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METHODOLOGY FOR ESTIMATING AIRPORT CAPACITY AND 
THROUGHPUT PERFORAMNCE USING PDARS 
 

 

ABSTRACT 

This study develops a methodology for assessing airport performance and establishing 
airport efficiency metrics for runway and airport utilization.  We focus on the estimates 
of landing time intervals for each consecutive pair of aircraft for each runway and then 
aggregate micro aircraft-landing data to runway level, airport-configuration level and 
airport level. By combining two databases, Performance Data Analysis Reporting System 
(PDARS) and Aviation System Performance Metrics (ASPM), we are able to explicitly 
consider traffic mix, the effects of traffic demand and the impact of weather conditions 
on landing time intervals.  A normal-lognormal probability distribution for landing time 
intervals is introduced. The performance of the proposed distribution and probability 
distributions found in the existing literature are compared for five major airports in the 
U.S.  Then, we develop a comprehensive methodology for reliably estimating airport 
performance and establishing airport-efficiency metrics for runway and airport 
utilization.  The proposed methodology should assist the FAA System Capacity Office in 
improving measurement and analysis of airport performance.  Furthermore, if integrated 
into ATAC’s PDARS tool, the proposed methodology would improve estimation of 
airport performance and could be automated for daily reporting. 
 

Keywords: Airport performance, Airport capacity, Performance Data Analysis 

Reporting System (PDARS), Statistical modeling  
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 1. INTRODUCTION 

 

Airport performance measurement is a very important mechanism for understanding, 
monitoring and managing airport operations on a daily basis.  It can also be used for 
predicting future operational problems and introducing effective measures to avoid 
potential problems by introducing new operational concepts, policies or technologies.  
Measurement of airport performance can also be useful in evaluating and determining the 
best investment strategies towards modernization, expansion or reconstruction of airports 
and the updates of airport master plans.  It is also very useful to regulatory bodies, 
governments and other stakeholders such as passengers and airlines [1].  Airport 
performance measurement has to be designed to reflect demand growth, regulations, 
technical innovations, and air traffic control procedural upgrading.  Measurement of 
airport performance has attracted significant attention in last two decades and a number 
of different metrics have been developed, such as capacity, delay and safety – just to 
mention the most basic metrics.  Other conventional metrics include, but are not limited 
to aircraft throughput, passenger throughput and runway occupancy time.  
 Aircraft separation, as an airport performance metric, was recently analyzed in 
great detail with the objective to explore safety and capacity issues at the same time [2].  
The authors performed statistical analyses on the landing time intervals to explore the 
operational properties of the Los Angeles International Airport (LAX) by using the data 
from Performance Data Analysis and Reporting System (PDARS).  Their proposed 
distribution assumption better approximated the shape of the landing time interval 
histogram from real data, especially the left-hand side, which was considered more 
important regarding airport safety and capacity.  Because PDARS allows a precise 
calculation of landing time intervals on a runway level for each aircraft pair assigned to a 
particular runway, it was possible to perform airport performance analysis on a micro-
level.   
 In this study, we develop a methodology that transfers the landing time interval 
analyses for individual runways to airport performance measurement.  We postulate that 
the probability distribution of landing time intervals is not universal for all airports across 
the National Airspace System (NAS), but that it might vary with the number and 
complexity of runway layouts and runway configurations in use, weather conditions, 
traffic demand, aircraft mix or air traffic control “culture” deployed at an airport.  We 
explore differences at five major PDARS airports by using PDARS information on 
aircraft-runway assignments and translate the micro-level (i.e., individual runway) 
analyses to the runway-configuration level and then – to the airport aggregate level.  By 
exploring such levels, this paper differs from any previous work, since most of the airport 
performance analyses have been modeled on the airport (aggregate) level.   
 

