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Abstract

In this report we detail the development of a 6 node triangular
plate element suitable for use in the simulation of anisotropic materials
that generate membrane-shear coupling. Our canonical example of
such a material is single crystal Silicon in the [111] wafer orientation.
The plate developed utilizes quadratic fields to take advantage of the
good convergence properties of quadratic elements in linear problems.
Further we utilize linked interpolations to produce an element with an
exact thin plate limit. Thus the proposed element is useful for both
thin and thick plates. Bubble modes are added to the element to give
it full convergence properties that one would expect from a quadratic
type element. Convergence studies are presented at the end utilizing
both isotropic and anisotropic plates. An appendix is provided with
programing details in addition to an appendix detailing the anisotropic
properties of Silicon plates.

1 INTRODUCTION

The development of computational models for plate bending problems dates
from the earliest days of structural analysis and the literature is too extensive
∗Technical Report: UCB/SEMM-2002/10
†Professor in the Graduate School, e-mail: rlt@ce.berkeley.edu
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2 REISSNER-MINDLIN PLATE THEORY 2

to fully cite here. A rather late development for such analyses; however, is
one in which a linking between transverse displacements and rotation is used
with the Reissner-Mindlin from of a shear deformable theory. This was in-
troduced for elements which started from linear and bi-linear interpolations
of displacement fields by Zienkiewicz et al. [1, 2] and Taylor & Auricchio [3].
These were extended to permit solutions at the thin plate limit by Auricchio
& Taylor [4, 5]. Earlier an element starting from quadratic order interpola-
tions was introduced by Zienkiewicz & Lefebvre [6] and was considered to
be convergent and fully robust. Recently, this element was extended by Au-
ricchio & Lovadina to include linked interpolation [7]. They also extended
the analysis of Lovadina [8] to show that adding additional internal modes
resulted in an element that exhibits optimal rates of convergence while re-
maining fully robust at the thin plate limit. Here we extend this past work to
treat the case of coupled membrane-transverse shear effects due to material
anistoropy with an eye towards the simulation of single crystal silicon plates
in MEMS design.

2 Reissner-Mindlin Plate Theory

In the Reissner-Mindlin theory of plates the displacement field is expressed by
the transverse displacement and two rotations parameters for a line initially
normal to the reference surface (Fig. 1). Accordingly we let the displacement
field be represented by

ux(x, y, z) = u(x, y) + z φx(x, y)

uy(x, y, z) = v(x, y) + z φy(x, y)

uz(x, y, z) = w(x, y)

(1)

where x, y define the plane of the plate; z is a direction normal to the plane;
u, v, w are displacements at a reference surface of the plate (z = 0); and φx,
φy represent the director rotation in the directions x, y, respectively. Later
the director rotation, φ, will be expressed in terms of angle rotations about
the axes, θ, using the transformation{

θx
θy

}
=

[
0 −1
1 0

] {
φx
φy

}
or

{
φx
φy

}
=

[
0 1
−1 0

] {
θx
θy

}
. (2)

Using the usual small displacement theory for plates we then obtain the
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non-zero in-plane strains:

εxx =
∂u

∂x
+ z

∂φx
∂x

εyy =
∂v

∂y
+ z

∂φy
∂y

γxy =
∂u

∂y
+
∂v

∂x
+ z (

∂φx
∂y

+
∂φy
∂x

)

(3)

and the transverse shearing strains

γyz =
∂w

∂y
+ φy

γzx =
∂w

∂x
+ φx .

(4)

Force resultants in the plate are defined by integrating the stresses over

xα

x
3

z φα

z

w

Figure 1: Displacement parameters for plate
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the thickness, h. Accordingly, for the in-plane resultants we obtain

Nxx =

∫
h

σxx dz , Mxx =

∫
h

z σxx dz

Nyy =

∫
h

σyy dz , Myy =

∫
h

z σyy dz (5)

Nxy =

∫
h

τxy dz = Nyx , Mxy =

∫
h

z τxy dz = Myx

where Nij are force resultants and Mij are moment resultants, each per unit
length of plate. Similarly, the transverse shearing forces are given by

Qy =

∫
h

τyz dz

Qx =

∫
h

τzx dz .

(6)

The equilibrium equations for the plate may be obtained by integrating
through the thickness the local equilibrium equations expressed as

∂σji
∂xj

+ bi = ρ üi (7)

where bi are body forces per unit volume, ρ is the mass density and üi the ac-
celeration in the i-direction. Integrating directly we obtain three equilibrium
equations for the force resultants as:

∂Nxx

∂x
+
∂Nyx

∂y
+ nx = ρ h ü

∂Nxy

∂x
+
∂Nyy

∂y
+ ny = ρ h v̈

∂Qx

∂x
+
∂Qy

∂y
+ q = ρ h ẅ .

