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Abstract - In this paper, we address the problem of making 
inferences about a population of infrastructure facilities from a 
subset that is a biased sample. We consider the case in which the 
sample is biased towards facilities in worse condition or requiring 
more expensive repair. Two methods are developed that incorporate 
a model of the process through which the sample is selected. One of 
the methods is based on well-known truncated distributions, 
whereas the other assumes that the bias operates continuously. The 
methods are applied to a class of facilities under the FAA’s 
jurisdiction known as “un-staffed facilities.” These consist of 
structures housing radars, navigation aids, radio beacons, and other 
ground-based equipment, and no previous system-wide evaluation 
has been attempted for these facilities. We present and discuss the 
estimates obtained from both the methods, and examine their 
goodness-of-fit with the sample. Given the premise that bias exists, 
the continuous bias model proved more suitable. However, the 
continuous bias model did not surpass the truncation models in 
terms of goodness-of-fit.  

I.    INTRODUCTION 
Infrastructure maintenance and repair decisions, along with 

supporting budgets, are based on data about facility condition, 
cost factors, and budgetary constraints. In some infrastructure 
systems, comprehensive condition surveys are done periodically. 
In other systems, condition surveys over the entire population of 
facilities are not done. Reasons for this can include excessive 
cost, accessibility constraints, and a reactive “fix it when it 
breaks” approach to infrastructure management. But even in such 
cases, there may be partial data (of a subset of the population) on 
condition, replacement or repair needs, and associated costs. 
With adequate knowledge about the procedure used to gather 
such data, reasonable extrapolations can be made about the entire 
population. 

In this paper, we address such a problem of making 
inferences about a population of infrastructure facilities from data 
for a sample of them. The unique aspect of the problem is that the 
sample is biased in a particular fashion. Specifically, we consider 
the case in which the sample of facilities is biased toward 
facilities in worse condition or requiring more expensive repair 
(or even replacement). Such a bias may exist for a variety of 
reasons. For example, if the infrastructure manager is accustomed 

to budgets that are insufficient to bring all facilities to “like-new” 
condition, it will reasonably focus its condition-monitoring 
resources on the more “urgent” and “expensive” facilities.  

We develop a method to address such a bias in the sample. 
The method incorporates a model of the process by which the 
sample is selected. We then demonstrate this method for a case 
study, which is a set of Air Traffic Control (ATC) facilities 
operated by the Federal Aviation Administration (FAA). The 
contributions of this paper are two-fold. First, we develop a 
method for utilizing biased sample data to derive information 
about the entire population. The kind of bias treated here is 
generic and may be encountered in a wide variety of situations. 
Second, we apply this method to a class of facilities under the 
FAA’s jurisdiction, known as “un-staffed facilities” and 
consisting of structures housing radars, navigation aids, radio 
beacons, and other ground-based equipment, for which no 
previous system-wide evaluation has been attempted. FAA has 
identified such a comprehensive un-staffed facility evaluation as 
critical to the ongoing re-structuring of its infrastructure assets 
[1].  

The rest of this paper is organized as follows. We first 
motivate and state the problem. We then identify a possible 
method for addressing the problem derived from previous 
literature, and discuss its shortcomings. We next propose more 
innovative and appropriate methods, followed by a description of 
the case study. We then apply the alternative methods to several 
different classes of FAA un-staffed facilities, compare their 
results, and demonstrate the advantages of our proposed method.   

II.   PROBLEM STATEMENT AND MOTIVATION 
Consider a system of diverse infrastructure facilities spread 

over a wide region, managed by a government or private agency. 
The periodic allocation of maintenance and replacement funds to 
facilities is based, at least in part, on information about facility 
condition. The specific information provided is the cost of 
bringing a subset of facilities to “like new” state. Only a subset of 
facilities is included because it is not feasible (or even desirable) 
to bring all facilities to such a state, and the cost of developing 
the information of any given facility in non-negligible. Finally 
assume that agency policy is to prioritize maintenance and repair 
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activities on facilities in the worst condition, and thus with the 
highest restoration costs, there being a strong correlation between 
poor condition and high restoration cost. 