2. METHODOLOGY 

The methodology in this study includes a comparison of four distribution assumptions for 
five airports in PDARS data base and proposes a comprehensive landing time interval 
(LTI) model based on Vendevenne model [3].  
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 The comparison of distribution assumptions focuses on a large aircraft trailing a 
large aircraft at Dallas Forth Worth (DFW) under visual meteorological conditions 
(VMC) with wind speed less than 10 nm.  Aviation System Performance Metrics (ASPM) 
data is combined with PDARS, providing information of meteorological conditions and 
the wind speed.  LTIs are calculated for each consecutive pair of aircraft for each runway 
and then they are merged to obtain a statistically larger sample.  After that, the maximum 
likelihood estimators are calculated to find the best probability distribution of the landing 
time intervals. Maximum likelihood value of distribution assumptions are compared as 
well as the computational difficulties.  
 In the next step, a comprehensive model is proposed. Linear functions are 
constructed to take into account the characteristics of the air traffic controller target 
separation and airport demand variation.  The target separation is not only dependent on 
the character of aircraft pairs and meteorological conditions, but also on runway 
configurations, which capture wind patterns not reflected by meteorological conditions.  
In other words, target separation for a large aircraft trailing another large aircraft could be 
different from one runway-configuration to another even if all other circumstances are the 
same. Logic based on runway layouts is assumed to distribute arrival demand to different 
runways according to their functions under a particular configuration. Dummy variables 
are added to indicate different runway configurations, meteorological conditions, and 
aircraft mix.  
 
2.1. PDARS and ASPM Database Description   
Performance Data Analysis and Reporting System (PDARS) database is supported by 
radar track and flight plan information directly from Automatic Radar Terminal System 
(ARTS) computers at Terminal Radar Approach Control (TRACON) facilities, and from 
the Host computers at Air Route Traffic Control Centers (ARTCCs).  A combination of 
these two databases provides, through PDARS, a very precise description of each flight 
every two seconds. For the purpose of this research, information on aircraft-runway 
assignments, aircraft threshold times, aircraft type and category and airline are used.   
 Aviation System Performance Metrics (ASPM) database contains more than 90 
fields, including information such as actual and estimated arrival and departure times, 
gate and taxi times, and en route performances.  The FAA’s Office of Aviation Policy 
and Planning uses ASPM data for airport efficiency analyses on a yearly, monthly, and 
daily level.  For the purpose of this research, the on-line database was used to obtain 
information about arrival demand, runway configuration in use, and meteorological 
conditions (Instrument Flight Rules (IFR), Marginal Visual Flight Rules (MVFR) and 
Visual Flight Rules (VFR)).  
 
2.2. Description of the Study Area  
Airports in this study include five largest airports (Figure 1) in Terminal Approach Radar  
Controls (TRACONs) where PDARS data are available: Dallas Fort Worth International 
Airport (DFW), Los Angeles International Airport (LAX), George Bush Intercontinental/ 
Houston Airport (IAH), San Francisco International Airport (SFO), and Phoenix Sky 
Harbor International Airport (PHX) from TRACONs D10, I90, NCT, SCT, and P50, 
respectively.  These five airports are among the busiest airports in the U.S.  The ranks of 
these airports in terms of passenger enplanements and aircraft operations in calendar year 
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2001 are listed in Table 1.  Percentage changes from year 2001 to forecast in year 2013 
are shown in the right two columns of Table 1 [4]. 
 

Table 1. Aviation Statistics  

 Rank in 2001 2001 Forecast 2013 
 Passenger 

Enplanements 
Aircraft 
operation 

Passenger 
Enplanements 
(Million) 

Aircraft 
operation 
(Thousand) 

Passenger 
Enplanements 

Aircraft 
operation 

DFW 4 3 25.6 802.6 34.4% 25.6% 
LAX 3 4 29.4 738.7 21.4% 4.5% 
PHX 5 5 17.5 606.7 37.2% 13.2% 
IAH 9 11 16.2 477.4 48.1% 27.4% 
SFO 8 23 16.5 387.6 14.5% -5.3% 

    
Figure 1 shows the layouts of those multi-runway airports [4].  The number and geometry 
of multi-runway layouts differ significantly among airports.  For example, SFO has two 
sets of intersecting closely-spaced parallel runways that prohibit simultaneous arrivals or 
departures.  The other airports contain either coupled, widely-spaced parallel runways 
(LAX, PHX) or several sets of parallel runways (DFW, IAH, PHX).  The benchmark 
capacities of these airports are summarized in Table 2 [5].  
  

