nature of the r components of
each vector coefficient ui, but typically do not exploit sparsity of the
Gram matrix. Thus they require O(rn3) floating point operations.
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2. The numerical stability of the least-squares solution process in finite
precision arithmetic requires the residual norm in (1) to be small (con-
sistency of the projection) and the condition number of the Gram ma-
trix to be controlled (stability, which is equivalent to uniform linear
independence of the basis functions); see [6, §5.3].

3. The least-squares solution uF is characterized by the orthogonality of
its error: 〈u − uF , v〉 = 0 for any v ∈ Fn. It can also be written as
uF = Fu where F is the orthogonal projection operator from Hs onto
Fn. The operator F satisfies F 2 = F because it is a projection, and F
is selfadjoint, F = F ∗, because it is an orthogonal projection.

4. In order to avoid cumbersome notation and terminology, from here
on, we assume without loss of generality that the state space is one-
dimensional; i.e. r = 1.

3. Compact Support

We now assume the functions fi(x) have compact support, so the Gram
matrix elements 〈fi, fj〉 vanish except for O(n) index pairs (i, j). This as-
sumption holds for NURBS, B-spline, and standard Lagrange polynomial
finite element basis functions, and so forth. A useful construct for bases with
compact support is the notion of elements, as in finite element analysis. A
typical finite element structure partitions the domain Ω into elements Ωe.
On each Ωe, each global basis function fj restricts to a local basis function
f e

m defined on Ωe and vanishing outside Ωe. In this setting, the rectangular
assembly operator A is the Boolean matrix that maps between local element
degrees of freedom vem, representing any function v =

∑
e

∑
m vemf e

m, and
global degrees of freedom vj, where v =

∑
j vjfj. Each column of A contains

a single unity-valued entry; all other entries are zero. Furthermore, due to
our compact support assumption, the rows of A are sparse. This allows us
to write

G = AGEA∗ (5)

p = ApE , (6)

where GE is a block diagonal matrix whose blocks are computed via integra-
tion over individual elements, and likewise for pE. In other words, GE and pE

represent local (unassembled) element contributions to the global vectors and

4



matrices and the operator A assembles them. In this notation, the normal
equations for the global LSQ problem become

AGEA∗uF = ApE . (7)

Form (7) of the normal equations is the point of departure for the approxi-
mate solution scheme proposed in [1].

4. The Local Least-Squares Method

The LLSQ method of [1] rewrites (7) in the form

GEA∗uF = pE + q , (8)

where q ∈ ker(A). Here q typically represents highly oscillatory data not
present in Fn, and measures the consistency of the given data u with the
chosen function subspace Fn. The LLSQ method ignores q and solves the
relation GEA∗uS = pE. This generates an approximation

uS = (AA∗)−1AG−1
E pE (9)

to the LSQ solution uF . Approximation (9) is extremely efficient to compute
because AA∗ is a diagonal matrix and the inversion of GE is done element-
by-element.

Concretely, the LLSQ method solves a local least-squares problem on each
element with G−1

E to obtain a globally discontinuous solution, uE = G−1
E pE;

it then smooths the discontinuous solution with the operator (AA∗)−1A. The
diagonal matrix AA∗ counts the number of local degrees of freedom corre-
sponding to each global degree of freedom; so (AA∗)−1A sets shared degrees
of freedom to the average of the corresponding local degrees of freedom. The
result is a function uS ∈ Fn, which enjoys the smoothness of the global basis.
Note uS 6= uF in general.

The geometric situation is depicted in Fig. 1. The given data is u ∈ Hs =
{u ∈ L2 | u(k) ∈ L2 for 0 ≤ k ≤ s}. The span of the local functions f e

m is En,
a linear space of discontinuous functions. The combination of the local least-
square solutions on each element generates uE, the orthogonal projection of
u onto En. The LLSQ method of [1] projects this function non-orthogonally
onto Fn = En ∩ Hs, the span of the global basis functions. The global LSQ
solution uF is the orthogonal projection of both u and uE onto Fn.
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Figure 1: Geometry of orthogonal and skew projections uF and uS of u ∈ Hs onto Fn.