Given these circumstances, it is reasonable to suppose that the 
subset of facilities for which cost information is provided will not 
be representative of the entire set, but rather be skewed towards 
those in the poorest condition. These cost estimates provided for 
a given class of facility can be treated as a sample of the 
population, but it is a biased sample in which facilities in a poor 
condition (and thus with higher restoration costs) are more likely 
to be included.  

Suppose now that the agency wishes to use restoration cost 
data from these biased samples to estimate properties of the 
populations from which they are drawn. These properties might 
include the cost of restoring all facilities to “like-new” condition, 
or the probability distribution of these costs for individual facility 
types. There may be various motivations for this, including 
internal “budget drills” or the wish to publicly document the 
extent to which maintenance budget is “under-funded.” Whatever 
the reason, and irrespective of its validity, the technical problem 
is to use available data for a purpose it was not originally 
intended for, and hence is imperfectly suited. Our aim is to 
investigate how to do this. 

Let us now formalize the above problem. Let X  be a random 
variable that is the cost of bringing a given type of facility to 
“like-new” condition. Suppose there are N facilities of this type, 
and that we have cost information for  of these facilities. Let 
  1, 2…  be the probability that facility i is included in 

the sample, and suppose that  depends on  the value of  for 
facility : . Further, assume that the function    is 
positive monotonic; more specific assumptions about the function 
will be discussed below. Given our sample data , … , our 
objective is to estimate the probability density function (PDF) for 

, . 

III.    ALTERNATIVE APPROACHES 
We now present three approaches to this estimation problem. 

The main difference between them is the specific assumptions we 
make about the function   . 

A.   Truncation Models 
The most basic approach for modeling this kind of data is to 

assume that the sample is a truncated sample, with truncation 
point being . Thus, we assume in this case that the cost data is 
drawn from the set of facilities whose restoration cost is above a. 
Given this assumption, a truncated distribution function can be 
constructed from the probability density function (PDF) and 
cumulative distribution function (CDF). Thus, if  is the 
PDF of the un-truncated distribution and  is the cumulative 
distribution function (CDF), the density of the truncated random 
variable can be written as [2]: 

|
Prob 1  (1)

Along with the parameters of , the truncation point  
will also be an unknown parameter to be estimated. The 
estimation of  is subject to the constraint that , where  
is the lowest value in the sample. The likelihood function for this 
approach can be written as  

1
, ..

 (2)

For estimation of this model, it can be shown that the 
constraint  is binding (proof is included in appendix 1). 
Thus, the truncation point would be the lowest value in the 
sample, and estimation involves determining the parameters of 

 only.  

The above approach employs the cost data only. In most 
cases, the total number of facilities, including those without cost 
data, is also known. This information can be used in the 
estimation process. In order to do so, we must make an 
assumption about the process that determines whether or not a 
given facility appears in the sample. Two assumptions may be 
considered. First, we can assume that all of the facilities whose 
cost is above a are included. In this case, we know that if a 
facility is excluded, its cost must be below a. This yields the 
likelihood function: 

\  

 (3)

where  be the set of facilities in the sample, and  is the entire 
set, with . Again, the estimation of  is subject to the 
constraint that , where  is the lowest value in the 
sample. Using arguments similar to appendix 1, it can be easily 
seen that this constraint is binding. We call this approach 
truncation with complete sampling (TWCS). 

Alternatively, we can assume that the data represents only a 
fraction of the facilities whose restoration cost is greater than the 
truncation value. This sampling fraction thus becomes an 
additional parameter to be estimated, along with the truncation 
point and the parameters of . In effect, we assume that the 
facilities are initially screened to eliminate those whose 
restoration cost is less than a, and that a fraction p of the 
remaining facilities are included in the sample. The process could 
also begin by choosing a sample from all the facilities, and then 
eliminating from that sample those with a cost below a. The 
likelihood function is the same regardless of the sequence, but is 
most intuitively expressed if it is assumed that the initial sample 
includes all the facilities. It is given by: 

1
\

 (4)
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The first product is for facilities not in the sample, either 
because they were initially sampled and had a cost less than a, or 
because they were not initially chosen for the sample. The second 
product corresponds to facilities in the sample. Note that when 

1, this model reduces to the previous one. As before, 
estimation of  is subject to the constraint that , and using 
arguments similar to appendix 1, it can be seen that this 
constraint is binding. We call this approach truncation with 
incomplete sampling (TWIS). 