Table 2. Benchmark Capacities of Study Airports 

 Optimum rate1 Marginal rate 2 IFR rate 3

DFW 
 

270-279 231-252 186-193 
LAX 137-148 126-132 117-124 
PHX 128-150 108-118 108-118 
IAH 120-143 120-141 108-112 
SFO 105-110 81-93 68-72 

 
 

 

 

 

 

 

 

 

 
                                                 
1 Ceiling and visibility above minima for visual approaches (4000ft ceiling and 8mi visibility 
2 Below visual approach but better than instrument conditions 
3 Instrument conditions (ceiling < 1000ft or visibility <3.0mi) 
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Figure 1. Layout of  PDARS Airports 
 
 
 
 

 

 

(d) IAH 
(c) PHX 

(e) SFO 

(a) DFW 
(b) LAX 
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3. STATISTICAL MODELING OF LANDING TIME INTERVALS (LTIs) 

Various statistical models were used to examine the observed landing time interval 
distributions.  These include the Normal, Vandevenne, Controlled-Normal, and Normal-
Lognormal models. 
 
3.1. Normal 
The normal distribution has widely been used previously to model observed landing time 
intervals, S.  The normal distribution is described by the probability density function 
(PDF) in equation (1),   
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where μ represents the mean and σ represents the standard deviation.   
 
3.2. Vandevenne 
The Vandevenne model was developed for landing time interval distributions and takes 
into account the occurrence of longer separation times when demand is low [2].  The 
model assumes that the actual observed headway, S, between two aircraft is composed by 
the additive components shown in equation (2). 
 

gDS ++= ε           (2) 
 
D represents a constant headway that air traffic controllers strive to achieve but cannot 
due to the air traffic controller’s imprecision error, ε, and the gap, g, that cannot be closed 
with the available control.  The imprecision error is assumed to be normally distributed as 
N(0, σ), where σ is the standard deviation.  The gaps that cannot be closed by the air 
traffic controller follow a negative-exponential distribution when the arrival rate, λ, is 
assumed to be random and thus, follow a Poisson distribution.  The resulting PDF for S is 
described by equation (3). 
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Φ represents the cumulative density function (CDF) for the standard normal distribution 
while s represents a single headway observation between two aircraft.  The parameters 
estimated in this model are D, σ, and λ.         
 
3.3. Controlled-Normal 
The Controlled-Normal model, derived from previous work [2], was also employed to 
examine the observed landing time intervals.  In this model, the headways of aircraft are 
assumed to follow a normal distribution with a mean of μ1 and a standard deviation of σ1.  
A critical threshold C is presented; air traffic controllers will take action to adjust the 
headway if it is below C.  Conversely, if the headway is greater than C, air traffic 
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controllers consider this safe and thus, take no action.  As a result, the controlled 
headways follow a new normal distribution.  This model is illustrated in Figure 2 below 
and explained in [2]. 
 

 
Figure 2. Controlled-Normal Model 

 
The dotted (red) line illustrates the assumed normal distribution that aircraft headways 
follow when they arrive without any control.  The (blue) solid line to the right of C 
represents the headways where air traffic controllers take no action.  Conversely, the 
scaled narrower curve to the left of C represents the headways that controllers adjust, 
which follow a new normal distribution.  This normal distribution has a mean of D, the 
ideal headway that air traffic controllers try to achieve, and a standard deviation of σ2.  
Together the complete (blue) solid line represents the observed headway, S, which has a 
PDF denoted by equation (4). 
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Φ1(C) represents the CDF of a headway before any control is given, while )(1 sφ  
represents the PDF of a headway before any control is given.  Subsequently, )(2 sφ  
represents the PDF of a headway on the scaled normal distribution that has a mean of D.  
The parameters estimated in this model are μ1, σ1, μ2, σ2, and C. 
 
 
3.4. Normal-Lognormal 
Similar to the Controlled-Normal model, the Normal-Lognormal model uses some of the 
same assumptions regarding a critical threshold and controller adjustment.  However, 
instead of assuming headways adjusted by air traffic controllers follow a new normal 
distribution, the Normal-Lognormal model assumes they follow a lognormal distribution.  
The rationale behind this assumption was that the log-normal distribution eliminates 
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values below 0 in the PDF; thus, this is a more accurate formulation of the model since 
headways are non-negative.  In addition, a thicker tail on the right side in the log-normal 
distribution seems to produce a better fit with the observed landing time interval 
distributions.  The PDF for the observed headway, S, using the Normal-Lognormal model 
is described in equations (5) and (6). 
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 Φ1(C) again represents the CDF of a headway before any control is given, while )(sφ  
represents the PDF of a headway before any control is given.  The variables μ and σ 
denote the mean and standard deviation of the normally distributed headways before any 
control, respectively.  Subsequently, the variables m and t denote the mean of the log of S 
and the standard deviation of the log of S, respectively.  The parameters estimated in this 
model are μ, σ, m, t, and C. 
 