4.1. Illustration

To concretely illustrate the LLSQ method in a simple setting, consider
given data u(x) over an interval Ω = [0, L]. We desire to approximate u(x) by
a function in F3 = span{f1(x), f2(x), f3(x)}, where fj(x) are known functions
as depicted in Fig. 2. The classical global least square solution to this problem
generates a function uF (x) ∈ F3 which is the orthogonal projection of u(x)
onto F3 (in the L2 norm). In this example, uF ∈ C0. The LLSQ method of [1]
is a two step process. In step one, one first breaks the domain up into elements
and orthogonally projects u(x) onto E3 = span{f 1

1 (x), f 1
2 (x), f 2

1 (x), f 2
2 (x)},

where f e
m(x), the local functions over element e, are the restrictions of the

global functions fj(x); the mapping between the global index j and the
local index m of element e is given by the geometry of the problem and
the definition of the global functions. In finite element parlance, this relation
is given by the assembly operator A. The elements of the basis for E3 are
illustrated in Fig. 3. The result of this step is a function

uE(x) = u1
1f

1
1 (x) + u2

1f
2
1 (x) + u2

1f
2
1 (x) + u2

2f
2
2 (x) ∈ E3.

In this example, uE ∈ C−1. Step two of the LLSQ method takes uE(x) and
non-orthogonally projects it onto F3. This last step is non-orthogonal for
reasons of efficiency – an orthogonal projection would simply generate uF (x)
with all its attendant costs (should one consider a basis of non-trivial size).
The final result is a function uS(x) ∈ F3 which we call the skew projection
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0 LL/2

f1

f2

f

Figure 2: Example global basis with 3 functions fj(x).

or alternately the LLSQ solution. In our current example, this final step is
executed by averaging the computed coefficients for the shared degrees of
freedom f 1

2 (x) and f 2
1 (x) and assigning the result to the coefficient of f2(x):

uS(x) = u1
1f1(x) +

1

2

(
u2

1 + u2
1

)
f2(x) + u2

2f3(x) .

5. General Analysis

The LLSQ method computes a “skew projection” uS ∈ Fn by a two-step
procedure: First, project u orthogonally onto En to get the best approxi-
mation uE to u from En. Second, project uE non-orthogonally onto Fn by
setting shared degrees of freedom controlling the first s derivatives of uE to
their average values. The second step yields a projection S from En to Fn

defined by uS = SuE. Because repeating the second step makes no further
change in uS, we have S2 = S. However, S is not orthogonal since shared
degrees of freedom do not correspond to coefficients of a global orthonormal
basis: thus S∗ 6= S. Indeed, if S were the orthogonal projection from En

onto Fn ⊂ En, then uS would be exactly the global solution uF . Figure 1
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Figure 3: Four local basis functions corresponding to the global basis in Fig. 2.

exhibits the geometry of the three projections E, F and S and suggests three
observations that simplify the analysis:

Factorization: The orthogonal projection F onto Fn could in principle be implemented
by projecting first orthogonally onto En and then orthogonally from En

to Fn. Symbolically, F = FE. Hence the only difference between
uF = Fu = FEu and uS = SEu is the route from uE ∈ En to the final
result in Fn.

Projection: Both S and F are projections onto Fn, so Sv = Fv = v for all v ∈ Fn.

Optimality: The error ‖u−uE‖ in orthogonal projection onto the space En of discon-
tinuous functions is never larger than the error ‖u− uF‖ in orthogonal
projection onto the space Fn of continuous functions, because Fn is a
subspace of En and orthogonal projection finds the best approximation.

Applying these three observations in succession shows that the error ‖u−
uS‖ in the LLSQ solution uS is controlled by the error ‖u−uF‖ in the global
least-squares solution uF , multiplied by a bounded constant C ≥ 1: By
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factorization and projection,

u − uS = u − uF + uF − uS

= u − uF + (F − S)uE

= u − uF + (F − S)(uE − uF )

= u − uF + (F − S)(uE − u + u − uF ).

Applying norms of functions and operators, using the triangle inequality, and
applying optimality gives

‖u − uS‖ = ‖u − uF + (F − S)(uE − u + u − uF )‖
≤ ‖u − uF‖ + ‖F − S‖ (‖uE − u‖ + ‖u − uF‖)
≤ (1 + 2‖F − S‖) ‖u − uF‖
≤ C‖u − uF‖.

