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Isogeometric Analaysis of Structures

e T his lecture presents:
— Summary of current IGA capabilities using FEAP.
— Some methods to treat constraints in IGA.

— Application to thin structures.

x Straight and curved beam

* Comparison with rotation free thin shell
(Kiendl, et al., CMAME, vol 198, pp 3902ff, 2009)

— Graphics for NURBS.



Brief Overview of FEAP

e FEAP - Finite Element Analysis Program.

e Research and educational software package developed at
University of California, Berkeley.

e Includes element library: Solids, Thermal, Frames, Plates,
Membranes & Shells.

e Elements for both small and large deformation analysis.

e Material library for: Elastic, visco-elastic, elasto-plastic, ...

e Solution algorithms by command language statements.

e Screen and hard copy plotting options.

e User module interfaces for elements, meshing, solution, plots.

— Used for NURBS and T-spline isogeometric solutions.



Isogeometric Modeling

e Isogeometric models described by:
— Knot vectors (open)
— Control points and weights

— Tensor product NURBS (Non-Uniform Rational B-Splines)
or T-splines

e IGA elements in FEAP
— Displacement formulations (all FEAP solid elements work)

— Mixed u — p — J formulation (2-d finite deformation only)
— Thin rotation-free thin shell (Kiendl et al.)

— Some ‘user module’ elements.
e Boundary conditions (only restricted types, no contact)

e Most solution options work (transient, eigenpairs, etc.)



Isogeometric Modeling

B-Spline interpolations . | opie Functors
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Isogeometric Modeling

e Non-Uniform Rational B-spline (NURBS) defined by

B; (&) w;
Nip(€) = 20
where w; are set of n weights defining shape of NURBS.

e Appropriate values of w; permit description different types
of curves; e.g., conic surfaces in addition to polynomials
— Polynomials in & Weights w; = 1 yields: N, ,(§) = B; ,(£)
— Circular arc : x = Nj 2(§) X1 + N2 2(§) Xo + N3 2(§) X3

3

e Example: 8 = 60° circular arc with radius 5
X1 — (5, O)
Xo = (5, tan(9/2))
x3 = (5, cos(8), 5 sin(0))
(wla w2, w3) — (17 COS(9/2)7 1)




Isogeometric Modeling

Analysis procedure in FEAP

e Define coarse set of control points, knots, 1-d knot-point list,

side-patch description:

e Example: Curved beam — input NURBS, knot, side & block

NURBs
10 10.0 0.0 1.0
2 0 10.0 10.0 1.0/sqrt(2)
30 0.0 10.0 1.0

KNOT

knot 1 0.0 0.0 0.0 1.0 1.0 1.0

NSIDe
side 1 01123

NBLOck
block 1 1 1

3 2

y




Isogeometric Modeling

e Need to add material properties, loading and boundary conditions.
Use standard FEAP commands for most.

e Analysis requires degree elevation and knot insertion.

e Example: Elevate order to cubic intepolation
y

BATCh m
ELEVate INITialize
ELEVate KNOT 1 1
ELEVate END

END

e Knot vector now:
==(0,0,0,0,1,1,1,1)




Isogeometric Modeling

Add knots: k-refinement in circumferential direction

y

y

X X

(a) Insert knot 1 (b) Insert knot 2

(c) Insert knot 3: =

y

X

(0,0,0,0,%,5,3,1,1,1,1)



Isogeometric Modeling
Add knots: k-refinement in FEAP

e Knot insertion performed as
BATCh
INSErt INITialize
INSErt KNOT knum uu rr
INSErt END
END

where uu knot value & rr number times to repeat.

e Each knot insertion lowers continuity by one order.

e Degree elevation and knot insertion create mesh for analysis.

e Elements defined on knot intervals.



Isogeometric Modeling

e Typical displacement formulation element module

Call Quadrature()

Loop: L =1,LINT
Call Interp()

Call Constitutive()
Form Resid

Form Tangent
End Loop

IF: Isoparametric
IF: Isogeometric

e IGA modifies quadrature and interpolation modules.




Isogeometric Analaysis of Structures

e Displacement methods for IGA standard.

e Solution of structures often involves constraints
(shear-bending, membrane-bending, etc.)

e Known methods to treat constraints
— Reduced integration

— Mixed variational methods
x Hellinger-Reissner: u — o

x Veubeke-Hu-Washizu: u— o — €
— Stabilized methods: GLS, etc.
— Discrete strain gap: (DSG)

e Bézier extraction provides option for analysis.



Bézier Extraction Form for Elements

e EXxtraction converts B-splines & NURBS to Bézier form.
— Example: Cubic B-Spline (elements between dotted lines)

1

0.8f

o
os)

0.61

AR

o
o)

B(&) — Bezier

N(&) —— B-Spline
o
=

0.2f 0.2

| i : - 0 1 1
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
& — knot coordinate & — knot coordinate

After repeated knot insertion obtain Bézier basis (right figure):

N°(¢) = C°B(&) where B(£) are Bernstein polynomials

e Shape functions: extraction operator times Bernstein polynomials.



Bézier Extraction Form for Elements

e For curves: Interpolations in rational form

wq Ba (&)
W(&)

where wq IS a weight for the a basis function.

R, = where W (&) = > wy, By(§)
b

e Permits representation of conics and other curves:
wg = 1 gives polynomial.

e Surfaces and solids use tensor products of R, functions.

e NURBS extraction operator form becomes:

N°(§) = C"R°(§)

e Shape function routine given as option to standard FE form.

e Ref: M.J. Borden et al.: IJNME, vol. 87, pp 15—47, 2011.