Both of these models have an important limitation. The bias 
toward facilities with higher restoration costs takes the form of 
rule that simply excludes facilities with costs below a certain 
value. The data is treated as an unbiased sample of those facilities 
that pass the cost test. A more plausible assumption is that the 
bias operates continuously: the higher the cost, the more likely 
the facility will be included. This is the basis for the next set of 
models. 

B.  Continuous Bias Models 
These models assume that as facility repair cost increases, the 

probability of the facility being included in the data increases in a 
continuous fashion. These may be no absolute minimum cost, but 
facilities with low repair costs are very unlikely to be sampled. In 
the previous truncation based models, we modeled this selection 
as a constant probability, p, for all facilities with repair cost 
above the minimum value. Now selection is modeled as a 
monotonically increasing function of the repair cost. 

Perhaps the simplest such model is that the selection 
probability is a linear function of the repair cost, with the 
probability being zero for the lowest repair cost in the sample, 
and 1 for highest. Formally, if  and  be the lowest and 
highest values in the sample respectively, the probability of 
inclusion in the sample is: 

0,

,

1,  

 (5)

In this case, the likelihood function can be written as: 

1
\

(6)

The first product term covers the facilities that are not 
included in the sample, and the second term gives the 
contribution of the sample in the likelihood function. The integral 

 is the probability that a facility is selected. The 
likelihood maximization should yield a result such that 

 nearly equal to the ratio of sample to 
population. 

The advantage of the above method of linearly increasing 
probability is the ease of estimation. Equation (5) gives a pre-
determined probability for each data point in the sample, and 

there are no added parameters to be estimated besides the 
underlying distribution. This stems from the linear relationship 
and assigning probability values to the largest and smallest data-
points. However, these assumptions themselves are a 
shortcoming of the above approach. This is because firstly, the 
relationship need not be linear, and secondly, even if the 
relationship is linear, determining the parameters of the linear 
relationship by assigning probabilities to smallest and largest 
values is restrictive. A more refined approach is to estimate the 
parameters of the sample selection model along with those of the 
cost distribution.   

As stated earlier, the functional form used to model sample 
selection should be positive monotonic, since the selection is 
skewed towards higher values. Further, for the ease of estimation, 
the function should preferably be smooth for 0, where  is 
the repair cost. Equation (5) shows that estimation involves 
evaluating a definite integral that varies with the parameters 
being estimated, and a non-differentiable selection function 
would add to the complexity of an involved estimation. This 
criterion questions the logical extension to the functional form in 
(5), where  and  would be parameters to be estimated rather 
than lowest and highest values in the sample. The function  
in (5) is not differentiable at  and , and this would lead to a 
complicated estimation procedure. 

Due to the above reasons, we adopt a binary logit model for 
sample selection. The probability of a facility with a particular 
repair cost, x, being present in the sample is: 

1
 (7)

where α and β are parameters to be estimated and ·  is a 
positive monotonic function. For  0,  approaches 1 as 

 becomes very large. Moreover, in this model sample selection 
can be represented as a utility maximization process, in which the 
expression  can be interpreted as the deterministic 
utility of including facility i in the sample as compared to the 
alternative of not including it, whose deterministic utility is 
assumed to be 0. The likelihood function remains the same as in 
(6). Estimation, however, is considerably more difficult as 
compared to the earlier methods because the definite integral 
includes unknown parameters of both the probability function 
and the repair cost distribution. We call this approach the 
continuous bias approach (CB). 

IV.  CASE STUDY: UN-STAFFED FACILITIES IN THE NATIONAL 
AIRSPACE SYSTEM 

A.   Introduction and Objective 
The Federal Aviation Administration, as a part of its ongoing 

re-structuring of its infrastructure assets, plans to 
comprehensively evaluate the un-staffed facilities in the National 
Airspace System (NAS). Un-staffed facilities are structures that 
house communication, navigation, and surveillance equipment.  
The number of physical assets in the NAS is significant. The 
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NAS contains about 5,000 unstaffed facilities and 9,000 
structural towers. Although the number and importance of such 
facilities is significant, it appears that the state of the art in 
assessing facility conditions and its performance is not very 
advanced [1,3,4]. 