Thus C = 1+2‖F −S‖ is proportional to the operator norm of the difference
between orthogonal and skew projections from En onto Fn. If C is bounded
independent of the element size, this result shows that the LLSQ method
delivers the same order of accuracy as the global least-squares solution with
considerably less computational effort.

6. Examples

The two step recipe elaborated upon in the prior section defines the skew
projection procedure of the LLSQ method. To understand its properties, and
in particular compute the error constant C = 1 + 2‖F − S‖, we will look at
two particular cases. We will start with Lagrange polynomial finite elements
of variable polynomial order and smoothness and examine the behavior of
the LLSQ method as well as one variant that we will define later. Next we
will look at the case of B-spline bases of variable polynomial order. Our tool
of choice, in both cases, will be von Neumann analysis.

6.1. Lagrange Polynomial Finite Elements

We prove the order-p+1 convergence of the LLSQ method for projection
of smooth data u from the order-s Sobolev space

Hs = {u ∈ L2|u(k) ∈ L2 for 0 ≤ k ≤ s}
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onto standard degree-p Hs polynomial finite elements in dimension d = 1. It
is known that the global least-squares approximation uF enjoys order-p + 1
convergence for p + 1 ≤ s:

‖u − uF‖ ≤ Khp+1‖u‖Hs = Khp+1

√√√√
s∑

k=0

‖u(k)‖2 ,

where ‖v‖ is the L2 norm of v and K is independent of the element size
h. We will show that the LLSQ approximation maintains the same order
of convergence. For simplicity, we assume state space dimension r = 1,
and elements with uniform size 2h, degree p and smoothness s, and employ
classical von Neumann analysis. The structure and conclusions of the analysis
carry over to related basis functions in multidimensional geometry, but more
sophisticated tools are required.

In this setting, the domain Ω = R is the whole real line and the elements
Ωj = [xj − h, xj + h] are intervals of equal size 2h centered about points
xj = 2jh for all integers j ∈ Z. Each element supports polynomials of degree
p ≥ 1, expressed for convenience in a local orthonormal basis

pjm(x) =
1√
h
Pm

(
x − xj

h

)
|x − xj| ≤ h, 0 ≤ m ≤ p. (10)

Here we define pjm(x) = 0 for |x−xj| > h, and Pm are orthonormal Legendre
polynomials on the interval [−1, 1]:

P0(x) =
1√
2
, P1(x) =

√
3√
2
x,

Pm+1(x) =
2m + 1

m + 1

√
2m + 3

2m + 1
xPm(x) − m

m + 1

√
2m + 3

2m − 1
Pm−1(x).

Let En = span{pjm} be the span of these basis functions, so En is the space of
piecewise degree-p polynomials over the elements Ωj. Since pjm(x)pj′m′(x) =
0 for j 6= j′ and 〈Pm, Pm′〉 = 0 in L2(−1, 1) for m 6= m′, the pjm’s form an
orthonormal basis for their span. Hence any v ∈ En has the form

v(x) =
∑

j∈Z

p∑

m=0

vjmpjm(x) , (11)
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where each coefficient vjm is an inner product

vjm = 〈v, pjm〉 =

∫ xj+h

xj−h

v(x)pjm(x) dx

and for any given element ΩJ , only the p + 1 terms in Eq. (11) with j = J
are nonzero. The coefficients give an isometry since

‖v‖2 =

∫ ∞

−∞

|v(x)|2 dx =
∑

j∈Z

p∑

m=0

|vjm|2.

Functions in En are typically discontinuous, because no interelement conti-
nuity or smoothness conditions have been imposed on the basis functions
(10). In compensation, the process of computing the orthogonal projection
uE onto En of an arbitrary function u ∈ Hs is completely local:

uE(x) =
∑

j∈Z

p∑

m=0

ujmpjm(x) ,

where

ujm = 〈u, pjm〉 =

∫ xj+h

xj−h

u(x)pjm(x) dx.

Because the pjm’s form an orthonormal basis for En, uE = Eu is the closest
function in En to the data u, and defines an orthogonal projection operator:
E = E2 = E∗.