Bézier Extraction Form for Elements

e Coordinate interpolation with extraction operator:

x(€) = > XpRp(&) = D> > XaCup Rp(&) = > Xa Y Cup Rp(&)
b=1 la=1 a=1 p=1 )

b=1g¢

Bézier 5 N;ES)
ZxaNa(g) N.B. n<m
a=1

NURBS

where m number of Bézier points and n number of control points.

e Isoparametric form for other variables:

W@ = S @Ry = 3 S aCap Ry(€) = z fio Na(€)
b=1

a=1 b=1

e Permits element development with either NURBS or Bézier form.



Isogometric Analysis of Structures

e Some implemented IGA user elements:

Description

NURBS Euler-Bernoulli beam

NURBS 1-d rod.

NURBS & T-spline thin C1 plate

NURBS & T-spline thin membrane

NURBS & T-spline derivative boundary condition.
Bending patch for Euler-Bernoulli beam ties.
Global least squares boundary fit for NURBS region
LLocal least squares boundary fit for NURBS region
Follower couple to load thin shell element

Thin isogeometric non-linear shell (Kiendl et al.)
Thin isogeometric linear shell (Kiendl et al.)
Linear curved beam with shear deformation.

FEAP user elements for NURBS/T-spline solutions.




Isogometric Analysis of Structures

e Some implemented IGA methods:

UMACR | Description

6 Extraction operator for 1-d forms.
Command: EXTRact BEZIer n side

8 Elevate directions of NURBS block.
Command: ELEVate knot num inc order

9 Insert knot in directions of NURBS block.
Command: INSERT knot num u val times

2 ZZ projection of stress for 2-d T-splines
Command: NZZP, ,n mat

0 Elements on edges of NURBS blocks or T-splines.
Command: EIGA,,dir i x i

FEAP commands for NURBS/T-spline solutions.




Isogometric Analysis of Structures

e Treatment of constraints in structural forms

— Example: Shear-bending and membrane-bending in curved rods

e Consider curved 2D Timoshenko beam:

Ous  Uur Us . Ouy n _ Oy
€ — —_ , = — . K = ——
7 R 0s 14




Isogometric Analysis of Structures

e Material constitution (linear elastic)
N=FAe , V=GAsy ;, M=FEJk

e Weak form

+1
M =/1 [Ne 4+ Mr + V] 5(€) d€ + Megt

e Unknowns transformed to global coordinates.



Isogometric Analysis of Structures

e Curved beam problem:

y 7
h 7
q
Z
Z
R
R
X
V—> X
(a) End shear (b) Uniform load

Data: R=10; h=0.0001 to 1, K1 =1000; V=1, ¢q=0.1.



Isogometric Analysis of Structures

e Verification by Kiendl et al. shell:
Results for 20-cubic elements with end shear.

Quadratic Shell Elements
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(a) ug contours (b) Energy behavior

e Roundoff high for R/h > 1000
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Isogometric Analysis of Structures

e End shear reduced integration results: 4-elements

Displacement Bezier Elements Reduced Integration Bezier Elements
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Isogometric Analysis of Structures

e End shear reduced integration forces: 4-elements
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Isogometric Analysis of Structures

e Uniform load reduced integration results: 4-elements

Displacement Bezier Elements
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e Reduced integration good for 1-d problems.
Need more general form for multi-dimensions.



Isogometric Analysis of Structures

e Discrete Strain Gap:

— Method for constraints. Lowers order of interpolation.
(Bletzinger et al.:2000; Koschnick et al.: 2005)

— Replaces locking terms by derivative form of interpolations.

— Example: Shear strain in straight Timoshenko beam.

dw dNb dN?
= p— I N ~N = ~
b= (G m N a) 7= 2

where
éa (AN _ .
Z/ <—wb+Nb<pb) j(€) d¢
with j(§) = dz/d§ and &, nodal coordinates.

e Used in above references for solids, beams, plates & shells.



Isogometric Analysis of Structures: DSG

e Discrete strain gap (DSG) used with NURBS for beams by
Echter & Bischoff (CMAME, vol 199, pp 374ff, 2010).

e Using NURBS basis led to tangent with fully occupied shear terms.

e Using Bézier extraction offers possibility of local approximations.
— Disadvantage: Continuity between elements only .
— Disadvantage: Many more nodal points.

— . Offers possible scheme for all C° problems.



Isogometric Analysis of Structures

e Interpolate DSG shear on Bézier element.
e Given Bernstein interpolations: —1 <¢<1
NE=(1-¢r
1 on

NP = %(1 "1 4¢)

B_i n
Ny = 2n(1+€)

e [ransform from Bernstein to Lagrange interpolation
(NB()|  [NE() NP() ... NPED] [NE©)
JNZ@| _ [NF (&) NF(&) - NJ(&)| [ NZ(E) |
(NB@©)|  [NP(&) NB() ... NP (NE©)

where &, are positions of Lagrange nodes.



Isogometric Analysis of Structures

e End shear DSGQG results: 4-elements

Displacement Bezier Elements
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Isogometric Analysis of Structures

e End shear DSQG force results: 4-elements, h = 0.01

15 S - T i T 15 : -
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e DSG expensive compared to reduced integration
Provides method that works for multi-dimensions



Isogometric Analysis of Structures

e Uniform load DSG results: 4-elements

Displacement Bezier Elements
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Isogometric Analysis of Structures

Closure:

e Described aspects of implementation of IGA into FE software.

e Considered Bézier extraction form for element development.

e Considered issue of locking in structural elements.

e For 1-d Bézier elements reduced integration adequate.

e DSG offers possibility of treatment in multi-dimensions.

e Displacement form adequate for large p!