(8)

Multiplying (7) by z and integrating through the thickness gives two addi-
tional equations:

∂Mxx

∂x
+
∂Myx

∂y
−Qx +mx =

1

12
ρ h3 φ̈x

∂Mxy

∂x
+
∂Myy

∂y
−Qy +my =

1

12
ρ h3 φ̈y .

(9)
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In the above nx, ny, q are loads per unit area of plate and mx, my are couples
per unit area of plate.

In the theory, as presented here, the through thickness normal strain
vanishes and the transverse normal stress does not appear. However, in
introducing any constitutive equation we shall assume that the transverse
normal stress is negligible and, thus, may be ignored. Here we shall consider
a general anisotropic linear elastic material where the strain-stress relations
are given in terms of the compliance as:

ε = Cσ (10)

with

ε =
[
εxx εyy γxy γyz γzx

]T
σ =

[
σxx σyy τxy τyz τzx

]T (11)

and the compliance array expressed by

C =


C11 C12 C14 C15 C16

C21 C22 C24 C25 C26

C41 C42 C44 C45 C46

C51 C52 C54 C55 C56

C61 C62 C64 C65 C66

 . (12)

In the above we have used Voigt notation to map tensor components to
matrix form using the ordering

Matrix 1 2 4 5 6
Tensor xx yy xy yz zx

.

Equation (10) may be inverted to yield the stress-strain relations given by

σ = D ε (13)

these may then be introduced into the definitions for the force resultants
given by (2) and (6) and combined with the strain displacement relations
given in (3) and (4) to yield the plate constitutive relations M

N
Q

 =

 Dbb Dbm Dbs

Dmb Dmm Dms

Dsb Dsm Dss

  κb
εm
γs

 (14)
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where

Dmm =

∫
h

 D11 D12 D14

D21 D22 D24

D41 D42 D44

 dz , Dmb =

∫
h

 D11 D12 D14

D21 D22 D24

D41 D42 D44

 z dz

Dms =

∫
h

 D15 D16

D25 D26

D45 D46

 dz , Dbb =

∫
h

 D11 D12 D14

D21 D22 D24

D41 D42 D44

 z2 dz

Dbs =

∫
h

 D15 D16

D25 D26

D45 D46

 z dz , Dss =

∫
h

[
D55 D56

D65 D66

]
dz . (15)

Some correction factors are necessary for quantities associated with the shear
stresses and usual symmetry conditions hold so that

Dmb = DT
bm ; Dms = DT

sm and Dbs = DT
sb . (16)

Furthermore, for plates with homogeneous material properties, locating the
reference surface at the middle of the plate results in∫

h

[·] z dz = 0 (17)

so that (14) simplifies to M
N
Q

 =

 Dbb 0 0
0 Dmm Dms

0 Dsm Dss

  κb
εm
γs

 (18)

and (15) is given by

Dmm = h

 D11 D12 D14

D21 D22 D24

D41 D42 D44

 , Dms = kc h

 D15 D16

D25 D26

D45 D46


Dbb =

h3

12

 D11 D12 D14

D21 D22 D24

D41 D42 D44

 , Dss = ks h

[
D55 D56

D65 D66

]
(19)

where kc and ks are correction factors to account for non-uniform variation
of the transverse shear stress components.
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In (14) the membrane forces and strains are given by

N =
[
Nxx , Nyy , Nxy

]T
εm =

[
∂u

∂x
,
∂v

∂y
,

(
∂u

∂y
+
∂v

∂x

) ]T (20)

the bending forces and curvature changes are given by

M =
[
Mxx , Myy , Mxy

]T
κb =

[
∂φx
∂x

,
∂φy
∂y

,

(
∂φx
∂y

+
∂φy
∂x

) ]T (21)

and the transverse shear forces and strains are given by

Q =
[
Qy , Qx

]T
γs =

[ (
∂w

∂y
+ φy

)
,

(
∂w

∂x
+ φx

) ]T
.

(22)

2.1 Variational Equations

Ignoring the inertial terms a standard variational form for the above equa-
tions may be written as

δΠ =

∫
A

[
δκb δεm δγs

]  Dbb Dbm Dbs

Dmb Dmm Dms

Dsb Dsm Dss

  κb
εm
γs

 dA− δΠext = 0

(23)
where strain and virtual strains are expressed in terms of the displacement
field given by (20), (21) and (22). The external variational term is given by

δΠext =

∫
A

[δu nx + δv ny + δw q] dA

+

∫
A

[δφxmx + δφymy] dA .