The global least-squares problem of Eq. (1) projects u orthogonally onto
the subspace Fn = En∩Hs = En∩Cs−1 of En consisting of piecewise degree-p
polynomials v which satisfy s additional interelement smoothness conditions

lim
ǫ↓0

v(k)(xj + h− ǫ) = v(k)(xj + h−) = v(k)(xj+1 − h+) = lim
ǫ↓0

v(k)(xj+1 − h + ǫ)

for derivatives of order 0 ≤ k ≤ s − 1. The result of this projection is the
closest function v = uF = Fu ∈ Fn to the data u, and defines an orthogonal
projection operator: F = F 2 = F ∗.

In this concrete setting, the skew projection S which implements the
LLSQ method takes the discontinuous degree-p piecewise polynomial

uE(x) =
∑

j∈Z

p∑

m=0

ujmpjm(x) (12)
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and maps the coefficients ujm to values vjm such that

uS(x) =
∑

j∈Z

p∑

m=0

vjmpjm(x) = Su(x)

satisfies the conditions

u
(k)
S (xj + h−) = u

(k)
S (xj+1 − h+), 0 ≤ k ≤ s − 1, j ∈ Z,

on jumps across each interelement interface xj + h− = xj+1 − h+. Since only
p + 1 terms in the sum defining uS are nonzero for each x, these conditions
can be written

p∑

m=0

P (k)
m (1)vjm =

p∑

m=0

P (k)
m (−1)vj+1,m, 0 ≤ k ≤ s − 1, j ∈ Z,

where we have scaled out a common power of h. Since Legendre polynomials
are alternately even and odd, P

(k)
m (−1) = (−1)m+krkm where rkm = P

(k)
m (1).

Thus these conditions simplify to

Rvj − Lvj+1 = 0, j ∈ Z,

where each vj is an (p+1)-vector (vj0, vj1, . . . , vjp)
T ∈ R

p+1 and R and L are
s× (p + 1) matrices with elements rkm and (−1)m+krkm respectively. Row k
of R defines a shared degree of freedom controlling the kth derivative of uS

at the right interval endpoint, with the rows of L playing the same roles at
the left interval endpoint. Note that R and L are independent of the mesh
size h.

Specifically, the LLSQ method sets the shared values for the skew pro-
jection v to their averages from uE(x):

Rvj = Lvj+1 =
1

2
(Ruj + Luj+1)

for each j ∈ Z; here as with vj, uj ∈ R
p+1. Shifting the index j + 1 gives

an infinite block tridiagonal system consisting of two linear systems for each
coefficient vector vj:

Rvj =
1

2
(Ruj + Luj+1)
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and

Lvj =
1

2
(Ruj−1 + Luj) .

Thus each vj satisfies a block linear system,

[
R
L

]
vj =

1

2

[
0
R

]
uj−1 +

1

2

[
R
L

]
uj +

1

2

[
L
0

]
uj+1 (13)

for j ∈ Z. Block j of the system consists of 2s equations for the p + 1
coefficients in vj, so we expect a solution if 2s ≤ p + 1. (The left-hand
block matrix has full row rank because Hermite interpolation of s values and
derivatives at interval endpoints by a degree-p polynomial has at least one
solution for 2s ≤ p + 1.) Equality 2s = p + 1 = 2 holds for continuous
(H1) piecewise-linear basis functions, but we cannot expect a solution for H3

cubic polynomials with 2s = 6 > p + 1 = 4. Instead, quintic polynomials are
required to achieve H3 or C2 smoothness. The LLSQ method sets shared
degrees of freedom to specified average values rather than simply matching
them between elements, so it requires about twice the polynomial degree
to achieve a specified level of smoothness vis-a-vis the global least-squares
computation.

Classical von Neumann analysis applies Fourier series analysis to block-
diagonalize Eq. (13). For any sequence of vector coefficients uj ∈ R

p+1, we
consider the associated Fourier series

û(θ) =
1√
2π

∑

j∈Z

uje
ijθ

where i =
√
−1 and the Fourier coefficients uj ∈ R

p+1 are given by the
standard orthogonality formula

uj =
1√
2π

∫ π

−π

e−ijθû(θ) dθ.