 
3.5. Results of Statistical Models 
The above models were applied to five major airports: DFW, IAH, LAX, PHX, and SFO.  
The results for the four statistical models presented above for each of the five airports are 
graphically shown in Figures 3-7.  Specifically, the results are for VFR conditions with 
low winds, large following large aircraft, and the primary runways of each airport. 

Comparison of Empirical Data with Various Models (DFW, LL, VFR, Wind10)
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Figure 3.  Comparison of Empirical Data for DFW Airport with Proposed Models  
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Comparison of Empirical Data with Various Models (IAH, LL, VFR, Wind10)
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Figure 4.  Comparison of Empirical Data for IAH Airport with Proposed Models  

 
 
 
 

Comparison of Empirical Data with Various Models (LAX, LL, VFR, Wind10)
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Figure 5.  Comparison of Empirical Data for LAX Airport with Proposed Models  
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Comparison of Empirical Data with Various Models (PHX, LL, VFR, Wind10)
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Figure 6.  Comparison of Empirical Data for PHX Airport with Proposed Models  

 
Comparison of Empirical Data with Various Models (SFO, LL, VFR, Wind10)
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Figure 7.  Comparison of Empirical Data for SFO Airport with Proposed Models  

 
 
The maximum log-likelihood technique was used in order to estimate the parameters for 
each statistical model.  The results reveal that the four models, with the exception of the 
normal model, fit the observed landing time interval distributions very well, as shown in 
Table 3.   
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Table 3. Parameter Estimation of Four Statistical Models  
 1µ  1σ  2µ (D) 2σ  λ  δ  C LL1 SIC2 

Normal   129 53    -35977 71958 
Vandevenne   77  0.02 10.93  -34543 69092 
Controlled-

Normal 88 93 105 21   148 -34513 69036 

Normal-
Lognormal 28 130 106 26   148 -34476 68962 

 
 
 
Each model is able to capture the overall shape of the observed distribution, though the 
models for SFO exhibit more variation.  However, with the exception of LAX, the sharp 
shoulder occurring on the right side of the Controlled-Normal and Normal-Lognormal 
models do not exist for the other four major airports.  For LAX, there is a slight shoulder 
seen at a landing time interval of approximately 150 seconds.  In addition, the Controlled-
Normal and Normal-Lognormal models have slightly larger maximum log-likelihood 
values when compared to the Vandevenne model.  Nevertheless, the Vandevenne model 
has more degrees of freedom than these two more complex models and is easier to obtain 
convergence during optimization.  Hence, instead of refining distribution assumption, we 
now focus on capturing the dynamic characteristics of the parameters in Vendevenne 
model. 
 
4. COMPREHENSIVE MODEL OF RUNWAY ARRIVAL CAPACITY  
 
In Vendevenne paper, the authors focus on a subset of large-large aircraft pairs under 
VMC meteorological conditions.  A target time separation, D, that an air traffic controller 
attempted to reach and the average arrival rate of flights, λ, are taken as constants in the 
model.  For an airport with a simple, and only a few runway configurations, this 
assumption may be valid.  However, for an airport with complicated and various runway 
configurations, the coefficients D and λ are not constant but subject to runway 
configuration. Usage of runway configurations depends on wind direction and wind 
speed at the runway. These are not captured by meteorological records and need to be 
considered carefully.  
 
4.1. Comprehensive Single-Fixed Effect Model of LTIs 
In this part of the study, we propose a comprehensive single-fixed effect model of LTIs.  
In addition to considering the existing large-large aircraft pairs, we investigate all other 
aircraft-pairs with respect to aircraft type (size) within the existing fleet mix.  D is 
represented by a linear function subject to traffic mix, meteorological conditions, and 
runway configurations. Distribution logics for demand to different runways are 
introduced at a particular airport and a linear function is constructed for λ with a given 
arrival demand from ASPM data. Given LAX as an example with runway configurations 
shown in figure 1a, the functions of D and λ are defined by equations (7) and (8), 
respectively: 
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Equation 7 has the following variables:  

 MVMC and IMC are dummy variables for meteorological conditions. If 
LTI occurs under marginal VMC condition then MVMC equals to 1, 
otherwise 0. If it occurs under IMC condition, then IMC equals to 1, 
otherwise 0. 

 iRwyconf is the dummy variable indicating runway configurations. 
 TrailH ,TrailS , LeadH , and LeadS are dummy variables specifying the 

aircraft types of a sequence pair. If a trailing aircraft is heavy, then 
TrailH equals to 1, otherwise 0.  If a leading aircraft is small, then 
LeadS equals to 1, otherwise 0. We define TrailS and LeadH similarly.  