(24)

Alternatively, a three field form may be deduced and expressed as

δΠ =

∫
A

δE [D E− S] dA+

∫
A

δS [E(U)− E] dA

+

∫
A

E(δU) S dA− δΠext = 0

(25)
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where

S =

 M
N
Q

 , E =

 κb
εm
γs

 , D =

 Dbb Dbm Dbs

Dmb Dmm Dms

Dsb Dsm Dss

 (26)

and U denotes quantities expressed in terms of the displacement field.
For the case in which decoupling exists between the bending and the

forces a Reissner type functional may be used. This is expressed here as

δΠ =

∫
A

δκbDbb κb dA+

∫
A

[
δεm δγs

] [ N
Q

]
dA− δΠext

+

∫
A

[
δN δQ

] ([ εm
γs

]
−
[

Cmm Cms

Csm Css

] [
N
Q

])
dA = 0

(27)

where [
Cmm Cms

Csm Css

]
=

[
Dmm Dms

Dsm Dss

]−1

(28)

is a compliance array for the plate forces.

3 Finite Element Interpolation

A linked interpolation between the transverse displacement, w, and rotation,
φmay be used to construct locking free plate bending elements. Here we con-
sider the formulation for a 6-node triangular element with nodes positioned
as shown in Fig. 2 and area coordinates ξi. The coordinates for points within
the triangle are determined (sub-parametrically) using only the vertex nodes
and the interpolation

x =

[
x
y

]
=

3∑
i=1

ξi x̃i . (29)

Thus, here the mid-side nodes are always assumed to lie at the mid-point of
a straight sided triangle.

To construct the shape functions for the displacement field within each
triangle we begin by defining the usual quadratic shape functions at the nodes

Ni = ξi (2 ξi − 1) ; i = 1, 2, 3

Ni+3 = 4 ξi ξj where j = mod(i, 3) + 1 .
(30)
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1

4

2

5

3

6

ξ
3

ξ
1

ξ
2

Figure 2: 6-node triangular element and area coordinates

These are used directly to interpolate the in-plane displacement field over
the triangle as

u =

[
u
v

]
=

6∑
i=1

Ni ũi (31)

and the rotation field as

φ =

[
φx
φy

]
=

6∑
i=1

Ni φ̃i . (32)

The transverse displacement is interpolated as

w =
6∑
i=1

Ni w̃i +
3∑
i=1

Pi αi+3 +Nb w̃b (33)

where
Pi = ξi ξj(ξj − ξi) with j = mod (i, 3) + 1 (34)
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are cubic terms within the triangle, the αm are associated with the side
containing the mid-side m-node [see Fig. (3)] and Nb is the interior cubic
bubble mode

Nb = ξ1 ξ2 ξ3 (35)

which is added to complete the cubic field.

i

i+3

j

ξ
j
 = 0

ξ
j
 − ξ

i
 = 0 

ξ
i
= 0

Figure 3: Zero lines for Pi

The goal now is to define the αm in terms of the rotation parameters
associated with the side containing the m-node. This leads to the notion
of a linked interpolation in which the w displacement is given in terms of
nodal values of both w and φ. The element will remain conforming provided
such construction involves parameters which are associated only with the
side containing the m-node.

To construct the linked interpolation we consider a typical side defined
by nodes i − m − j as shown in Fig. 4. Along this side we consider the
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n
t

s
h

ij

i

m

j

Figure 4: Side of 6-node triangle for linked derivation

tangential component of the transverse shearing strain given by

γs =
∂w

∂s
+ φs (36)

where s is the tangential coordinate and n is the normal direction to the side.
For this side and an origin for s defined at the i-node, the values of the area
coordinates satisfy

ξk = 0 and ξi + ξj = 1 . (37)

Using Eq. (37) we can write the shape functions entirely in terms of ξj
as

Ni = 1− 3 ξj + 2 ξ2
j

Nj = ξj(2 ξj − 1)

Nm = 4 (ξj − ξ2
j ) where m = i+ 3

Pi = − ξj + 3 ξ2
j − 2 ξ3

j .