Because both orthogonal Legendre coefficients and the Fourier transform are
isometries of the L2 inner product, the L2 norm of our original piecewise poly-
nomial uE ∈ En is the same as the discrete l2 norm of its vector coefficients
and the L2(−π, π) norm of û:

∫ ∞

−∞

|uE(x)|2dx =
∑

j∈Z

‖uj‖2 =

∫ π

−π

‖û(θ)‖2 dθ ,
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where ‖u‖ is the standard Euclidean norm of u ∈ R
p+1. Similarly, inner

product relationships such as adjoints and norms of operators are preserved.
The shifted sequence uj+1 corresponds to multiplying the Fourier series

corresponding to uj by e−iθ, so the Fourier transform of Eq. (13) yields
[
R
L

]
v̂(θ) =

(
1

2

[
0
R

]
eiθ +

1

2

[
R
L

]
+

1

2

[
L
0

]
e−iθ

)
û(θ)

=
1

2

[
R + e−iθL
L + eiθR

]
û(θ).

6.1.1. LLSQ skew projection case

If the block matrix on the left is square and invertible, then the skew
projection S is uniquely determined by these equations and

v̂(θ) =
1

2

[
R
L

]−1 [
R + e−iθL
L + eiθR

]
û(θ) = Ŝ(θ)û(θ) = Ŝu(θ)

where Ŝ is the (p + 1) × (p + 1) matrix symbol of S. If 2s < p + 1 then S is
underdetermined and several possible skew projections exist.

Among these a natural choice (in the context of orthogonality) involves
the pseudoinverse or right inverse defined by B† = B∗(BB∗)−1 for a matrix
B with full row rank:

Ŝ(θ) =
1

2

[
R
L

]† [
R + e−iθL
L + eiθR

]
.

Back in real space, this choice defines S by

Suj =

[
R
L

]†(
1

2

[
0
R

]
uj−1 +

1

2

[
R
L

]
uj +

1

2

[
L
0

]
uj+1

)
. (14)

6.1.2. Alternate skew projection

Another natural choice would be to set a subvector of vj equal to the
corresponding entries of uj, and use the remaining degrees of freedom in vj

to satisfy the smoothness conditions. Setting the low-order entries of vj to
those of uj and satisfying smoothness conditions with the high-order entries
gives another skew projection T with symbol

T̂ (θ) =




R
J
L




−1 


1
2
(R + e−iθL)

J
1
2
(L + eiθR)



 ,

where J is the (p + 1 − 2s) × (p + 1) matrix consisting of the top p + 1 − 2s
rows of the (p + 1) × (p + 1) identity matrix.
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6.1.3. Explicit Computations

For continuous (H1) piecewise-linear polynomials with s = p = 1, the
skew projection S is uniquely determined by Eq. (13). Using the values

r00 = P0(1) =
1√
2
, r01 = P1(1) =

√
3√
2
,

gives
[
R
L

]
=

[
r00 r01

r00 −r01

]
=

[
P0(1) P1(1)

P0(−1) P1(−1)

]
=

1√
2

[
1

√
3

1 −
√

3

]

and

Ŝ(θ) =
1

2
√

3

[√
3(1 + cos θ) 3i sin θ

−i sin θ
√

3(1 − cos θ)

]
.

Clearly Ŝ(θ)2 = Ŝ(θ), and Ŝ(θ)∗ 6= Ŝ(θ). Hence S is a non-orthogonal
projection. Since det Ŝ(θ) = 0 and trace Ŝ(θ) = 1, its eigenvalues are 1
and 0, with 1 corresponding to the invariant subspace Fn. In Fourier space,
it is straightforward to compute the orthogonal projection F from En onto
the range of S (which is Fn). Indeed, F = S(S∗S)−1S∗ = F 2 = F ∗ is the
orthogonal projection operator with the same range as S. Since the Fourier
transform preserves inner products and therefore adjoints, F is represented
by the matrix symbol F̂ = Ŝ(Ŝ∗Ŝ)−1Ŝ∗. A brief calculation shows that

F̂ =
1

2(2 + cos θ)

[
3(1 + cos θ)

√
3i sin θ

−
√

3i sin θ 1 − cos θ

]
.