NAS facilities are very diverse in terms of their type, 
construction and size, geographic location, environment and the 
traffic area they serve [9]. This diversity represents one of the 
major challenges in assessing facility condition and performance 
at an aggregate level. The entire NAS has been divided into nine 
different regions, based on different climactic and local 
conditions [9]. Because of the large number of diverse unstaffed 
facilities distributed across the entire NAS it would be extremely 
expensive to systematically assess and evaluate each facility and 
to establish a comprehensive data-base within a short time-frame. 
Instead, it is proposed to assess the condition of a representative 
sample of facilities from different regions.  

The ultimate objective of our work is to develop a sampling 
methodology for this assessment. In order to do this, it is 
desirable to develop preliminary estimates of the mean and 
variance of repair cost for different classes of facilities so that 
accuracy of estimates yielded by different sample sizes can be 
predicted. These preliminary estimates are based on samples of 
facilities for which cost data are available. As noted above, these 
existing samples are skewed toward facilities with high repair 
costs. The preliminary estimates can then be used to design a 
sampling methodology based on stratified sampling [5]. 

B.  Data and Methodology 
As stated before, the entire NAS is divided into 9 regions, 

with each region having its own sub-divisions. There are 12 
different types, and a table with abbreviations for different 
facilities is reproduced from [9] in appendix 2. For each facility, 
the respective sub-division assigns a subjective measure (Facility 
Condition Index, FCI) of the condition of the facility, with the 
assignment being updated at least once every year. This FCI is on 
a scale of 1 to 5, with 1 denoting a new facility, and 5 denoting 
need for replacement.  

The data provided included the following: 

• The population of a particular type of facility in any one 
of the 9 regions. 

• For a certain subset of facilities, the deferred maintenance 
cost (DMC) was provided. DMC represents the cost of the 
repair that has been deferred for that financial year. This 
estimate is based on subjective judgment and periodic 
cursory inspection of facilities suspected to be in need of 
repair. Further, most of the data is for facilities which are 
judged to have an FCI value of 4 or 5.  

In [9], the authors give the sizes of the total population and 
the sample for which deferred maintenance cost is available for 
each facility type. These data are not the result of a thorough 
inspection but based on quick appraisals, to be used for budget 
allocation. Nevertheless, some FAA managers state that these 

estimates are a good representation of the real cost. In the 
following sections, we assume these data are accurate and use 
them to estimate, for individual facility types, the underlying 
distributions of deferred maintenance cost. We do this for all 
types except TDWR’s and ASDE’s, whose sample sizes of 8 and 
6 are too small to yield meaningful results.  

C.  Analysis 
In this analysis, we assume that the repair costs are 

lognormal, or the log of the costs is normally distributed. This is 
clearly more plausible than the normal, because cost must be 
non-negative, but includes only two parameters, making 
estimation tractable. We also conducted experiments with other 
distributions including the folded normal and the exponential 
distribution (see table 4), but found the lognormal to have the 
best results. More complicated distributions, such as the Gamma 
might also be tried, but they would make estimation more 
difficult. Moreover, as discussed below, goodness-of-fit tests 
performed after estimation yielded acceptable results for most of 
the facility types. The functional forms for the lognormal 
distribution are given below in (8). 

1
√2

A
 

Φ
ln

 

(8)

1)  Truncation: We first present results from maximizing the 
likelihood function in (2), which considers only the sample cost 
values, not the fraction of the population sampled. As mentioned 
above, the maximum likelihood estimate for the truncation point 
is the lowest value in the sample, leaving just the two log-normal 
distribution parameters for numerical estimation. The results of 
this estimation are given in table 1. The parameters A and B are 
the same as defined in (8). 

The Kolmogorov-Smirnov (KS) test was performed on the 
truncated probability function defined in (2). As shown in table 1, 
the estimated distribution passes the KS test for the .05 
significance level in almost all cases. 