(38)
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The derivative of w in the s direction may now be expressed as

∂w

∂s
=
∂w

∂ξj

∂ξj
∂s

(39)

where

s = ξj hij giving
∂ξj
∂s

=
1

hij
(40)

in which hij is the length of the ij-side

hij =
[
(x̃j − x̃i)2 + (ỹj − ỹi)2

]1/2
. (41)

The tangential rotation displacement, φs, along the ij side may be ex-
pressed as

φs = tTij

[
Ni φ̃i +Nj φ̃j +Nm φ̃m

]
(42)

where tij is the unit tangent vector along the boundary as shown in Fig. 4
and may be expressed as

sij = cosϕij ex + sinϕij ey (43)

where
cosϕij = (x̃j − x̃i)/hij and sinϕij = (ỹj − ỹi)/hij

and ex , ey are the unit vectors along the x and y-directions, respectively.
The goal of the linked derivation is to now express the αm in terms of the

nodal rotation parameters along the ij side so that all quadratic terms in ξj
in the tangential shear strain are eliminated. Carrying out this step for the
above interpolations yields

αm =
hij
3

tTij

[
φ̃i + φ̃j − 2 φ̃m

]
. (44)

Returning to the definition of the shape functions over the entire triangle
we now may write the transverse displacement interpolation as

w =
3∑
i=1

ξi(2 ξi − 1) w̃i +
3∑
i=1

4ξiξj w̃i+3 + ξ1ξ2ξ3 w̃b

+
3∑
i=1

hij
3
ξiξj(ξj − ξi)tTij

[
φ̃i + φ̃j − 2 φ̃i+3

]
=

6∑
i=1

Ni w̃i +
6∑
i=1

Nwφ
i tT φ̃i +Nb w̃b .

(45)
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The interpolation for the rotation is given by Eq. (32).
In deriving the expressions for the strains from the above interpolations

an enhanced term is added to the bending values. The enhanced term is
deduced from bubble modes which for the rotation field are given by

φen =
3∑
i=1

(ξi −
1

3
)Nb β̃i + (∇Nb)Nb φ̃b

=
3∑
i=1

Nβ
i β̃i + Nφ

b φ̃b .

(46)

Finally, membrane and transverse shear forces are assumed as linear quanti-
ties within each element and expressed by the interpolation

N =
3∑
i=1

ξi Ñi

Q =
3∑
i=1

ξi Q̃i +∇Nb Q̃b

(47)

where in addition to the linear terms in Q a gradient of the bubble is included
to ensure that the space for shears is a subspace of that for the transverse
displacements [7, 8, 9].

3.1 Matrix formulation

The above formulation may be put into a matrix form by introducing strain-
displacement arrays for each of the parts. Accordingly, we have

εm =
6∑
i=1

Bi ũi (48)

where

Bi =

 Ni,x 0
0 Ni,y

Ni,y Ni,x

 (49)

in which Ni,x = ∂Ni/∂x, etc. are derivatives of shape functions.
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The bending strains are given by

κb =
6∑
i=1

Bb
i w̃i +

3∑
i=1

Bbβ
i β̃i + Bbφ φ̃b (50)

where w̃i = [wi , (φ̃x)i , (φ̃y)i]
T and

Bb
i =

 0 Ni,x 0
0 0 Ni,y

0 Ni,y Ni,x


Bbβ
i =

 Nβ
i,x 0

0 Nβ
i,y

Nβ
i,y Nβ

i,x

 and

Bbφ =

 Nb,xNb,x +Nb,xxNb

Nb,yNb,y +Nb,yyNb

2 (Nb,xNb,y +Nb,xyNb)

 . .

(51)

Finally, the transverse shearing strains may be expressed as

γs =
6∑
i=1

Bs
i w̃i + Bsw w̃b +

3∑
i=1

Bsβ
i β̃i + Bsφ φ̃b (52)

where

Bs
i =

[
Ni,y Nwφ

i,y tx Ni +Nwφ
i,y ty

Ni,x Ni +Nwφ
i,x tx Nwφ

i,x ty

]
Bsw =

[
Nb,y

Nb,x

]
Bsβ
i =

[
0 Nβ

i

Nβ
i 0

]
and

Bsφ =

[
Nb,yNb

Nb,xNb

]
.

(53)

The above may be collected together as

 κbεm
γs

 =

 0 Bb
i Bbβ

j Bbφ 0
Bi 0 0 0 0

0 Bs
i Bsβ

j Bsφ Bsw




ũi
w̃i

β̃j
φ̃b
w̃b

 i = 1, 2, . . . , 6
j = 1, 2, 3

(54)
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in which summations are assumed over the range of the indices.