Clearly F̂ (θ)2 = F̂ (θ), det F̂ (θ) = 0, trace F̂ (θ) = 1, and F̂ (θ)∗ = F̂ (θ).
Hence F is an orthogonal projection. Since F̂ is a rational function rather
than a trigonometric polynomial, it is the symbol of a nonlocal operator
F which will be expensive to apply. We see that the error constant C =
1+2‖F −S‖ is independent of the element size. A tedious calculation shows
that

(Ŝ − F̂ )(Ŝ − F̂ )∗ =
sin2 θ

6(2 + cos θ)

[
3(1 + cos θ)

√
3i sin θ

−
√

3i sin θ 1 − cos θ

]
=

sin2(θ)

3
F̂

has eigenvalues 0 and sin2(θ)/3, so ‖Ŝ − F̂‖ = | sin θ|/
√

3 ≤ 1/
√

3 and

C = 1 + 2‖F − S‖ = 1 + 2 max
|θ|≤π

‖F̂ (θ) − Ŝ(θ)‖2 = 1 + 2/
√

3 ≤ 3.
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Table 1: Error bounds ⌈C⌉ for skew projection S onto piecewise polynomials of degrees p
and smoothness Hs.

s\p 1 3 5 7 9 11 13 15

1 3 4 4 4 4 4 4 4
2 10 7 6 6 6 6 6
3 56 33 27 25 23 22
4 383 199 153 132 121
5 2844 1318 953 791
6 21869 9176 6250
7 171924 65915
8 1372945

Since this is independent of the element size h, the LLSQ projection S delivers
the same order of accuracy as the global least-squares projection F .

It may be worth noting that the LLSQ method is related to some recent
investigations [7] into banded matrices with banded inverses. Indeed, the
LSQ method solves a banded system with a non-banded inverse, while the
LLSQ method approximates the non-banded inverse by a banded matrix,
with an accuracy independent of the matrix size.

The general case of arbitrary polynomial order p and smoothness s with
2s ≤ p + 1 proceeds similarly. Numerically computed upper bounds for the
constant C, covering polynomial degrees p = 1, 3, 5, . . . , 15 and smoothness
0 ≤ s ≤ ⌊(p + 1)/2⌋ are reported in Tables 1 and 2 for the skew projections
S and T based on pseudoinversion and high-order modification, respectively.
The error constants are independent of the element size h, and remain small
as long as the level of smoothness s remains well below its maximum. Along
each row of values with fixed smoothness s and increasing polynomial degree
p, the error constants rapidly approach an asymptote of moderate value.
Along table diagonals where a fixed percentage of the available degrees of
freedom are devoted to smoothness, the error constants grow factorially, but
the rapid convergence of approximations constructed from high-order smooth
basis functions provides considerable compensation. The skew projection S
based on pseudoinversion is slightly better than the alternative T , as ex-
pected.
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Table 2: Error bounds ⌈C⌉ for skew projection T onto piecewise polynomials of degrees p
and smoothness Hs.

s\p 1 3 5 7 9 11 13 15

1 3 4 4 5 5 5 5 6
2 10 8 10 13 16 20 24
3 56 40 51 68 92 122
4 383 243 305 424 599
5 2844 1621 1962 2737
6 21869 11311 13102
7 171924 81359
8 1372945

6.2. B-Spline Basis

As a second example, we now consider the case where we wish to project
onto the space of functions spanned by a B-spline basis defined on a uniform
knot vector. Our approach will be to construct a map between the B-spline
basis and our Legendre basis and then to leverage our prior analysis. The
primary difference in the B-spline setting is that the averaging operation of
the LLSQ method can no longer be interpreted as a simple setting of inter-
element jump values. Instead, it corresponds to an averaging operator with
a stencil extending over p + 1 elements.

We begin by noting that the skew projection can be written as:

w(x) = uS(x) =
∑

j∈Z

wjbp(x − 2jh) = Su(x)

but is formally computed by first creating the discontinuous piecewise poly-
nomial given by Eq. (12) and then projecting onto the Hp piecewise degree-p
B-spline basis {bp(x − 2jh) | j ∈ Z}. This basis is defined by

bp(x) =
p + 1

p

p+1∑

i=0

γip(x − ti)
p
+,

where ti = (2i − 1)h,

γip =
∏

0≤j≤p+1

j 6=i

1

tj − ti
,
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and (t)+ = max(t, 0). It consists of translates of a single function bp(x),
which is a degree-p polynomial on each interval tj < x < tj+1 and vanishes
identically for x < t0 and x > tp+1.