TABLE 1.  ESTIMATION RESULTS FROM SIMPLE TRUNCATION 

 

Facility Type A   B   KS Test Value

ALS  8.768  
(0.426) 

1.945  
(0.327)  0.083# 

ARSR  10.483  
(0.162) 

1.476  
(0.105)  0.063# 

ASR  9.47  
(0.209) 

1.718  
(0.183)  0.057# 

AWOS / ASOS  9.27  
(0.181) 

1.035  
(0.123)  0.236 

GS  9.295  
(0.115) 

1.471  
(0.078)  0.111 

LOC  9.3  
(0.134) 

1.717  
(0.098)  0.118 

MALS / SSALS  9.422  
(0.855) 

2.221  
(0.87)  0.073# 

RCAG  9.6  
(0.101) 

1.45  
(0.055)  0.076# 

RTR  9.673  
(0.121) 

1.529  
(0.097)  0.079# 

VOR  9.588  
(0.062) 

1.355  
(0.038)  0.049# 

(Values in brackets are standard errors for estimates) 

Underlined and italicized estimates are significant at 0.05 level 
# Estimated distribution passes KS test at 0.05 level 



 5

As discussed before, the likelihood function used in the above 
estimation ignores potentially important information concerning 
the proportion of the population included in the sample. This 
information is particularly relevant if we assume that the sample 
includes all facilities whose DMC is greater or equal to the 
truncation value. In this case the likelihood function is given in 
(3). Estimation results, which appear in table 2, are much 
different than those in table 1, with lower A values and higher B 
values. Moreover, in virtually all cases, the fitted distribution 
fails the KS test. This suggests that the assumption that the data is 
a complete sample of values exceeding the truncation value is 
wrong. 

TABLE 2.  ESTIMATION RESULTS FROM MODIFIED TRUNCATION WITH 
COMPLETE SAMPLING (TWCS) 

 
The third truncation model, described by (4), relaxes the 

assumption that the entire population above the cutoff point is 
included in the sample, but still exploits information about the 
proportion of the facilities included in the sample. The 
parameters for estimation are the parameters of the lognormal 
distribution (A and B) and the sampling fraction . Further, it 
should be noted that as a consequence of the estimation, the 
expression 1 1  should be equal to the ratio of the 
sample to the population. The results of the estimation, along 
with the values of this expression and the ratio of sample to 
population are given below in table 3.  

As expected, the sample-to-population ratio predicted 
matches to observed ratio. Moreover, the estimated values for 

 are very close to this ratio as well. This means that virtually 
all the exclusions of facilities excluded from the sample are the 
result of incomplete sampling rather than truncation. This also 
explains why the estimated values for A and B in Table 3 are so 
close to the estimates for the Simple Truncation model (Table 1). 
If exclusions from the sample are nearly always a consequence of 
random sampling rather than truncation, then accounting for the 
excluded facilities in the log likelihood function has very little 
effect. 

2) Continuous Bias Models: Estimation results from the 
truncation models reveal that, if the samples in our data are 
indeed biased toward more facilities with higher DMC values, 

then this bias is not well represented using models based on 
truncation. It appears from those results that if a bias in fact 
exists, it results not from categorically excluding facilities whose 
DMC is below a certain value, but from a tendency to include 
more facilities with high DMCs. This suggests the use of a 
continuous bias model. Since we are using the lognormal 
distribution, we used natural logarithm for the function    in 
(7).  

TABLE 3.  ESTIMATION RESULTS FROM MODIFIED TRUNCATION WITH 
INCOMPLETE SAMPLING (TWIS) 

 
As stated before, this approach involves evaluating a large 

definite integral that varies with the parameters to be estimated. 
One way to do this is to use maximum simulated likelihood, 
where simulated probabilities are used instead of actual 
probabilities [6, 7]. However, our model definition involves only 
a one-dimensional definite integral, and hence we used the 
Newton-Cote’s quadrature rules (trapezoidal rule) to approximate 
the integral [8]. Newton-Cote’s formulas work by using 
interpolating functions to evaluate the integral, and in our case, 
we use the linear interpolation. The results from the estimation 
are given in table 4.  