3.2 Element arrays

We are now able to construct the arrays appearing in Eq. (27). Accordingly,
inserting (54) we obtain for the bending term∫

A

δκb Dbb κb dA =

[
δw̃i δβ̃j δφ̃b

]  Aww
ik Awβ

il Awφ
i

Aβw
jk Aββ

jl Aβφ
j

Aφw
k Aφβ

l Aφφ

 w̃k

β̃l
φ̃b

 i, k = 1, 2, . . . , 6
j, l = 1, 2, 3

(55)

where

Aww
ik =

∫
A

(Bb
i)
T Dbb Bb

k dA Awβ
il =

∫
A

(Bb
i)
T Dbb Bbβ

l dA

Awφ
i =

∫
A

(Bb
i)
T Dbb Bbφ dA Aβw

jk =

∫
A

(Bbβ
j )T Dbb Bb

k dA

Aββ
jl =

∫
A

(Bbβ
j )T Dbb Bbβ

l dA Aβφ
j =

∫
A

(Bbβ
j )T Dbb Bbφ dA (56)

Aφw
k =

∫
A

(Bbφ)T Dbb Bb
k dA Aφβ

l =

∫
A

(Bbφ)T Dbb Bbβ
l dA

Aφφ =

∫
A

(Bbφ)T Dbb Bbφ dA .

The compliance term in (27) is expressed by

−
∫
A

[
δN δQ

] [ Cmm Cms

Csm Css

] [
N
Q

]
dA =

[
δÑj δQ̃j δQ̃b

]  Hmm
jl Hms

jl Hmq
j

Hsm
jl Hss

jl Hsq
j

Hqm
l Hqs

l Hqq

  Ñl

Q̃l

Q̃b

 (57)
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where

Hmm
jl = −

∫
A

ξj Cmm ξl dA Hms
jl = −

∫
A

ξj Cms ξl dA

Hmq
j = −

∫
A

ξj Cms∇Nb dA Hsm
jl = −

∫
A

ξj Csm ξl dA

Hss
jl = −

∫
A

ξj Css ξl dA Hsq
j = −

∫
A

ξj Css∇Nb dA (58)

Hqm
l = −

∫
A

(∇Nb)
T Csm ξl dA Hqs

l = −
∫
A

(∇Nb)
T Css ξl dA

Hqq = −
∫
A

(∇Nb)
T Css∇Nb dA .

The coupling term between the forces and strains is given by∫
A

[
δN δQ

] [ εm
γs

]
dA =

[
δÑj δQ̃j δQ̃b

]  Gmu
jk 0 0 0 0

0 Gsw
jk Gsβ

jl Gsφ
j Gsb

j

0 Gqw
k Gqβ

l Gqφ Gqb




ũk
w̃k

β̃l
φ̃b
w̃b


(59)

Gmu
jk =

∫
A

ξj Bk dA

Gsw
jk =

∫
A

ξj Bs
k dA Gsβ

jl =

∫
A

ξj Bsβ
l dA

Gsφ
j =

∫
A

ξj Bsφ dA Gsb
j =

∫
A

ξj Bsw dA (60)

Gqw
k =

∫
A

(∇Nb)
T Bs

k dA Gqβ
l =

∫
A

(∇Nb)
T Bsβ

l dA

Gqφ =

∫
A

(∇Nb)
T Bsφ dA Gqb =

∫
A

(∇Nb)
T Bsw dA .

The above arrays are assembled into a total element array as

K Ũ = F (61)
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where the unknowns are ordered as

Ũ =
[

ũk w̃k β̃l φ̃b w̃b Ñl Q̃l Q̃b

]T
;
k = 1, 2, . . . , 6
l = 1, 2, 3

(62)

the assembled stiffness array is given by

K =



0 0 0 0 0 Gum
il 0 0

0 Aww
ik Awβ

il Awφ
i 0 0 Gws

il Gwq
i

0 Aβw
jk Aββ

jl Aβφ
j 0 0 Gβs

jl Gβq
j

0 Aφw
k Aφβ

l Aφφ 0 0 Gφs
l Gφq

0 0 0 0 0 0 Gbs
l Gbq

Gmu
jk 0 0 0 0 Hmm

jl Hms
jl Hmq

j

0 Gsw
jk Gsβ

jl Gsφ
j Gsb

j Hsm
jl Hss

jl Hsq
j

0 Gqw
k Gqβ

l Gqφ Gqb Hqm
l Hqs

l Hqq


(63)

and F is the assembled load vector. The load vector is computed from (24)
and is given by

F =
[

Fu
i Fw

i Fβ
j F φ

b Fw
b FN

j FQ
j Fq

]T
;
i = 1, 2, . . . , 6
j = 1, 2, 3

(64)

where

Fu
i =

∫
A

Ni

[
nx
ny

]
dA Fw

i =

∫
A

 Ni q

Nimx +Nwφ
i q tx

Nimy +Nwφ
i q ty

 dA

Fβ
j =

∫
A

Nβ
j

[
mx

my

]
dA F φ

b =

∫
A

(Nb,xmx +Nb,ymy) Nb dA (65)

Fw
b =

∫
A

Nb q dA FN
j = 0

FQ
j = 0 Fq = 0 .