Since the piecewise Legendre polynomials pjm form an orthonormal basis
for piecewise degree-p polynomials, the coefficients bjm such that

bp(x) =

p∑

m=0

bjmpjm(x) for tj ≤ x ≤ tj+1

must be given by the formula

bjm =

∫ tj+1

tj

pjm(x)bp(x) dx =
√

h

∫ 1

−1

Pm(ζ)bp((2j + ζ)h) dζ.

Since pjm and bp are polynomials of degree ≤ p on the interval of integration,
the q-point Gauss-Legendre integration formula

∫ 1

−1

f(ζ) dζ =

q∑

k=1

αkf(ζk)

(where αk and ζk are tabulated in [8]) is exact whenever q ≥ p + 1. Hence

bjm =
√

h

q∑

k=1

αkPm(ζk)bp((2j + ζk)h).

Using these coefficients and the characteristic function χj(x) which is 1 for
tj ≤ x ≤ tj+1 and 0 otherwise, we have

bp(x) =

p∑

j=0

p∑

m=0

bjmpjm(x)χj(x),

and inverting the relationship expresses the Legendre polynomials in terms
of the bp restricted to each interval of support:

pjm(x) =

p∑

k=0

βmkbp(x + 2(k − j)h)χj(x)
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where β = {βkj} is the (p+1)×(p+1) inverse matrix to {bjk} and |x−xj| ≤ h.
Thus a discontinuous polynomial uE(t) is transformed to the segmented B-
spline basis by

uE(x) =
∑

j∈Z

p∑

m=0

ujmpjm(x)

=
∑

j∈Z

p∑

m=0

ujm

p∑

k=0

βmkbp(x − xj + xk)χj(x)

=
∑

j∈Z

p∑

k=0

(
p∑

m=0

βmkuj+k,mχj+k(x)

)
bp(x − xj)

=
∑

j∈Z

(
p∑

k=0

wjkχj+k(x)

)
bp(x − xj).

The segmented B-spline basis functions are χk+j(x)bp(x − xj) for j ∈ Z and
0 ≤ k ≤ p, and the coefficients of uE in this basis are

wjk =

p∑

m=0

βmkuj+k,m.

The LLSQ method proceeds to average and spread the coefficients over the
support of each smooth unsegmented basis function bp(x − xj):

wjkχj+k(x) → wj =

(
1

p + 1

p∑

k=0

wjk

)(
p∑

k=0

χj+k(x)

)
.

Given the averaged coefficients, the skew projection w = Su can be reassem-
bled in the piecewise Legendre basis by

w(x) =
∑

j∈Z

wjbp(x − xj)

=
∑

j∈Z

wj

p∑

k=0

p∑

m=0

bkmpkm(x − xj)

=
∑

j∈Z

p∑

m=0

(
p∑

k=0

bkmwj−k

)
pjm(x)

=
∑

j∈Z

p∑

m=0

(
p∑

k=0

bkm

1

p + 1

p∑

l=0

p∑

n=0

βnluj−k+l,n

)
pjm(x).
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Here we have interchanged summation over j, shifted the infinite sum by k,
and interchanged the sums again. Fourier analysis of this last result yields
the matrix symbol Ŝ(θ) of the skew projection such that

Ŝu(θ)m =

p∑

n=0

Ŝ(θ)mnû(θ)n

where

Ŝ(θ)mn =

p∑

k=0

p∑

l=0

bkm

1

p + 1
βnle

i(k−l)θ

=
1

p + 1

(
p∑

k=0

bkmeikθ

)(
p∑

l=0

βnle
−ilθ

)
.

The separated form of Ŝ is a natural consequence of the low-rank structure
of averaging and spreading.