TABLE 4.   ESTIMATION RESULTS FROM THE CONTINUOUS BIAS APPROACH 

 

Facility Type  A  B  KS Test 
Value 

Sample 
Size  Population 

ALS  4.874  
(0.572) 

3.826  
(0.702)  0.177#  42  126 

ARSR  7.769  
(0.409) 

3.89  
(0.603)  0.361  85  136 

ASR  3.824  
(0.594) 

4.804  
(0.839)  0.234#  77  249 

AWOS / ASOS  ‐0.851  
(2.73) 

5.02  
(1.721)  0.370  36  600 

GS  0.445  
(0.839) 

6.136  
(0.953)  0.316  187  914 

LOC  ‐0.909  
(0.96) 

6.652  
(0.941)  0.273  194  1150 

MALS / SSALS  ‐7.494  
(5.383) 

7.382  
(2.661)  0.156#  17  711 

RCAG  0.983  
(0.599) 

7.447  
(1.349)  0.412  217  633 

RTR  ‐0.172  
(0.997) 

6.451  
(1.007)  0.293  179  1030 

VOR  5.9  
(0.148) 

4.203  
(0.314)  0.335  487  967 

(Values in brackets are standard errors for estimates) 

Underlined and italicized estimates are significant at 0.05 level 
# Estimated distribution passes KS test at 0.05 level 

Facility Type  A  B  p   
Sample 
Fraction

Sample 
Size

KS Test Value 

ALS  8.764 
(0.427)

1.947
(0.327)

0.375  
(0.056)  0.333  0.333  42  0.083# 

ARSR  10.478
(0.162)

1.476 
(0.105)

0.625  
(0.042)  0.624  0.625  85  0.062# 

ASR  9.468
(0.208)

1.716
(0.183)

0.316  
(0.03)  0.309  0.309  77  0.058# 

AWOS / ASOS  9.266
(0.181)

1.035
(0.123)

0.061  
(0.01)  0.060  0.060  36  0.234 

GS  9.292 
(0.114)

1.47
(0.078)

0.205  
(0.013)  0.205  0.205  187  0.112 

LOC  9.297
(0.134)

1.718
(0.099)

0.17  
(0.011)  0.169  0.169  194  0.119 

MALS / SSALS  9.419
(0.857)

2.222
(0.871)

0.028  
(0.009)  0.024  0.024  17  0.073# 

RCAG  9.597
(0.101)

1.449
(0.055)

0.342  
(0.019)  0.342  0.343  217  0.077# 

RTR  9.671
(0.121)

1.529
(0.097)

0.174  
(0.012)  0.174  0.174  179  0.080# 

VOR  9.584
(0.062)

1.356
(0.038)

0.504  
(0.016)  0.503  0.504  487  0.050# 

(Values in brackets are standard errors for estimates) 

Underlined and italicized estimates are significant at 0.05 level 
# Estimated distribution passes KS test at 0.05 level 

Facility Type  A  B  α  β  .∞
  Sample 

Fraction
Sample 
Size

KS Test 
Value 

ALS  7.025
(1.088)

2.33
(0.668)

1.206  
(0.659) 

‐9.891  
(1.362)  0.334  0.333  42  0.091# 

ARSR  9.415
(0.269)

1.973
(0.232)

1.846  
(0.691) 

‐16.136  
(2.612)  0.620  0.625  85  0.055# 

ASR  8.94  
(1.521)

1.676  
(0.313)

0.339  
(0.82)

‐3.898  
(3.332)  0.309  0.309  77  0.066# 

AWOS / ASOS  9.221
(0.757)

0.998
(0.118)

0.086  
(0.789) 

‐3.544  
(3.641)  0.060  0.060  36  0.242§ 

GS  7.86  
(0.41)

1.682  
(0.166)

0.84  
(0.201) 

‐8.443  
(0.628)  0.203  0.205  187  0.100§ 

LOC  7.474
(0.456)

1.95
(0.184)

0.782  
(0.155) 

‐8.073  
(0.451)  0.167  0.169  194  0.100§ 

MALS / SSALS  7.779* 
(1.971)

1.767
(0.483)

0.66*  
(0.428) 

‐9.566  
(1.35)  0.022  0.024  17  0.104# 

RCAG  8.291
(0.381)

1.764
(0.194)

0.941  
(0.261) 

‐8.783  
(0.849)  0.340  0.343  217  0.067# 

RTR  8.196
(0.566)

1.71
(0.197)

0.774  
(0.249) 

‐8.39  
(0.842)  0.173  0.174  179  0.068# 

VOR  8.247  
(0.17)