In Appendix A we present additional details on the programming for the
above development.

4 Examples

4.1 Reissner-Mindlin plate solutions

An accurate ”exact” solution to problems modeled by the Reissner-Mindlin
theory presents considerable difficulty. One approach is to split the displace-
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ment as

w = wb + ws with φx = − ∂w
∂x

; φy = − ∂w
∂y

(66)

in which wb denotes a bending solution and ws a shear solution component.
Inserting the above into the strain expressions gives

γs =


∂ws
∂y
∂ws
∂x

 (67)

and

χb = −



∂2wb
∂x2

∂2wb
∂y2

2
∂2wb
∂x∂y


. (68)

Using this split we may construct the equilibrium equations for an isotropic
case as:

D∇4wb = q (69)

and
κGh∇2ws = − q . (70)

In the above ∇4 is the bi-harmonic operator and ∇2 the Laplacian operator.
These equations create valid solutions only for situations in which the shear
forces from the bending solution are identical to those of the shear solution.
This leads to the requirement

κGhws = −D∇2wb + C (71)

and here there are few cases which exist. One possibility to construct a
solution is to use

∇4w = ∇4wb +∇4ws =
q

D
− ∇

2q

κGh
=

1

D

[
q − t2∇2q

6κ (1− ν)

]
(72)

by selecting a w whereby the generating q can be easily determined via (72).
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4.2 Error norm

To facilitate the comparison of convergence properties for the element we use
an energy norm measure. The energy is computed by integrating the work
under transverse loading. Accordingly, we compute only the work term

Eh =

∫
A

w q dA . (73)

where Eh is the approximation from a mesh with element size h. This results
in a quantity which is twice the equivalent of the stored energy; note that
since a mixed principle is used, the computation of the actual stored energy
is much more difficult to obtain than the simple expression given by (73).
Furthermore, we note that use of a mixed principle implies that no bounding
of energy can be expected. Convergence in the above energy may occur from
either above or below – or even non-monotonically. Thus, for the comparison
of energy error we use the expression

‖e‖ = ‖Eh − E‖ (74)

where ‖·‖ is the discrete L2 norm and E is the exact energy for the problem.1

4.3 Numerical results

The classical problem for several rectangular plates subjected to lateral load-
ing is used to demonstrate the performance of the linked triangular element.
Three types of boundary conditions are considered:

1. SS1: Soft simply supported conditions with

w = 0 ; Mnn = 0 and Mns = 0

on all boundaries; n is the outer normal direction and s a tangent
direction on the boundary.

2. SS2: Hard simply supported conditions with

w = 0 ; φs = 0 and Mns = 0 .

3. CL: Clamped conditions with

w = 0 ; φn = 0 and φs = 0 .

1The value for the work can be replaced by a very accurate solution when no exact
solution is available.
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4.3.1 Simply supported (SS2) plate
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Figure 5: Energy error for square, sinusoidal loaded, simply supported plate
- Hard (SS2) boundary conditions

As a first example we consider the solution of a rectangular plate sub-
jected to the loading

q = q0 sin
π x

a
sin

π y

b

where a and b are the side lengths in the x and y directions, respectively;
and q0 is a loading intensity. An exact solution may be computed from (66)
to (72) in which the two displacements are expressed as

wb = w̃b sin
π x

a
sin

π y

b

ws = w̃s sin
π x

a
sin

π y

b

The values for w̃b and w̃s may be determined from (69) and (70), respectively.
One can verify that (71) is satisfied with C = 0.

The convergence properties for the energy error are shown in Fig. 5.
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Figure 6: Energy error for square, clamped plate - With shear deformation

4.3.2 Clamped plate

For a clamped plate a solution based on Eqs (66) to (72) has been given
by Chinosi and Lovadina [10]. Using an inverse method we may write the
solution as:

wb =
1

3
x3(x− 1)3y3(y − 1)3

ws = − t2

6κ(1− ν)
∇2wb

which gives the load

q = D
[
12y(y − 1)(5x(x− 1) + 1)(2y2(y − 1)2 + x(x− 1)(5y(y − 1) + 1)

+ 12x(x− 1)(5y(y − 1) + 1)(2x2(x− 1)2 + y(y − 1)(5x(x− 1) + 1)
]
.