 γ , w , t , and l  are fixed effect coefficients for the above listed dummy 
variables.  

 
The baseline operating conditions for D are as follows: 

(a) large aircraft trailing large aircraft under VMC condition, 
(b) runway configuration 24R, 25L | 24L 25R, where runways 24R and 25L 

are used for arrivals and 24L and 25R are used for departures. 
 
Table 4. Runway Configurations at LAX 
No. Runway Configurations 
 Landing Runways Takeoff Runways 
1 24R, 25L  24L, 25R 
2 24L, 24R  25L, 25R 
3 24L, 24R, 25L, 25R 24L, 24R, 25L, 25R 
4 6L, 7R 6R, 7L 
5 6L, 6R 7L, 7R 
6 6L, 6R, 7L, 7R 6L, 6R, 7L, 7R 
 
 
As depicted in figure 1a, there are two sets of parallel runways at LAX. Generally, the 
outer runways are used for arrivals and the inner runways are used for departures. When 
the outer runways or one set of parallel runways are only dedicated to arrivals (Table 4: 
No. 1 and 4; No. 3 and 6, respectively), the arrival demand is equally distributed to the 
two runways.  If the inner runways are also utilized for arrivals, the percent of demand 
distributed over the inner runways is the same.  However, the magnitude should be much 
smaller. Thus, the linear function of λ is shown by equation 8 below.  
 

( ) ( )( )∑
=

××=+××==
6

1
10 10

i
ii arrdemandinsidearrdemandinside ββλ   (8) 
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The linear function of λ (average arrival rate) is expressed by the two logical expressions 
( )0=inside  and ( )1=inside , indicating the characteristics of each runway, and by the 
corresponding arrival demand, arrdemand.  
 
4.2. Regression Results 
Results show that under VMC meteorological conditions and a base runway 
configuration, the target LTI for a large-large aircraft pair is 82.26 seconds (Table 5). 
Table 6 presents target LTIs for aircraft pairs with different fleet mix combinations4

 

. 
Regression results also show that for similar runway configurations but the opposite 
directions, the target LTIs increases 5.92 seconds. For the same runway configuration, the 
target LTI for a large-large aircraft pair increases 3.63 seconds under marginal VMC 
condition, but only 2.38 seconds under IMC condition.  Although this finding is 
somehow counterintuitive, we postulate that a headway separation increased as a result of 
the air traffic controllers conservative control due to the marginal VMC conditions, while 
being in the transitioning meteorological condition (between the VMC and the IMC 
conditions).  We propose to further investigate the underlying causes of this intriguing 
finding. 

Table 5 Regression Result of LTI at LAX 
Parameter Interpretation Estimate SD t-stat P-value 

Α Intercept for D 82.26  1.69  48.70  [.000] 
γ1 MVMC 3.63  0.39  9.31  [.000] 
γ2 IMC 2.38  0.44  5.44  [.000] 
Ω2 Runway Configuration 2 -1.72  1.68  -1.02  [.306] 
Ω3 Runway Configuration 3 -4.44  1.69  -2.62  [.009] 
Ω4 Runway Configuration 4 5.92  2.23  2.65  [.008] 
Ω5 Runway Configuration 5 6.70  1.69  3.96  [.000] 
Ω6 Runway Configuration 6 16.03  2.70  5.94  [.000] 
tH Trailing flight H -3.98  0.35  -11.39  [.000] 
tS Trailing flight S 2.68  0.35  7.69  [.000] 
lH Leading flight H 22.03  0.28  78.14  [.000] 
lS Leading flight S -5.43  0.40  -13.68  [.000] 
Σ Controller imprecision  16.66  0.08  202.16  [.000] 

β1 
Demand coefficient for runway 
configuration 1 and 4 3.61E-03 1.80E-04 20.11  [.000] 

β2 
Demand coefficient for runway 
configuration 2 and 5 3.15E-03 2.12E-05 148.74  [.000] 

β3 
Demand coefficient for outside 
runways with configuration 3 
and 6 

3.05E-03 2.66E-05 114.85  [.000] 

β4 
Demand coefficient for inside 
runways with configuration 3 
and 6 

1.23E-03 6.28E-05 19.52  [.000] 

                                                 
4 B757 was taken as a Heavy aircraft when it is leading and a Large aircraft when it is trailing 
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Capacity is calculated as the inverse of the target LTI. With the estimated results and fleet 
mix percentages obtained from historical data (Table 6), hourly arrival capacity for a 
runway dedicated to arrivals with runway configuration 24R, 25L | 24L, 25R at LAX is 
about 41 operations per hour under VMC condition, as indicated in Table 7.  
 