1.908  
(0.132)

1.81  
(0.331) 

‐14.909  
(0.948)  0.502  0.504  487  0.077 

(Values in brackets are standard errors for estimates) 

Underlined and italicized estimates are significant at 0 .05 level 

* Estimates significant at 0.1 level
# Estimated distribution passes KS test at 0.05 level
§ Estimated distribution passes KS test at 0.01 level, fails at 0.05 level 
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The parameter that captures bias in this model is . Estimates 
for this parameter are positive in every case, implying that, as 
expected, higher cost facilities are more likely to be included in 
the sample. Moreover, based on a one-tailed test, α is significant 
at the .10 level in eight cases and at the .05 level in seven. Thus 
in most cases we can be fairly sure that a bias toward higher 
DMC facilities exists. Furthermore, based on the earlier 
estimation results, the truncation models are essentially 
equivalent to the continuous model with  0. Thus rejection of 
this hypothesis implies that the continuous bias model is the most 
valid of those considered. 

Table 4 also summarizes the KS test results comparing the 
predicted distribution for the observations in the sample to the 
observed data. In six of the 10 cases, the null hypothesis that the 
data came from the fitted distribution cannot be rejected at the .05 
level. Of the remaining four cases, in three the null hypothesis 
cannot be rejected at the .01 level, while in one it is rejected at 
both .05 and .01 levels.  

3)  Model Comparison: We now compare results of the various 
models, in particular the CB and the TWIS, which we found to be 
the most satisfactory of the truncation models. With regard to 
goodness-of-fit, KS test results from the continuous bias and 
TWIS models closely resemble one another. The three facilities 
with the poorest distribution fits are the same in both models, and 
the magnitudes of the KS statistics in these cases—and most 
others--are quite similar. Thus, while estimation results, as well 
as the perception of FAA facility managers, comport better with 
the continuous bias model, the goodness-of-fit results do not 
support this conclusion. 

To further explore the differences between the CB and TWIS 
models, we plotted the fitted PDFs and sample selection 
probabilities, and compared predicted CDFs and observed data. 
The plots for three facility types are given in figure 1.  The PDF 
derived from the TWIS model is almost always shifted to the 
right of the one obtained from the CB model. The shift is greater 
when the probability of selection derived from the CB model 
changes more (in a proportional sense) over the central region of 
the PDF—this is the situation in which the bias will have the 
greatest effect. An instructive counterexample is the 
AWOS/ASOS case, where the PDFs are nearly identical and the 
selection probability is nearly constant in the central region. 

While the PDFs and sample selection probabilities generally 
look very different for the two models, the resulting CDFs for 
sampled observations are strikingly similar. As the KS tests also 
revealed, for most facilities modeled CDFs also fit the empirical 
distributions quite well. Of the three cases with the poorest fits, in 
two the modeled distributions appear to have thicker right tails 
than the observed data, while in the other (which has just 17 
observations), it appears that the central part of the distribution is 
more complicated than suggested by either model. 

The ultimate aim of these models is to estimate the average 
DMC for each type of facility. Estimates from the four models 
appear in Table 5. Estimates from the CB model are less than 

those from any of the others. Comparing CB and TWIS 
estimates, the difference ranges from around 9% for ARSR’s, to 
over 300% for localizers. It is also notable that only the CB 
model yields estimates of the population mean that are 
consistently below those of the sample mean. This again 
demonstrates that the CB model was the only one that actually 
demonstrated the bias believed to exist by FAA subject matter 
experts. 

TABLE 5.  COMPARING SAMPLE MEAN TO ESTIMATED POPULATION MEAN 

 

V.  CONCLUSION 
We have investigated the problem of estimating the 

parameters of a distribution from a sample of data in the face of 
known, or assumed, biases in the sampling process. In our 
application, the data are costs of restoring unstaffed facilities 
maintained by the FAA to support flight operations. Cost 
estimates are available for some facilities, but the samples are 
believed to be biased toward high cost instances. We have sought 
practical methods of inferring the cost distribution for the entire 
population that take this bias into account. There are many other 
settings, in infrastructure management and beyond, in which such 
a situation may exist, and to which our methods may also apply. 