This solution is used to illustrate the convergence of the energy error for
a clamped plate as shown in Fig. 6.
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Figure 7: Center displacement and moment for square, uniformly loaded
plate with soft (SS1) simply supported boundary conditions
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plate with hard (SS2) simply supported boundary conditions
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4.3.3 Uniformly loaded, simply supported plates

The behavior of simply supported plates with hard and soft type boundary
conditions is illustrated for a uniformly loaded condition. The convergence
of center displacements and moment are shown in Figs 7 to 8.

4.3.4 Clamped uniformly loaded plate
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Figure 9: Energy error for square, uniformly loaded, clamped plate - No
shear deformation

Accurate series solutions for clamped rectangular thin plates have been
computed by Taylor & Govindjee [11] and are used to show the rate of
convergence for the thin case in Fig. 9. General solutions for thick clamped
plates are not available and in Fig. 10 we show the numerical behavior for
the case of a square, uniformly loaded case.

4.3.5 Mirror of cubic material

In this example we consider the analysis of a mirror manufactured from a
single crystal Silicon [111] wafer and loaded by a uniform pressure (0.01
mN/(µm)2) as shown in Fig. 11. The chosen orientation of the principal ma-
terial axes leads to coupling between the membrane response and transverse
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Figure 10: Center displacement and moment for square, uniformly loaded
plate with clamped boundary conditions
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Figure 11: Geometry for mirror of cubic [111] material



4 EXAMPLES 25

Figure 12: Typical finite element mesh for mirror of cubic [111] material

shear forces (see Appendix B). A mesh of 1,352 nodes and 576 elements with
93,355 degrees of freedom is shown in Fig. 12. We note that at the reentrant
corner a singularity in solution variables exists and, consequently, optimal
rates of convergence are not expected. Knowledge of the actual radius of
curvature at the reentrant corner would permit modeling with a mesh which
would produce the full rate of convergence. To illustrate this we show in Fig.
13 two dominant response quantities at the lower-left corner of the plate (viz.
the transverse deflection and the fiber rotation about the x-axis) versus the
number of degrees for freedom in the finite element model. There are two
points of note: (1) the response of the plate is converging sub-optimally and
(2) due to the mixed nature of the formulation the convergence is not guar-
anteed to be monotonic. In Fig. 14 we present contours for the displacement
field in the plate and note that in addition to the transverse displacement
w from the transverse load coupling effects lead to the non-zero in-plane
displacements u and v.



5 CLOSURE 26

10
2

10
3

10
4

10
5

10
6

24.9

24.95

25

25.05

25.1

25.15

25.2

25.25

25.3

Degrees of Freedom

C
or

ne
r 

Z
−

D
is

pl
ac

em
en

t (
µm

)

10
2

10
3

10
4

10
5

10
6

−6.17

−6.16

−6.15

−6.14

−6.13

−6.12

−6.11

Degrees of Freedom

C
or

ne
r 

F
ib

er
 X

−
R

ot
at

io
n 

(d
eg

)

Figure 13: Lower-left corner response of anisotropic plate: (left) transverse
deflection. (right) fiber x-rotation.

5 Closure

This report details the development of a 5-degree of freedom, 6-node trian-
gular plate which combines a bending element with a membrane element. It
is suitable for use in the simulation of anisotropic materials that generate
membrane-shear coupling. In essence we have extended the plate element of
Auricchio & Lovadina [7] to include membrane forces and anisotropic mate-
rial behavior. The shear and the membrane force are treated as mixed in our
treatment. Linking has been used so that the exact thin plate limit can be
easily obtained, thus, the element can be used to analyze both thick and thin
plate problems. Examples show the good properties of the development.
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A Programming

The following groupings are made for the programming steps. The solution
parameters are arranged as

Ũ =
[

ṽi w̃b S̃ R̃
]

where

ṽi =

[
ũi
w̃i

]
S̃ =

[
Ñ

Q̃

]
R̃ =

[
β̃

φ̃b

]
.

The stiffness matrix is arranged as

K =


Avv 0 Avs Avb

0 0 Aws 0
Asv Asw Ass Asb

Abv 0 Abs Abb


where

Avv =

[
0 0
0 Aww

ik

]

Ass =

 Hmm
jl Hms

jl Hmq
j

Hsm
jl Hss

jl Hsq
j

Hqm
l Hqs

l Hqq

 Asv =

 Gmu
jk 0

0 Gsw
jk

0 Gqw
k

 = AT
vs

Abb =

[
Aββ
jl Aβφ

j

Aφβ
l Aφφ

]
Abs =

[
0 Gβs

jl Gβq
j

0 Gφs
l Gφq

]
= AT

sb

Abv =

[
0 Aβw

jk

0 Aφw
k

]
= AT

vb Aws =
[

0 Gbs
l Gbq

]
= AT

sw .