Table 6. Target Separations and Percentages for Aircraft Pairs under VMC and Runway 
Configuration 24R, 25L | 24L 25R at LAX 
                  
Trailing 
Leading 

Target separation  Percentage of aircraft pairs 

Large Heavy Small Large Heavy Small 
Large 80 76 82 0.16 0.04 0.04 
Heavy 101 97 103 0.28 0.06 0.08 
Small 74 70 76 0.23 0.04 0.07 

 
 

Estimations of hourly capacity of each runway dedicated to arrivals within different 
runway configurations are presented in Table 7.  Capacities are estimated for the same 
operating conditions indicated in Table 6 (percentage of aircraft pairs and VMC 
conditions). 
 

Table 7  LAX Capacity for Six Runway Configurations 

No. Runway Configurations Arrival Capacity 
 Landing Runways Takeoff Runways (ops. per hour) 
1 24R, 25L  24L, 25R 41.02 
2 24L, 24R  25L, 25R 42.81 
3 24L, 24R, 25L, 25R 24L, 24R, 25L, 25R 43.26 
4 6L, 7R 6R, 7L 38.39 
5 6L, 6R 7L, 7R 38.07 
6 6L, 6R, 7L, 7R 6L, 6R, 7L, 7R 34.60 

 
  
 
5. CONCLUSIONS AND FUTURE WORK 
 
This study develops a methodology for assessing airport performance and establishing 
airport efficiency metrics for runway and airport utilization.  The proposed methodology 
should assist the FAA System Capacity Office in improving measurement and analysis of 
airport performance.  Furthermore, if integrated into ATAC’s PDARS tool, the proposed 
methodology would improve estimation of airport performance and could be automated 
for daily reporting. 
 In this study, a normal-lognormal probability distribution for landing time 
intervals is introduced and compared to the existing four probability distributions.  Each 
probability model is able to capture the overall shape of the observed distribution, 
although the models for SFO exhibit more variation.  However, with the exception of 
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LAX, the sharp shoulder occurring on the right side of the Controlled-Normal and 
Normal-Lognormal models do not exist for the other four major airports.  For LAX, there 
is a slight shoulder seen at a landing time interval of approximately 150 seconds.  In 
addition, the Controlled-Normal and Normal-Lognormal models have slightly larger 
maximum log-likelihood values when compared to the Vandevenne model.   These slight 
differences imply that each airport has a unique probability distribution for arrivals, 
depending on the number and complexity of runway layouts and runway configurations 
in use, weather conditions, traffic demand, aircraft mix or air traffic control “culture” 
deployed at an airport.   
 Considering the physical meaning of parameters in Vendevenne model, we 
propose a single-effect model, as a refined Vendevenne model, with linear functions of 
major parameters (the target separation and the arrival rate).  With the results of the 
regression analysis, hourly capacity of a runway dedicated to arrivals is calculated with a 
historical fleet mix for different runway configurations. Capacity variation among 
different runway configurations indicates that more attention should be paid to runway 
configurations in the capacity study.   
 We propose to further explore the dynamic behavior of an airport system by 
investigating transitions of airport runway configurations.  It would be interesting to 
analyze the duration and operational performance of each runway configuration and its 
transition probabilities to a subsequent configuration by using a semi-Markov process.   
Such a study would provide helpful information to the airport system analyst about the 
nature of runway configuration patterns throughout a desired period of time (day, week, 
month, or year).  It would also be useful in predicting airport states (i.e., runway 
configurations) and expected airport performance as a function of procedural elements.  
Because each runway configuration yields a certain level of capacity and delay, the 
information could be used for improving demand management strategies (on a semi-
strategic level), or in making appropriate tactical decisions with the objective to meet the 
required demand and reduce delays.  Furthermore, better predictability of runway 
configuration patterns and their related operational performance could be useful in 
determining an appropriate level of automation required during more critical runway-
configuration scenarios.      
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