We have experimented with two ways of modeling the bias: 
(1) truncation, which assumes that facilities are systematically 
excluded if their restoration cost falls below a certain value, and 
(2) continuous bias, which allows the sampling probability to 
increase gradually as cost increases. Estimation results for the 
truncation models suggest that truncation is not a major source of 
sample bias, while results from the continuous model do suggest 
bias. Thus, if we accept the premise that such bias exists, then the 
continuous bias model proved more suitable. On the other hand, 
the latter model did not surpass the truncation models in terms of 
goodness-of-fit. In other words, the data do not, in and of 
themselves, favor the continuous bias model.  

 

 

  
Facility Type 

Mean of Data 
or Sample 

Mean   

Estimated Population Mean   

Simple Truncation 
Truncation with 

complete 
sampling 

Truncation with 
incomplete 
sampling 

Continuous 
Bias 

ALS  42  43  198  43  17 

ARSR  95  106  4,571  106  86 

ASR  46  57  4,699  57  31 

AWOS / ASOS  17  18  127  18  17 

GS  30  32  233,800  32  11 

LOC  44  48  1,636,000  48  12 

MALS / SSALS  86  146  378,900  146  11 

RCAG  40  42  2,948,000,000  42  19 

RTR  40  51  916,400  51  16 

VOR  42  37  2,501  37  24 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(f) 

Figure 1.   Plots of estimated PDF, CDF, sample selection and empirical distribution for TWIS and CB approaches 
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Throughout our analysis, we have maintained the assumption that 
the restoration cost has a log normal distribution. This was 
chosen as the most plausible two-parameter distribution for our 
setting, and results show that it works quite well for most 
facilities. It would certainly be desirable to extend these methods 
to more general distributions, but this may prove difficult, 
particularly for the continuous bias model. Estimation proved 
challenging even with a two-parameter distribution. As the 
number of parameters increases, bias effects and properties of the 
actual distribution will become harder to disentangle. Ultimately, 
the better approach is almost certainly to collect an unbiased 
sample. The methods presented here are best used as means of 
developing preliminary estimates from which efficient sampling 
strategies can be devised. 

Appendix 1: Binding Nature of Constraint on Truncation Point 
for Simple Truncation 

Let  be the probability distribution function (pdf) of the 
underlying population distribution that we are trying to estimate, 
with  and  being the parameters of the distribution. Let  be 
the truncation point for the estimation, with  being a parameter 
to be estimated too. Let , …  be the sample values, sorted 
in increasing order. Thus,  is the smallest value in the sample, 
and the estimation of the truncation point  is done subject to the 
constraint that . Now, the truncated distribution that we 
are trying to estimate can be written as 

1  (9)

where  

 (10)

Thus, the likelihood function can be written as 

1  (11)

And the log-likelihood function becomes 

log log log 1  (12)

If  and  are the parameters of , then both the 
numerator and denominator of the likelihood function are 
dependent on  and . However, only the denominator 1

 depends on the truncation point . Consider the 
cumulative distribution function . For any parameters 

 and , the value of  increases monotonically with , 
since it is the area under the pdf for . Thus, the 
function 

 
  also increases monotonically with  for a 

given  and . Hence, the constraint  becomes binding 

while maximizing the log-likelihood function in terms of ,  
and .  

Appendix 2: List of abbreviations related to different types of 
facilities 

Abbreviation Facility Type 
TDWR Terminal Doppler Weather Radar 
ASR Airport Surveillance Radar 

ASDE Airport Surface Detection Equipment 
ARSR Airport Route Surveillance Radar 
RTR Remote Transmitter Receiver 
RCL Radio Communication Link 
RML Remote Microwave Link 
TML Television Microwave Link 
VOR VHF Omni-directional Range 

VORTAC VOR collected with TACAN 
TACAN Tactical Aircraft Control and Navigation 

LOC Localizer 
ALS Approach Light System 

MALS Medium Intensity Approach Lighting System 
SSALS Simplified Short Approach Lighting System 
AWOS Automated Weather Observation System 
ASOS Automatic Surface Observing System 

NEXRAD Next Generation Weather Radar 
LLWAS Low Level Wind Shear Alert System 
RCAG Remote Communication Air / Ground 

GS Glide Slope 
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