Also the right hand side is grouped as

F =
[

Fv Fw Fs Fb

]T
where

Fv =

[
Fu
i

Fw
i

]
Fw = Fw

b Fs =

[
FN

FQ

]
Fb =

[
Fβ

F φ
b

]
.
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First eliminate the bubble modes

K̄ =


Āvv 0 Āvs 0
0 0 Aws 0
Āsv Asw Āss 0
Ābv 0 Ābs I


where

Āvv = Avv −AvbA
−1
bb Abv

Āvs = Avs −AvbA
−1
bb Abs = ĀT

sv

Āss = Ass −AsbA
−1
bb Abs

Ābv = A−1
bb Abv

Ābs = A−1
bb Abs

and likewise the force becomes

F̄ =
[

F̄v Fw F̄s F̄b

]T
where

F̄v = Fv −AvbA
−1
bb Fb

F̄s = Fs −AsbA
−1
bb Fb

F̄b = A−1
bb Fb .

Next eliminate the shear modes

K̂ =


Âvv Âvw 0 0

Âwv Âww 0 0

Âsv Âsw I 0
Ābv 0 Ābs I


where

Âvv = Āvv − ĀvsĀ
−1
ss Āsv

Âvw = −ĀvsĀ
−1
ss Asw = ÂT

wv

Âww = −AwsĀ
−1
ss Asw

Âsv = Ā−1
ss Āsv

Âsw = Ā−1
ss Asw
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and again the force becomes

F̂ =
[

F̂v F̂w F̂s F̄b

]T
where

F̂v = F̄v − ĀvsĀ
−1
ss F̄s

F̂w = Fw − ĀwsĀ
−1
ss F̄s

F̂s = Ā−1
ss F̄s .

Finally, eliminate the bubble displacement mode to yield the final element
stiffness and force arrays as

K̃ Ũ =


Kvv 0 0 0

Ãwv 1 0 0

Âsv Âsw I 0
Ābv 0 Ābs I




ṽ
w̃b
S̃

R̃

 =


Pv

F̃w
F̂s

F̄b


where

Kvv = Âvv − ÂvwÂ
−1
wwÂwv

Pv = F̂v − ÂvwÂ
−1
wwF̂w

Ãwv = Â−1
wwÂwv

F̃w = Â−1
wwF̂w .

B Couplings in single crystal Silicon

In MEMS design single crystal Silicon is often used in the construction of
devices. This is an anisotropic material with cubic symmetry. Typical wafers
are either [100] or [111]. Thus, plate structures are fabricated where the plate
thickness in either oriented in a [100] crystal direction or a [111] crystal di-
rection. To assess the importance of the material anisotropy on the response
of plate structures we can plot the moduli giving rise to Dbb, Dmm, Dms,
and Dss as a function of angle between the coordinate system of the device
and the crystal axes. The wafer geometries to be considered are shown in
Figure 15. For each wafer we show the crystallographic axes of the under-
lying Silicon lattice and we also show an angle β that orients an (x1, x2, x3)
coordinate system of the device.
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Figure 15: Wafer geometries; (100) wafer right and (111) wafer left.

Shown in Fig. 16 for a [100] wafer and in Fig. 17 for a [111] wafer are the
relevant moduli that determine the anisotropic response of the plate. One
can note the following important features of the material response.

1. For single crystal Si plates structures fabricated from [100] wafers:

(a) The membrane and the bending response will depend upon the
orientation of the plate.

(b) There is a bending-twisting coupling.

(c) There is no membrane-shear coupling.

(d) The through thickness shear response is isotropic in the plane.

2. For single crystal Si plates structures fabricated from [111] wafers:

(a) The membrane and the bending response will be isotropic in the
plane.

(b) There is no bending-twisting coupling.

(c) There is a membrane-shear coupling.

(d) The through thickness shear response is isotropic in the plane.
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Figure 16: Reduced plane stress moduli for single crystal Silicon in [100]
wafers. Upper left gives bending and membrane response. Upper right gives
membrane shear coupling. Lower center gives through thickness shear re-
sponse. (Angle β is as defined in Fig. 15.)
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Figure 17: Reduced plane stress moduli for single crystal Silicon in [111]
wafers. Upper left gives bending and membrane response. Upper right gives
membrane shear coupling. Lower center gives through thickness shear re-
sponse. (Angle β is as defined in Fig. 15.)