6.2.1. Numerical Computations

In the first row of Table 3 we report the error constants C = 1 + 2‖S −
F‖ for B-spline polynomial degrees 1 through 6. These are computed from
the norms of the operators derived in the previous section. The values are
larger than the error constants of Table 2 in compensation for the lower
degree of the B-spline basis functions, but still remain moderate in size and
independent of the element size. Thus the local skew projection provides
the same order of accuracy as the global projection onto the space of B-
splines. The error constants are relatively tight. To illustrate this point, in
the second row of Table 3 we show computed values of C for specially chosen
data functions u(x). These functions were determined by the right singular
vector corresponding to the maximum singular value of Ŝ(θ)− F̂ (θ) for each
value of p. Fig. 4 shows a graph of one such function used for the case p = 3
on the interval [0, 10]; the knots tj are uniformly spaced 1 unit apart.

As a second numerical B-spline demonstration, we consider the smooth
data function u(x) = cos(6πx/L) over the interval [0, L] and project it onto
the B-spline basis for p = 1, 2, 3, 4. Figure 5 shows the errors ‖u − uF‖
and ‖u − uS‖ versus the reciprocal of the number of knot spacings (i.e. h).
For each value of p, one observes that the rate of convergence for the skew
projection (solid line) and the full least square projection (dashed line) is
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Table 3: (First row) Error bounds ⌈C⌉ for skew projection S onto B-splines of degree p.
(Second row) Computed values.

p = 1 2 3 4 5 6

3 10 67 854 12205 253587
1.3 8.2 50 657 8113 166991

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

x

u(
x)

Figure 4: Example data function u(x) for the case p = 3 which results in a near maximal
value for C.
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Figure 5: Convergence curves for ‖u − uF ‖ (dashed curves) and ‖u − uS‖ (solid curves)
versus the reciprocal of the number of knot spacings (i.e. h).

the same and that the separation of the error curves remains nearly constant
for all values of h. For p = 1, 2 this constant is very close to 1 so the two
error curves are not distinguishable from each other. For p = 3 the value is
approximately 20 and for p = 4 it is approximately 50 – all consistent with
the error bounds in Table 3. The deviation for the LLSQ method on the
finest knot spacing for p = 4 is due to round-off errors.

6.3. NURBS Example

As a final example we consider the case of a non-rational B-spline basis
(NURBS) for a surface embedded in R

3. This case is also directly applicable
to the original motivation for the development of the LLSQ, viz., isogeometric
analysis. Due to the technical complexity associated with providing proofs
in this case we consider the problem from a purely numerical standpoint.

Consider the projection of the data function

u(x, y) = sin(3πx/
√

2R) sin(2πy/L)
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onto F and E , where these spaces are defined by a tensor product of NURBS
functions that exactly map one-quarter of a cylindrical shell as shown in
Fig. 6(upper left). The radius of curvature of the shell is R = 5 units and
the length of the shell is L = πR/2 units. Also shown in Fig. 6 are the
convergence curves for the cases of a uniformly refined NURBS basis in both
directions of orders p = 2, 3, 4. In each case, one observes that the rate
of convergence for the skew projection (solid line) and the full least square
projection (dashed line) match each other and that the separation of the
curves, for each order, remains essentially constant for all values of h. The
separation ratios are further noted to be compatible with the theoretical B-
spline constants C – in this case roughly 1.1, 10, and 35 for p = 2, 3, and 4,
respectively. Given the intimate relation between the two bases, this is not
unexpected. Again, we see a the deviation of the LLSQ method on the finest
knot spacing for p = 4 due to round-off errors.

7. Conclusions

The LLSQ method was introduced in [1] and shown to be effective on
a series of problems arising in isogeometric analysis of solids but without
rigorous justification. In the present work we have examined the methodology
in detail and shown in general that the LLSQ method possesses an error that
is bounded by a constant times the global least square error. For two special
cases in one dimension we have shown that the constant is bounded and
independent of the element size used to define the local basis functions at the
heart of the LLSQ method. Using similar tools but with far more involved
algebra the results shown carry over to higher dimensions. As a simple
illustration, we have provided a numerical example employing a NURBS basis
in two-dimensions demonstrating good behavior. Considering the original
motivation of isogeometric analysis in [1], we can also conclude that using
the LLSQ method to enforce Dirichlet boundary conditions will not change
the expected rates of global convergence for an isogeometric analysis. Since in
higher dimensions the LLSQ method is more efficient than the LSQ method,
we view it as a practical method for this purpose.
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